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Chapter 1

Introduction

This thesis provides an analysis of quantifiers in natural language based

on a semantic framework called dependent type semantics (henceforth,

DTS) (Bekki, 2014; Bekki andMineshima, 2017).

Quantifiershavebeen studiedextensively inboth logic and linguistics.

It is well-known that the standard first-order logic has two quantifiers, ∀
and ∃: a universal quantifier ∀ is used to express about everything and an
existential quantifier∃ is used to express about something. To account for
other quantification, e.g.,most, at least 5, exactly 3, and so on, the notion

of generalized quantifiers (GQs) was developed (Mostowski, 1957; Lind-

ström, 1966). It generalizes the standard universal and existential quanti-

fiers into relations between sets of objects, which enables to account for

various other quantifiers, includingbinary quantifiers that express the re-

lation between two sets.

Thismodel-theoretic conception of GQs has been introduced to stud-

ies of model-theoretic semantics of natural language. Natural language

quantifiers suchas every, some, andmost canbe regardedasbinary quan-

tifiers from theGQperspective (Barwise andCooper, 1981). This account
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INTRODUCTION

seems to give the adequate meaning of quantifiers: the relationship they

represent for the denotation of given noun phrases and the verb phrases.

Also, the inferential properties of those quantifiers, such asmonotonicity,

seems to be naturally derived from those set relations.

However, it isnot that straightforwardbecausenatural languagequan-

tifiers behave in a complicated way, interacting with context-dependent

dynamic linguisticphenomenasuchasanaphoraandpresupposition. For

example, anaphora in a sentence poses a challenge to the basic idea that

a quantifier represents a relationship between two sets. The following ex-

ample shows the so-called donkey sentence (Geach, 1962) that contains

the quantifiersmost1.

(1.1) Most farmers who own a1 donkey beat it1.

Here, a semantic dependency exists between the two sets related by the

quantifier most : the second set, which is a collection of objects x that

satisfy x beat it, is interpreted dependently on the first set. Therefore, to

give propermeaning to a quantifier, it is necessary to consider anaphoric

dependency simultaneously. This observation suggests that even the es-

sential operation of quantification, i.e., counting, becomes non-trivial in

the presence of intra-sentential anaphora. Also, quantifiers exhibit infer-

ential properties such as monotonicity according to the relationship be-

tween the two sets they relate to. This inferential property also manifests

itself as an entailment relation between natural language sentences con-

taining quantifiers. Therefore, inferential properties of quantifiers must

also be treated simultaneously with intra-sentential anaphora. Besides,

we need to consider also quantifiers’ anaphoric potential for subsequent

1In examples in this thesis, an anaphor is subscripted by an index, while its an-

tecedent is superscripted by the same index.

2



sentences.

It has been one of the significant issues in natural language seman-

tic studies to capture the meaning of quantifiers that accounts for nat-

ural language dynamism. For example, dynamic semantic frameworks

such as Dynamic Predicate Logic (DPL) (Groenendijk and Stokhof, 1991;

Kanazawa, 1994) andDiscourseRepresentationTheory (DRT) (Kampand

Reyle, 1993; Kampet al., 2011) have provided their account onquantifica-

tion and intra-sentential anaphora. Analyses have alsobeenproposed for

quantifiers’ anaphoric potential in discourse (Krifka, 1996; van den Berg,

1996b).

DTS, the semantic frameworkwestudy in this thesis, is aproof-theoretic

natural language semantics basedondependent type theory (Martin-Löf,

1984). It has been recently developed as an alternative tomodel-theoretic

dynamic semantics such as DRT and DPL.

DTS has shown unique characteristics as a semantic framework for

natural language in at least two points. The first point is how it provides

a solution to the compositionality problem of discourse anaphora. The

problemoccurs in thedonkeysentencesandE-typeanaphoracase (Evans,

1980), which are exemplified below.

(1.2) Every farmer who owns a1 donkey beats it1.

(1.3) A1man entered. He1 whistled.

It has been known to be a puzzle to provide their semantic representa-

tions parallel to their syntactic structure. However, as Sundholm (1986)

pointedout, the type structures of dependent type theory are rich enough

to allow such semantic representations. DTS elaborates this idea further

and provides a fully compositional account of anaphora resolution and

presupposition binding process.
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INTRODUCTION

The second point is that DTS accounts for anaphora resolution and

presuppositionbinding involving inference. For the analysis of presuppo-

sition, DTS follows the “presupposition as anaphora” paradigmproposed

by van der Sandt and Geurts (1991) and van der Sandt (1992) and gives a

uniform account of anaphora resolution and presupposition binding. Al-

though van der Sandt’s analysis on DRT framework is considered to have

best empirical coverage (see Beaver, 1997, page. 983), usingworld knowl-

edge inpresuppositionbinding isbeyondthescopeof theproposal (Krah-

mer and Piwek, 1999). The typical instance of such cases is the so-called

bridging inference (Clark, 1975).

(1.4) John1 bought a car. He1 checked themotor.

Here, thedefinite description themotor is associatedwitha car in thefirst

sentenceby a generalworld knowledge that every car has amotor. InDTS,

anaphora resolutionandpresuppositionbinding involveproof searchun-

der thegivencontext along theparadigmof “anaphora resolutionasproof

construction” (Krahmer and Piwek, 1999). Thus, it can naturally account

for presupposition binding involving inference using world knowledge.

AlthoughDTS lookspromisingasanewframeworkofnatural language

semantics, an analysis of quantifiers other than universal and existential

ones within the framework has not been well established so far. There

is a study of quantifiers based on dependent type theory by Sundholm

(1989). The study provides a set-theoretic definition of quantifiers in the

framework of dependent type theory, which provides a basis for analyz-

ing quantifiers’ meaning in a constructive setting. However, the interac-

tion of quantifiers with dynamic phenomena in natural language has not

been fully discussed.

Since DTS is a proof-theoretic semantics, it is not trivial how to ac-
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count for the dynamic meaning of quantifiers in the framework even if

thereare studies inmodel-theoreticdynamic semantics. Quantifiershave

been studied in the proof-theoretic approach to natural language seman-

tics in general. Those studies, however, havemainly focusedon theproof-

theoretic account of inferential properties of quantifiers, where anaphora

isnot taken intoaccount. Basedon thepreviousworkbySundholm(1989),

weadopt anapproachwhere countingoperations aredefinedexplicitly in

the dependent type theory framework. We then show that the semantic

representation of quantifiers given in this way can provide a context for

anaphora and presupposition in the proof-theoretic setting of DTS.

The structure of this thesis is as follows.

In Chapter 2, we introduce DTS, the semantic framework we adopt in

this study. We first explain dependent type theory, which is the basis of

the framework. There are two dependent types, Σ-type and Π-type, that

correspond to the existential and universal quantifiers. We will explain

that these types give semantic representations of existential and univer-

sal sentences in natural language. We will then introduce the analysis of

anaphora resolution in DTS. We categorize natural language anaphora

into twogroups. One isanaphora thatΣ-typescontribute to (Σ-typeanaphora).

The other is anaphora that Π-types contribute to (Π-type anaphora). We

will explain the basics of the anaphora resolution process inDTS for each

of them. Moreover, we will explain the same mechanism applies to the

analysis of presupposition.

Chapter 3 gives an overview of studies of natural language quantifiers,

particularly phenomena associated with determiners. It summarizes the

issuesdiscussed in the literature, including intra-sentential and inter-sentential

anaphora and inferential properties associated with the quantifiers.
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In Chapter 4, we propose an analysis of quantifiers in DTS.We first in-

troduce a way to handle cardinal numbers in dependent type theory, fol-

lowing the study by Sundholm (1989). Among various quantifiers, we pay

special attention to most and take it as our working example. From the

GQ theory point of view, meanings of binary quantifiers such asmost are

given as relations between two sets. We will show how such a view is for-

malized in our setting while maintaining its internally-dynamic nature.

We generalize our definition also to other quantifiers, including numer-

als and some, no, and every. We also discuss our account of the so-called

existential reading (weak reading) and universal reading (strong reading)

of donkey sentences. Finally, we discuss the anaphoric potential of the

semantic representation given here. We give a semantic representation

of the plural pronoun and examine the interaction between the quanti-

fier, the plural pronoun, and the singular pronoun. We will show that the

meaning of quantifiers is directly supplied as the context in discourse.

Chapter5 is concernedwith the inferentialpropertyofquantifiers. From

a proof-theoretic and dynamic perspective, we define inferential proper-

ties such as conservativity andmonotonicity in terms of dependent type

theory. We then prove the theorems that the semantic representations of

quantifiers given in this thesis satisfy conservativity and rightmonotonic-

ity. We also discuss the remaining issues on left monotonicity. As the the-

orems consider anaphoric dependency in a sentence, they can account

for natural language inference involving anaphora.

Finally, Chapter 6 summarizes the contributionof this study and some

remaining issues.
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Chapter 2

Dependent Type Semantics

In this chapter, we introduce the framework ofDependent Type Semantics

(henceforth, DTS) (Bekki, 2014; Bekki and Mineshima, 2017), a semantic

framework we will adopt in this study.

Before introducing a framework of DTS, Section 2.1 provides a brief

overview of dependent type theory (Martin-Löf, 1984; Nordström et al.,

1990), a theoretical background of the framework. In Section 2.2, we ex-

plain how the theory has been applied to natural language semantics.

We introduceDTS inSection2.3 andprovide anoverviewof the frame-

work. The following sections, Section 2.4 to Section 2.8, are devoted to

explain the natural language analysis in DTS, including the analysis of

anaphora and presupposition.
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DEPENDENT TYPE SEMANTICS

2.1 Dependent type theory

2.1.1 Types depending on terms

Dependent type theory (Martin-Löf, 1984; Nordström et al., 1990) is orig-

inally developed as a formal systems for constructive mathematics (see,

e.g.,Martin-Löf, 1982; Aczel, 1978, 1982, 1986). It extends simple type the-

ory with the notion of types depending on terms, that is, types indexed by

objects in another type.1 For instance, one can define a type list(n) of lists

of length n, where n is an object of typeNat (natural number).

Dependent types enable more precise definitions of types. Suppose

wewant to define a function that takes a natural number i and returns an

i × i identity matrix. Without dependent types, the type of the function is

specified asNat → Matwith the typeMat ofmatrices. However, this type

is not so precise in that it may include functions that return matrices of

any size. With dependent types, we can define the typeMat(n,m) of n ×m

matrices for n : Nat and m : Nat. Therefore, the function can have type

(i : Nat) → Mat(i , i ), which specifies that the resultant object is i ×i matrix

for the given i : Nat.

One advantage of dependent types is that it allows specifying a prop-

erty of an object in its type. Let us consider the operation of matrices

multiplication as an example. Without dependent types, the operation

has a function type ofMat → Mat → Mat. However, the matrices mul-

tiplication is not always available: the operation is not executable when

1 The formalism presented in this thesis is based onMartin-Löf type theory (Martin-

Löf, 1984). In this thesis, we use the term dependent type theory to refer to any type

theorywith dependent types, including λP (Barendregt, 1992), Calculus of Construction

(CoC) (Coquand and Huet, 1988), and Unified Type Theory (UTT) (Luo, 2012b).
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2.1. Dependent type theory

the number of columns of the first argument differs from the second ar-

gument’s number of rows. With dependent types, we can block such a

multiplication beforehand. The type of matrices multiplication is given

as follows.

(i : Nat) → (j : Nat) → (k : Nat) → Mat(i , j ) → Mat(j,k ) → Mat(i ,k )

Here, the type itself specifies that the number of columns of the first ar-

gument and the number of rows of the second argument are the same

(variable j ). Therefore, themultiplication that does not satisfy the size re-

quirement can be detected in the type checking stage.

2.1.2 Formal system

There are two type constructors, Σ and Π, in dependent type theory.

The type constructor Σ is a generalized form of the product type. An

object of type (Σx : A)B(x) is a pair (m,n) such thatm is of typeA andn is of

typeB(m). Σ-types are associatedwith projection functions π1 and π2 that

are computed with the rules π1(m,n) = m and π2(m,n) = n, respectively.

Conjunction A ∧ B is a degenerate form of (Σx : A)B , where x does not

occur free in B .

The type constructor Π is a generalized form of the function type. An

object of type (Πx : A)B(x) is a function f such that for any object a of type

A, f a is an object of type B(a). Implication A → B is a degenerate form of

(Πx : A)B , where x does not occur free in B .

Throughout this thesis, we will make use of the DTS-notation for Π-

types and Σ-types as shown in Figure 2.1.2 The inference rules forΠ-types

2We use the two different notations of Σ-types depending on the situation.
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DEPENDENT TYPE SEMANTICS

Π-types Σ-types

Standard notation (Πx : A)B (Σx : A)B

Notation in DTS (x : A) → B


x : A

B(x)

 or (x : A) × B

When x < f v (B) A → B


A

B

 or (A × B)

Figure 2.1: Notation for Π-types and Σ-types in DTS. Here, f v (B)means

the set of free variables in B .

and Σ-types are shown in Figure 2.2. Here we write B[M /x] for the substi-

tutionof a termM for free occurrences of the variable x in the termB , with

the possible capture-avoiding renaming of bound variables. The full ver-

sion of the inference rules we will use in this thesis is shown in Appendix

A. Formore details, the readers can refer toMartin-Löf (1984), Nordström

et al. (1990), and Ranta (1994).3

The form “a : A” that expresses “a is a term of type A” is called a judge-

ment. Under theso-calledCurry-Howardcorrespondence (thepropositions-

as-types principle), a typeanda termcanbe regardedasapropositionand

a proof, respectively. Thus, the judgement a : A can also be read as “a is a

proof of proposition A”. A term is called a proof term in this respect, as it

serves as proof of a proposition. In this setting, the truth of a proposition

A is defined as the existence of a proof term of type A.

3Here is a note on some differences betweenMartin-Löf (1984)’s original system and

systems that the specific version of DTSwe adopt here is based on. Firstly, DTS employs

two sorts: type and kind. Secondly, we use an intensional version of the equality (Nord-

ström et al., 1990). Thirdly, we have β-conversion rules in place of judgemental equal-

ity (Bekki and Satoh, 2015).
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2.1. Dependent type theory

Formation rules:

For any (s1, s2) ∈ {(type, type), (type, kind), (kind, type), (kind, kind)},

and (s′1, s′2) ∈ {(type, type), (type, kind), (kind, kind)},

A : s1

x : A
j

....
B : s2

(x : A) → B : s2
ΠF , j

A : s′1

x : A
j

....
B : s′2

(x : A) × B : s′2
ΣF , j

Introduction rules: For any s ∈ {type, kind},

A : s

x : A
j

....
M : B

λx .M : (x : A) → B
ΠI , j M : A N : B[M /x]

⟨M ,N ⟩ : (x : A) × B
ΣI

Elimination rules
M : (x : A) → B N : A

M N : B[N /x] ΠE

M : (x : A) × B
π1(M ) : A

ΣE
M : (x : A) × B

π2(M ) : B[π1(M )/x] ΣE

Figure 2.2: Inference rules: formation rules (ΠF , ΣF ), introduction rules

(ΠI , ΣI ), and elimination rules (ΠE , ΣE ).

Weuse the following form to state that the judgement a : A is derivable

under the sequence of assumptions Γ.

Γ ⊢ a : A

We use the following judgement of the form A t rue to mean that the type

A is inhabited, that is, there exists a term a that satisfies Γ ⊢ a : A.

Γ ⊢ A true

11
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By theCurry-Howard correspondence, the type constructor Σ behaves

as an existential quantifier and Π as a universal quantifier. Thus a proof

termof an existential proposition is a pair, and a proof termof a universal

proposition is a function. These types and proof terms play an important

role in representingnatural language sentences independent type theory.

2.2 Dependent types and natural language

2.2.1 Donkey sentence

Dependent type theory has been applied to natural language semantics,

particularly todynamicsemanticsand lexical semantics (Sundholm,1986;

Ranta, 1994; Luo, 2012b;Cooper, 2012;Bekki, 2014;Bekki andMineshima,

2017;Chatzikyriakidis andLuo, 2017;GrudzińskaandZawadowski, 2017).

Sundholm (1986) first pointed out that the rich type structure can nat-

urally handle dependencies lying in natural language, especially the de-

pendencies between an anaphoric expression and its reference.

Capturing anaphoric dependencies has been one of the biggest issues

in studies of dynamic semantic frameworks of natural language. Let us

consider the followingsentence, knownasadonkey sentence (Geach,1962).

(2.1) Every farmer who owns a1 donkey beats it1.

If we focus on one natural reading where the pronoun it refers back to an

indefinite a donkey, the sentence means that for every farmer who owns

a donkey, the farmer beats his donkey.

This sentence is known to be problematic in the sense that a standard

compositional analysis does not give the truth-conditionally correct se-
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mantic representation (the compositionality problem)4. Onemight think

that the sentence can be represented as the following predicate logic for-

mula.

(2.2) ∀x(farmer(x) ∧ ∃y (donkey(y ) ∧ own(x , y )) → beat(x , y ))

The structure of the formula lookswell-corresponding to the original nat-

ural language sentence. However, this does not capture the intended in-

terpretation of the donkey sentence because the variable y in the object

position of the predicate beat is outside the scope of existential quantifi-

cation over the variable y . The problem can be stated in a more general

way. In the original sentence, since it states there is an object (i.e., a don-

key), the object can be referred to from the rest of the sentence. However,

there is no way to refer to the object in the predicate logic formula once

the existential quantifier’s scope is closed.5

This gap between natural language sentences and predicate logic for-

mulasbecamethemotivationbehinds thedynamicpredicate logic (DPL) (Groe-

nendijk and Stokhof, 1991). In DPL, the meaning of a sentence corre-

sponds to an action performed on a context. Since existential quantifi-

cation is treated as an operation to alter the context, the scope of existen-

tial quantifier does not affect the accessibility. In this way, DPL provides a

compositional analysis of anaphora in (2.1).

4Bekki and Mineshima (2017) discussed the compositionality problem of discourse

anaphora, including the donkey sentence and E-type anaphora.
5 Note that providing the truth-conditionally correct representation of the donkey

sentence in the predicate logic itself is not a problem. We can represent its meaning as

follows: ¬∃x(farmer(x) ∧ ∃y (donkey(y ) ∧ own(x , y ) ∧ ¬beat(x , y ))).
Note also that the puzzle presented here comes from the assumptions that (1) the in-

terpretation of the sentences is given one-by-one from left to right and (2) the pronoun

is a variable-like semantic object.
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However, dependent type theory can provide an alternative solution:

it provides a way to access the donkey from outside the existential scope.

As Sundholm (1986) presents, the corresponding formula in dependent

type theory is as follows.

(2.3)
©­­­­«

u :


x : farmer

y : donkey

own(x , y )



ª®®®®¬
→ beat(π1u , π1π2u)

The formula (2.3) as a whole is a universal sentence, which is represented

as a Π-type. The restrictor farmer who owns a donkey is analyzed as a

Σ-type. Since the variable u has the Σ-type (x : farmer) ×
(
y : donkey

)
×

own(x , y ), the variablewould be a tuple (f , (d ,o)), where f is a termof type

farmer, d is a term of type donkey, and o is a proof-term of the proposi-

tion own(f ,d). Recall that π1 and π2 are projection functions that take a

pair and return the first and the second element, respectively. Thus the

terms π1u and π1π2u appearing in the argument position of beat pick up

from u the term f of type farmer and the term d of type donkey, respec-

tively. Here, the situation is the same as before in the sense that beat is

outside the scope of y . However, via the proof term u associated with the

Σ-type, the subsequent discourse can access the antecedent.

An advantage of dependent type theory over the previous dynamic

theories is that such an externally dynamic character of quantification

can be captured without any stipulation: Σ-types and Π-types, which are

natural generalizations of existential and universal quantifiers in predi-

cate logic, are equipped with the mechanism to handle dynamic aspects

of discourse interpretations.

14
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2.2.2 Toward compositional analysis

Since Sundholm (1986) discovered that dependent type theory couldpro-

vide an alternative treatment to donkey anaphora, studies of natural lan-

guage semantics have been developed based on the approach.

One of the notable works was done by Ranta (1994), who developed

TypeTheoreticalGrammar (TTG) and showed thepotential of dependent

typeswith broad coverage of empirical data. The study also raised funda-

mental discussions about a proof-theoretic view of anaphora, including

the relation of proof-terms with the notion of reference in dynamic se-

mantics. It shows thatdependent type theorycanprovidea type-theoretic

alternative tomodel-theoretic frameworks suchasDynamicSemantics (Heim,

1983),DynamicPredicateLogic (GroenendijkandStokhof, 1991), andDis-

courseRepresentationTheory (vanderSandt, 1992;KampandReyle, 1993;

Kamp et al., 2011).

While Ranta’s work mainly focuses on mapping from a given formula

to thecorrespondingnatural languagesentence, oneof theessentialques-

tions to be answered is how to get the semantic representation (2.3) from

sentence (2.1) in a systematic way.

Fromtheviewpointof the standardcompositional semantics, theprob-

lem can be divided into two tasks. The first is to map the sentence (2.1)

into anunderspecified representation, namely, a semantic representation

that contains an underspecified element corresponding to the pronoun

in question. The second task is to resolve the underspecified element. In

ourexample (2.3), theunderspecifiedelementhasbeen resolved to π1π2u .

The semantics satisfying the requirement of compositionality must pro-

vide an explicit procedure to do these two tasks.

DTS (Bekki, 2014; Bekki andMineshima, 2017) provides such a proce-
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dure. We will explain these inmore detail from the following sections.

2.3 DTS: an overview

DTS(DependentTypeSemantics) (Bekki, 2014;BekkiandMineshima,2017)

is a proof-theoretic natural language semantics based on dependent type

theory (Martin-Löf, 1984), which has been developed as an alternative

framework to traditionalmodel-theoretic dynamic semantics. One of the

distinctive features of DTS, compared with other frameworks based on

dependent type theory, is that it is augmented with underspecified terms

called @-terms. DTS utilizes @-terms to provide a unified analysis of en-

tailment, anaphora, and presupposition from an inferential and compu-

tational perspective. DTS is designed as a semantic component of mod-

ern categorial grammars to give a fully compositional account of infer-

ences involving anaphora.

Figure 2.3 shows the flow of language analysis in DTS. First, each sen-

tence in discourse is translated into its semantic representation by se-

mantic composition. The semantic representation inDTS involves anun-

derspecified representation called an @-term. The underlying system is

whatwecallunderspecifieddependent type theory (UDTT), dependent type

theory augmented with an underspecified term. We obtain the semantic

representationof thewholediscoursebycombiningsentence representa-

tions with progressive conjunction. The process of resolving underspec-

ification is formulated as type checking, proof search, and @-elimination.

We finally obtain a fully-specified semantic representation in dependent

type theory to conduct standard inference in dependent type theory.

16
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A sentence . . . A sentence

⇓ ⇓

Parsing (Semantic composition) . . . Parsing (Semantic composition)

⇓ ⇓

An underspecified semantic representation in UDTT .. . An underspecified semantic representation in UDTT

⇓ ⇓

Progressive conjunction

⇓

An underspecified discourse representation in UDTT

⇓

Type checking + Proof search + @-elimination in UDTT

⇓

A semantic representation in dependent type theory

⇓

Inference in dependent type theory

Figure 2.3: Themodel of language analysis in DTS.

2.4 Semantic representation in DTS

We first explain how semantic representations of basic sentences are de-

rived in the framework. Consider the following two sentences.

(2.4) Aman entered.

(2.5) Every man entered.

DTS provides a compositional mapping from natural language sen-

tences to their semantic representations. In order to give an explicit com-

positional mapping, we adopt Combinatory Categorial Grammar (CCG,

Steedman 2000) as a syntactic framework.6 Table 2.1 shows some of the

lexical entries.7 Here we use entity : type for the type of entities.

6 Note that, as is emphasized in Bekki (2014), DTS can be combined with other cat-

egorial grammars; see Kubota and Levine (2015) for a concrete proposal that combines

DTS with a type-logical grammar.
7 The subscript nom is for determiners in the nominative position. For the purpose
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Expression CCG category Semantic Representation

anom (S/(S\N P ))/N λnλv .
(
x : entity

)
× (u : nx) × v x

everynom (S/(S\N P ))/N λnλv .
(
u :

(
x : entity

)
× nx

)
→ v (π1u)

man N λx .man(x)

entered S\N P λx .enter(x)

own (S\N P )/N P λy λx .own(x , y )

who (N \N )/(S\N P ) λvλnλx . (nx × v x)

he, it N P @i :: entity

Table 2.1: Some lexical entries.

The semantic representations of (2.4) and (2.5) are derived as in (2.6)

and (2.7), respectively.8,9

of concreteness, we use a type-raised formof semantic representations for determiners.

The entry for determiners in the object position can be given as follows:

aacc ; ((S\N P )\((S\N P )/N P ))/N ; λnλvλx . (y : e) × (u : ny ) × v y x

Although there are other possible syntactic analyses of determiners in object posi-

tion (cf. Bekki, 2014), this entrywouldensurea concisederivation tree for semantic com-

position.
8We ignore tense in this thesis for simplicity.
9In theCCGderivation trees,weuse twostandardcombinatory rules, forward (>)and

backward (<) function application rules:

X /Y : m Y : n
X : mn

>
Y : n X \Y : m

X : mn
<

For instance, the combinatory rule (>) means that an expression having a syntactic cat-

egory X /Y and a meaning m, combined with an expression having a syntactic category

Y and a meaning n, yields an expression having a category X and a meaning mn. Each

meaning is represented as a lambda term. See (Steedman, 2000) for more details.
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2.4. Semantic representation in DTS

(2.6)
A

(S/(S\N P ))/N

λnλv .


x : entity

u : nx

v x




man
N

λx .man(x)

S/(S\N P )

λv .


x : entity

u :man(x)

v x




>

entered
S\N P

λx .enter(x)

S
x : entity

u :man(x)

enter(x)




>

(2.7)
Every

(S/(S\N P ))/N

λnλv . ©­«u :


x : entity

n(x)

ª®¬ → v (π1u)

man
N

λx .man(x)

S/(S\N P )

λv . ©­«u :


x : entity

man(x)

ª®¬ → v (π1u)

> entered
S\N P

λx .enter(x)

S©­«u :


x : entity

man(x)

ª®¬ → entered(π1u)

>

Here is a note on the treatment of common nouns. There are two pos-

sible approaches to representing basic sentences like A man entered in
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dependent type theory. One is the approach proposed in Ranta (1994)

and Luo (2012a,b), according to which common nouns likeman are in-

terpreted as types so that the sentence is represented as (2.8) in our nota-

tion.

(2.8)


x :man

enter(x)


As an alternative approach, a common noun is interpreted as a predi-

cate in DTS. Common nouns in the argument position and the predicate

position are both analyzed as predicates of type entity → type.

(2.9) Aman enters.


x : entity
man(x)

enter(x)




(2.10) John is a man. man(john)

As this approach is in linewith the traditional analysis of commonnouns,

wecan integrate standardassumptions in formal semantics intoour frame-

work. See Bekki and Mineshima (2017); Chatzikyriakidis and Luo (2017)

for more discussions on the treatment of common nouns. 10

10 Retoré (2013) suggests the possibility that common nouns can be interpreted both

as types and as predicates; for instance, using the type entity, the common noun an-

imal interpreted as a type animal could be related to a predicate animal∗ of type

entity → type, via some suitably defined mapping (·)∗ from one to another. The ques-

tion of whether a type system for natural language semantics needs to be enriched with

the structures of common nouns would ultimately depend on the treatment of lexical-

semantic phenomena it attempts to capture, such as coercion and selectional restric-

tion – phenomena that have been widely discussed in the recent literature on type-

theoretical semantics (Asher andPogodalla, 2011; Asher andLuo, 2012; Bekki andAsher,

2013; Retoré, 2013; Kinoshita et al., 2016, 2018). Investigating this matter further is be-

yond the scope of this thesis.
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2.5. Analysis of anaphora

2.5 Analysis of anaphora

In this section, we explain the anaphora resolution process in DTS.

As is well known in the literature, existential sentences and univer-

sal sentences have different anaphoric potentials. From the dependent-

type perspective, we classify the class of anaphoric phenomena into two

groups: Σ-type anaphora and Π-type anaphora.

2.5.1 Σ-type anaphora

Anexistentialquantifier is said tobe externallydynamic (Groenendijkand

Stokhof, 1991) in the sense that the entity introduced by an existential

quantifier is accessible to the subsequent sentences. This property canbe

capturedby representing existential quantifiers usingΣ-types. Wecall the

type of anaphora in which an object introduced by an existential quanti-

fier is referred to from the subsequent discourse Σ-type anaphora.

As an illustration, consider the caseof singularE-typeanaphora (2.11),

a typical case of Σ-type anaphora.

(2.11) a. A1man entered.

b. He1 whistled.

We will focus on the reading where he refers back to aman, which we in-

dicate by a subscript and a superscript.

In DTS, the sentences (2.11a) and (2.11b) are given the semantic rep-

resentations (2.12a) and (2.12b), respectively.

(2.12) a.


x : entity
man(x)

enter(x)



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A : type A true
@i :: A : A

@

Figure 2.4: Inference rule of @.

b. whistle(@1 :: entity)

The term@1 :: entity in (2.12b) is calledanunderspecified term inDTS.

The @-term plays the role of a gap to be filled by the antecedent of the

pronoun in question. The form @i :: Λ is called type annotation, where

Λ specifies the type of the underspecified term. Figure 2.4 shows the in-

ference rule of the underspecified term, @-rule. We call the systemwhich

adds @-rule to inference rules of dependent type theory underspecified

dependent type theory (UDTT).

Underspecified terms are introduced by lexical entries of anaphoric

expressions: in the current case, it is introduced by the pronoun he.11

henom ;N P ; @i :: e

Here, the subscript number is used todistinguishbetween@-terms intro-

duced by different lexical items. Note that it is not the index indicating its

antecedent in the example (2.11).

When two sentences, whose semantic representations are M and N ,

compose a discourse, the semantic representation of thewhole discourse

is given in terms of a Σ-type by the progressive conjunction (Ranta, 1994).

M ;N
def≡


u : M

N

 where u < f v (N )

11 For simplicity, we omit the gender information and treat the pronoun he as an ex-

pression referring to an entity.
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Thus, the semantic representationof themini-discourse (2.11) is given

as follows, by conjoining (2.12a) and (2.12b).

(2.13)


u :


x : entity
man(x)

enter(x)




whistle(@1 :: entity)


The intended resolution under the current reading is shown below.

(2.14)


u :


x : entity
man(x)

enter(x)




whistle(π1u)


The argument of the predicatewhistle, i.e., the place of @-term in (2.13),

is tobefilledby the term π1u . Note that the semantic representation (2.14)

is equivalent to
(
x : entity

)
× (man(x) × enter(x) ×whistle(x)), which says

that there is an entity that satisfies the three conditions,man(x), enter(x)

andwhistle(x).

Now thequestion is how toderive (2.14) from (2.13). InDTS, anaphora

resolution isdefinedas anoperation to replaceunderspecified termswith

concrete proof terms. The process consists of type checking, proof search,

and @-elimination. Type checking is triggered by the felicity condition

of a sentence or a discourse, i.e., the requirement that the semantic rep-

resentation of a sentence or a discourse is a type under the given con-

text. Thus, for the mini-discourse to be felicitous, the following judge-

mentmust hold:
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(2.15) K ⊢


u :


x : entity
man(x)

enter(x)




whistle(@1 :: entity)


: type

The contextK is called a global context. The global contextK includes the

basic ontological commitment (e.g., entity : type) and the arities of pred-

icates (e.g.,man : entity → type). It also contains ontological knowledge

encodedas judgements, e.g., john : entityand f :
(
u :

(
x : entity

)
× cat(x)

)
→

animal(π1u). Type checking follows inference rules in UDTT, namely, in-

ference rules of dependent type theory and @-rule. The derivation tree

for type checking of (2.15) is as follows.

(2.16)

entity : type con

man : entity → type con
x : entity 2

man(x) : type ΠE
y :man(x) 3

enter : entity → type con
x : entity 2

enter(x) : type ΠE

enter(x) : type wk
man(x)

enter(x)

 : type
ΣF , 3


x : entity
man(x)

enter(x)



: type

ΣF , 2

whistle : entity → type
con

entity : type con


x : entity
man(x)

enter(x)



1

....
entity true

(@1 :: entity) : entity @

whistle(@1 :: entity) : type
ΠE


u :


x : entity
man(x)

enter(x)




whistle(@1 :: entity)


: type

ΣF , 1

The notable step is the one where the @-rule is applied. At the rightmost

branch, we must show that (i) entity is a type, which follows from the

global context, and (ii) there exists a term of entity under the given con-

text. The goal to be proved for (ii) is sorted out as follows.
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(2.17) K , u :


x : entity
man(x)

enter(x)



⊢ entity true

Note thatwecanuseglobal contextK aswell asproof termu :
(
x : entity

)
×

(man(x) × enter(x)) to prove the judgement. The latter is the assumption

that is discharged by the Σ-formation rule afterward at the bottom. Infer-

ence rules with discharging, e.g., Σ-formation and Π-formation, in gen-

eral provide such a local context.12 In this way, the preceding discourse’s

semantic representationcontributes to the local context foranaphora res-

olution.

The judgement (2.17) launchesproof search. In this case,wecanprove

that π1u : entity exists. Thus, we have the following derivation of UDTT,

where the derivation in the rightmost branch is completed.

12 Bekki and Mineshima (2017) defined the underspecified term as a function from a

local context to the annotated type: it is defined to explicitly pass the local context to the

subsequent component. In the DTS version that we adopt here, we define @-term as a

term of the annotated type and consider that the local context is given as the assump-

tionsduring the type-checking. This formalismhasbeenadopted in several studies, e.g.,

Tanaka et al. (2017a); Kinoshita et al. (2018); Yana et al. (2019).
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(2.18)

....
x : entity
man(x)

enter(x)



: type

whistle : entity → type
con

entity : type con

u :


x : entity
man(x)

enter(x)



1

π1u : entity ΣE

@1 :: entity : entity
@

whistle(@1 :: entity) : type
ΠE


u :


x : entity
man(x)

enter(x)




whistle(@1 :: entity)


: type

ΣF , 1

We next substitute @1 with the obtained proof term and eliminate ev-

eryoccurrenceof@1 in thederivation. Thisprocess is called@-elimination.

By substituting π1u for@1, we finally obtain the fully-specifiedderivation.

(2.19)

....
x : entity
man(x)

enter(x)



: type

whistle : entity → type
con

u :


x : entity
man(x)

enter(x)



1

π1u : entity ΣE

whistle(π1u) : type ΠE


u :


x : entity
man(x)

enter(x)




whistle(π1u)


: type

ΣF , 1

In this way, we can obtain the fully-specified semantic representation in

(2.14) which substitute π1u for @-term.13

13 DTS can account for various factors that select plausible antecedents among enti-

ties appearing in the discourse. For instance, the notion of accessibility is obtained for
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Thefinal semantic representation in (2.14) showshowΣ-types capture

the externally-dynamic aspects of existential sentences. The proof termu

introduced by the Σ-type, which corresponds to the first sentence (2.11a),

is a structured object (i.e., a tuple). The point is again that even if the vari-

able x itself is no longer accessible from the argument position ofwhistle,

one can access the term by taking the first projection of u .

Anaphora resolution in the donkey sentence (2.1), repeated here as

(2.20), is also an instance of Σ-type anaphora.

(2.20) Every farmer who owns a1 donkey beats it1.

The noun phrase is composed as follows.

free from the structure of dependent types Σ andΠ (cf. Bekki, 2014). Agreement on pro-

nouns, such as gender, person, and number agreement, can also be accounted for by

annotating the underspecified term with more fine-grained types, as in the case of pre-

supposition (Bekki andMineshima, 2017; Tanaka et al., 2017b).
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(2.21)

farmer
N

λx .farmer(x)

who
(N \N )/(S\N P )

λvλnλx .


nx

v x



owns
(S\N P )/N P

λy λx .own(x , y )

aacc

((S\N P )\((S\N P )/N P ))/N

λnλvλx .


y : e

u : ny

v y x




donkey

N

λx .donkey(x)

(S\N P )\(S\N P )/N P

λvλx .


y : entity

u : donkey(y )

v y x




>

S\N P

λx .


y : entity

u : donkey(y )

own(x , y )




<

N \N

λnλx .



nx
y : entity

u : donkey(y )

own(x , y )






>

N

λx .



farmer(x)
y : entity

u : donkey(y )

own(x , y )






<

The semantic representation of thewhole sentence is then derived as fol-

lows.
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(2.22)

every

(S/(S\N P ))/N

λnλv . ©­«u :


x : entity

nx

ª®¬ → v (π1u)

farmers who own a donkey

N

λx .



farmer(x)
y : entity
donkey(y )

own(x , y )





S/(S\N P )

λv .

©­­­­­­­­­­«
u :



x : entity

farmer(x)
y : entity
donkey(y )

own(x , y )








ª®®®®®®®®®®¬
→ v (π1u)

>
beats

(S\N P )/N P

λy λx .beat(x , y )

it
N P

@1 :: entity

S\N P

λx .beat(x ,@1 :: entity)

>

S©­­­­­­­­­­«
u :



x : entity

farmer(x)
y : entity
donkey(y )

own(x , y )








ª®®®®®®®®®®¬
→ beat(π1u ,@1 :: entity)

>

In the type-checking process, we will find that the following judge-

ment should hold for @1 in order for the whole semantic representation

being well-typed.

(2.23) K , u :



x : entity

farmer(x)
y : entity
donkey(y )

own(x , y )







⊢ entity true

We can obtain π1π2π2u : entity from the tuple u . Thus, we finally obtain

the following fully-specified representation, where the second argument

of beat is filled with the variable corresponding to the donkey.
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(2.24)

©­­­­­­­­­­«
u :



x : entity

farmer(x)
y : entity
donkey(y )

own(x , y )








ª®®®®®®®®®®¬
→ beat(π1u , π1π2π2u)

2.5.2 Π-type anaphora

Aswe have seen so far, a Σ-type is externally dynamic in that it introduces

a pair as an antecedent. By contrast,Π-types capture the externally static

property of universal quantifiers exemplified in (2.25): as the universal

sentence represented by a Π-type is a function, neither the proof in the

antecedent nor the consequent is directly accessible to the subsequent

discourse.

(2.25) * Everybody bought a1 car. It1 is a Porsche.

One difference from the standard treatment in dynamic semantics is

that a universal sentence can introduce adiscourse referent. Ranta (1994)

describes exactly such a case with the following example.14

(2.26) If you give every child a present, some child will open it.

In (2.26), the antecedent clause is analyzed as aΠ-type, so it introduces a

function as a discourse referent. This functional discourse referent can

be used to give the interpretation of the pronoun it in the consequent

clause. Wecall this typeof anaphoraΠ-type anaphora, where a functional

discourse referent is used in the subsequent discourse and contributes to

resolving anaphoric expressions.

14This example is taken fromRanta (1994, p. 97), attributed to Lauri Karttunen inHin-

tikka and Carlson (1979).
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A typical instance ofΠ-type anaphora is the so-called quantificational

subordination, which is exhibited by (2.27) and (2.28).

(2.27) a. If every boy receives a1 present, some boy will open it1.

b. Every boy will receive a2 present. Some boy will open it2.

(2.28) a. Harvey courts a1 girl at every convention. She1 is very pretty.

b. Harveycourts a1 girl at every convention. She1 always comes

to the banquet with him. The1 girl is usually also very pretty.

Let us focus on a reading of (2.27a), where every boy takes wide scope

over a present (henceforth, ∀–∃ reading). In its most natural reading, the

pronoun it in the consequent clause refers to the present that the boy in

question received. Inotherwords, thepronoun receives an interpretation

which depends on some boy. A similar reading applies to (2.27b): the pro-

noun it in the second sentence refers to the present that the boy received.

A similar observation can be made about (2.28), which was originally

discussed by Karttunen (1976). Although the example is more compli-

cated than the previous one, a similar structure seems to be involved. In

(2.28a), if we force ourselves to keep the ∀–∃ reading, there is no way to
establish an anaphoric link between a girl and the singular pronoun she,

andhence thediscoursebecomes infelicitous. Thus, (2.28a) canonlymean

that there is one specific girl such that Harvey courts her at every conven-

tion and she is very pretty. In contrast, in (2.28b), the anaphoric link be-

tween a girl and she is licensed even under the ∀–∃ reading. Although

the first sentence is the same as that of (2.28a), the singular pronoun she

can refer to a girl at each conventionbecause thequantificational adverbs

such as always and usually in the subsequent discourse provide links to

every convention.
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This observation suggests that the dependency relation between ob-

jects is also an essential resource for anaphora resolution. Because a de-

pendent interpretation is crucially involved in plural anaphora phenom-

ena, constructing a formal mechanism to account for dependencies is

one of the central issues in the literature. The standard approach is to

modeldependenciesas setsof assignments (vandenBerg, 1996a,b;Nouwen,

2003; Brasoveanu, 2008). Another approach is to model it using an ex-

tended notion of assignment functions called parametrized sum individ-

uals (Krifka, 1996). However, since integrating functional relationsdirectly

into theunderlying semantics is not straightforward, both approaches re-

quire substantial changes to the central notion of context to account for

dependent interpretations. By contrast,DTScanaccount for dependency

relations in terms ofΠ-types, which are independentlymotivated objects

readily provided in the formal system.

Letus illustratehowΠ-typesencode thedependency relations inques-

tion and contribute to anaphora resolution. Consider (2.27b). Again, as

a universal quantifier corresponds to a Π-type, the first sentence can be

represented as follows.

(2.29) ©­«u :


x : entity

boy(x)

ª®¬ →


y : entity
present(y )

receive(π1u , y )




The term π1u picks up the entity being a boy. The type represents the

proposition that, for every boy, there exists a present such that the boy re-

ceived it. This representation corresponds to the ∀–∃ reading of the first
sentence. Thus, a term of this type is a function that receives a pair con-

sisting of an entity and aproof that it is a boy, and then returns a tuple that

consists of an entity, a proof that it is a present, and a proof that the boy
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and the present are in the receiving relation.

The second sentence is represented by the Σ-type, where the pronoun

it is defined as anunderspecified termof type entity. Thus, by combining

the semantic representation of the two sentences in terms of progressive

conjunction, (2.27b) is represented as the following Σ-type.

(2.30)



f : ©­«u :


x : entity

boy(x)

ª®¬ →


y : entity
present(y )

receive(π1u , y )




x ′ : entity
boy(x ′)

open(x ′,@1 :: entity)





Now, theproof term f of thefirst sentence,which corresponds to adepen-

dency relation between boys and presents, exists as an antecedent of the

underspecified term. In the current case, type-checking yields the follow-

ing inference for @1.

(2.31)

K , f : ©­«u :


x : entity

boy(x)

ª®¬ →


y : entity
present(y )

receive(π1u , y )



, x ′ : entity, b : boy(x ′) ⊢ entity true

There are three proof terms in the local context of the @-term. The term

f is a proof term of the first sentence. The term x ′ is an entity and b is a

proof that x ′ is a boy. The proof construction goes as follows:
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(2.32)

f : ©­«u :


x : entity

boy(x)

ª®¬ →


y : entity
present(y )

receive(π1u , y )




x ′ : entity b : boy(x ′)

⟨x ′,b⟩ :


x ′ : entity

boy(x ′)


ΣI

f (⟨x ′,b⟩) :


y : entity
present(y )

receive(x ′, y )




ΠE

π1(f (⟨x ′,b⟩)) : entity ΣE

Here we first construct a pair ⟨x ′,b⟩, which corresponds to some boy. By

applying this to f , we obtain f (⟨x ′,b⟩) corresponding to the boy’s present.

Thus, by taking its first projection, we obtain a term π1f (⟨x ′,b⟩) of type

entity. Therefore, by replacing the @-term with the obtained term, we

obtain the fully-specified semantic representation.

(2.33)



f : ©­«u :


x : entity

boy(x)

ª®¬ →


y : entity
present(y )

receive(π1u , y )




x ′ : entity
boy(x ′)

open(x ′, π1f (⟨x ′,b⟩))





We can see that the second argument of open depends on the term x ′,

namely, an entity corresponding to the subject of the second sentence. In

thisway, we can account for the dependent interpretation of the pronoun

it in (2.27b).

One can think that proof terms have something in common with dis-

course referents in Discourse Representation Theory (Kamp and Reyle,

1993; Kamp et al., 2011) in that both objects are introduced by sentences

and referred to afterward to resolve anaphora. As we have already seen,
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however, there are at least two crucial differences. Firstly, as Ranta (1994)

discussed,whilediscourse referentsare limited to individualswithoutany

inner structure, proof terms can have any type. Secondly, together with

the DTS’s anaphora resolution mechanism, proof terms can contribute

to logical inference, yielding a new proof term serving as an antecedent.

In other words, the antecedent of pronominal anaphora is constructed

through proof search. This proof-theoretic account of anaphora resolu-

tion also applies to presupposition resolution, as shown in the next sec-

tion. 15

2.6 Analysis of presupposition

DTS gives a uniform account of anaphora resolution and presupposition

resolution in a proof-theoretic setting, following the “presupposition as

anaphora”paradigmproposedbyvanderSandtandGeurts (1991); vander

Sandt (1992). In the analysis of presupposition in DTS, presupposition

triggers are represented in terms of underspecified terms, @-terms. Un-

derspecified terms can have more complex types when they represent

presupposition triggers: the annotated types can be propositions of any

kind.

Letusexplain someexamples in the followingsections. InSection2.6.1,

weshowoneof themostbasic cases: definitedescription. InSection2.6.2,

we explain the possessive case, amore complicated casewhere anunder-

specified term is embedded in another underspecified term.

15 See also Yana et al. (2019) for a detailed comparison of DTS and DRT.
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2.6.1 Definite description

Our first example is the existential presupposition triggered by a definite

description. Consider the sentence (2.34) with the definite subject NP.

(2.34) Theman whistled.

The semantic representation of (2.34) is given as follows.

(2.35) whistle ©­«π1 ©­«@1 ::


x : entity

man(x)

ª®¬ª®¬
The underspecified term is introduced by the presupposition trigger the.

The lexical entry for the can be specified as follows.

(2.36) the; (S/(S\N P ))/N ; λn.λv .v ©­«π1 ©­«@i ::


x : entity

nx

ª®¬ª®¬
Theannotated type represents theproposition there is aman, which is the

existentialpresupposition triggeredby thedefinitedescription theman.16

Thus, the semantic representation in (2.35) is obtained by the following

CCG derivation.

16 Here we take it that the uniqueness presupposition is not part of the conventional

meaning of a definite description but can be derived on pragmatic considerations along

the lines ofHeim (1982). Although the proof-searchprocedure to find anunderspecified

term’s antecedent would become much more complicated, it is technically possible to

take the uniqueness implication as part of presupposition.
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(2.37)
The

(S/(S\N P ))/N

λn.λv .v ©­«π1 ©­«@1 ::


x : entity

nx

ª®¬ª®¬
man

N

λx .man(x)

S/(S\N P )

λv .v ©­«π1 ©­«@1 ::


x : entity

man(x)

ª®¬ª®¬
> whistled

S\N P

λx .whistle(x)

S

whistle ©­«π1 ©­«@1 ::


x : entity

man(x)

ª®¬ª®¬
>

Again, as in the case of anaphora resolution, the resolution of an under-

specified term in a semantic representation amounts to checking that the

semantic representation is well-typed in a given context. Thus, the reso-

lution process is launched by the following judgement.

(2.38) K ⊢ whistle ©­«π1 ©­«@1 ::


x : entity

man(x)

ª®¬ª®¬ : type
Assuming thatwhistle : entity → type is in the global contextK, one has

toprove the following inorder for the semantic representation inquestion

to be well-typed.

(2.39) K ⊢


x : entity

man(x)

 true
In other words, if one assumes that (2.34) is a felicitous utterance, the

proposition that there is a man must be true. This requirement corre-

sponds to the existential presupposition of (2.34). Thus, at the final stage

of presupposition resolution, a proof search is carried out to prove (2.39),

and theunderspecified term@1 is replacedby the constructed term. Such
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a proof construction is possible when, for instance, the man appears in

contexts as shown in (2.40a, b).

(2.40) a. Aman entered. Theman whistled.

b. If a man entered, theman will whistle.

Inboth cases, theman canbeunderstoodas referring toamanpreviously

mentioned. Ingeneral, ifS′ entails thepresuppositionsofS , constructions

such as S′ and S and If S′ then S do not inherit the presuppositions of S . In

such a case, it is said that the presupposition is filtered.17

In DTS, examples such as (2.40a, b) can be handled in the following

way. The semantic representation for the first sentence of (2.40a) is al-

ready given in (2.6). Thus, by progressive conjunction with (2.35), we ob-

tain the following semantic representation of the whole discourse.

(2.41)



v :


x : entity
man(x)

enter(x)




whistle ©­«π1 ©­«@1 ::


x : entity

man(x)

ª®¬ª®¬


According to the type checking, we can see that what is required for the

representation (2.41) tobewell-typed is toprove the following judgement.

(2.42) K , v :


x : entity
man(x)

enter(x)



⊢


x : entity

man(x)

 true
In this case, a proof of the proposition that there is aman can be obtained

from the context, namely, from the semantic representation of the first

17Whensuchafiltrationdoesnotoccur, theentire sentencecanhaveapresupposition

resolved by the information in the background knowledge (the global context).
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sentence: one can find ⟨π1v , π1π2v ⟩ that can replace the @-term. By re-

placing the @1 in the representation (2.41) with the constructed term, we

can eventually obtain the following semantic representation for (2.40a),

which captures the intended reading.

(2.43)


v :


x : entity
man(x)

enter(x)




whistle(π1v )


Anotherwell-knowncharacteristicpropertyofapresupposition is that

itprojects out of embedded contexts such as negation and the antecedent

of a conditional. Thus, not only the positive sentence (2.34) but also the

negated sentence (2.44a) and the antecedent of a conditional (2.44b) im-

ply that there is a man.

(2.44) a. Theman didn’t whistle. NEGATION

b. If theman whistle, Susan will be surprised. CONDITIONAL

In DTS, (2.44a, b) can be given the following semantic representations.

(2.45) a. ¬whistle ©­«π1 ©­«@1 ::


x : entity

man(x)

ª®¬ª®¬
b. whistle ©­«π1 ©­«@1 ::


x : entity

man(x)

ª®¬ª®¬ → surprise (susan)

For the semantic representations (2.45a) and (2.45b) to be well-typed, it

is required to find a proof term for the proposition that there is a man.

Thus, to prove that (2.45b) has type type, one has to prove that the an-

tecedent is of type type. Since the antecedent in (2.45b) corresponds to

the proposition that themanwhistled, this yields the derivation that con-

tains the type checking process of (2.38) as a sub-derivation. Accordingly,
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it is correctly predicted that (2.44b) has the same existential presupposi-

tion as the simple sentence in (2.34). Note that in dependent type theory,

the negation ¬A is defined using the implication A → ⊥, which in turn

is a degenerate form of a Π-type. Thus, the same explanation applies to

the case of negation in (2.44a) as well. In this way, we can explain basic

projection patterns of presuppositions within the framework of DTS.18

2.6.2 Possessives

Next, let us explain an analysis of the presupposition associatedwith pos-

sessive NPs. Consider the sentence (2.46), whose semantic representa-

tion is given in (2.47).

(2.46) His sister left.

(2.47) leave ©­«π1 ©­«@1 ::


x : entity

sisterOf(x ,@2 :: entity)

ª®¬ª®¬
Here, underspecified terms that correspond to distinct proof terms are

indexed with different natural numbers. In (2.47), @2 is embedded in the

annotated type of @1. The derivations of initial underspecified semantic

representations can be formalized in a fully compositional way. The lex-

ical entry for sister and his can be specified as follows, where we use the

CCG category RN for relational nouns.

sister; RN ; λy λx .sisterOf(x , y )

his;N P/RN ; λR .π1
©­«@i ::


x : entity

R(x ,@j :: entity)

ª®¬
18 Bekki and Satoh (2015) provide a definition of a decidable fragment of dependent

type theory with an underspecified term and formulate its type-checking algorithm.

They also provide an implementation of the algorithm.

40



2.6. Analysis of presupposition

Note that we assume that in initial underspecified semantic representa-

tions, eachoccurrenceof@ is assigned amutually distinct index. The em-

bedded @j corresponds to the anaphoric property of the pronoun, while

@i corresponds to the possessive presupposition.

To prove that the semantic representation in (2.47) is a type under the

global contextK, the following judgement (2.48) should hold for @1.

(2.48) K ⊢ ©­«@1 ::


x : entity

sisterOf(x ,@2 :: entity)

ª®¬ :


x : entity

sisterOf(x ,@2 :: entity)


By applying the @-rule to (2.48), we are required to prove that the follow-

ing type is well-typed.

(2.49) K ⊢


x : entity

sisterOf(x ,@2 :: entity)

 : type
This requirement leads us to the next judgement (2.50) for the embedded

underspecified term@2. We first need to resolve @2 in (2.50);

(2.50) K , x : entity ⊢ @2 :: entity : entity

This triggers proof search to find a term of entity for @2.

Suppose that the proof search finds a contextually salient man, John.

By substituting john : entity in K for @2, we are next going to prove the

following judgement for @1.

(2.51) K ⊢


x : entity

sisterOf(x , john)

 true
Then, in this case, the presupposition of the sentence (2.46) is predicted

to be John has a sister.
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2.7 Anaphora resolution and inference

We have shown that DTS uniformly treats anaphora and presupposition

resolution as a proof search for resolving an underspecified term. This is

a powerful mechanism that can apply to anaphora and presupposition

resolution that involves general inference.

By the example of quantificational subordination in Section 2.5.2, re-

peated here as (2.52), we have shown that one can obtain the antecedent

term by applying function with its argument.

(2.52) Every boy will receive a1 present. Some boy will open it1.

In (2.52), the subjectof theantecedentand theconsequent share thesame

nounphraseboy. The reference to adependency relation is possiblemore

generally, when a semantic link between the restrictor of the universal

quantifier and the subject of a subsequent sentence can be established.

(2.53) a. Every boy will receive a1 present. Every young boy will open

it1.

b. Every boy will receive a1 present. John will open it1.

In (2.53a), young boy is a subset of boy. The consequent can be under-

stood tomean that every young boy will open the present he received (cf.

van den Berg, 1996b). There is no explicit link in the case of (2.53b), but if

we have the background information that John is a boy, i.e., the informa-

tion that links John to boy, the sentence canmean that Johnwill open the

present he received. On the other hand, the dependent interpretation of

the pronoun in question is not possible if it is difficult to establish a link

between the twoNPs. The following examples demonstrate this contrast.

(2.54) a. Every man will receive a1 present. Some wife will open it1.
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2.7. Anaphora resolution and inference

b. Every man will receive a1 present. ∗Some woman will open

it1.

In (2.54a), since it is relatively easy to find a relation between man and

wife, the second sentence can be understood to mean that some man’s

wife will open the present he received. This contrasts with (2.54b), where

a dependent reading is not possible unless a strong relationbetweenman

andwoman is provided by the context.

Let us sketch howDTS can account for such cases. In (2.53a), both the

first and the second sentences can be represented in terms of Π-types.

Thus, we can give the following semantic representation to the discourse.

(2.55)



f : ©­«u :


x : entity

boy(x)

ª®¬ →


y : entity
present(y )

receive(π1u , y )


©­­­­«

t :


x : entity
boy(x)

young(x)



ª®®®®¬
→ open(π1t ,@1 :: entity)


The assumptions we can use in proof search of @1 are terms f and t . We

need aproof of
(
x : entity

)
×boy(x) in order to access to the consequent of

f . As we can obtain such a proof ⟨π1t , π1π2t ⟩ from t , we eventually obtain

a term π1f (⟨π1t , π1π2t ⟩), which corresponds to the present dependent on

each young boy, π1t . Similarly, (2.53b) is represented as follows.

(2.56)


f : ©­«u :


x : entity

boy(x)

ª®¬ →


y : entity
present(y )

receive(π1u , y )




open(john,@1 :: entity)


To find a semantic link between John and boy, one needs the background
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knowledge that John is a boy. If the global contextK supplies the knowl-

edge kj : boy(john), one can construct the following term.

(2.57) (john,kj ) :


x : entity

boy(x)


Again, this term can serve as an argument to the function f .

When the relationbetween theuniversal quantifier’s restrictor and the

subsequent discourse’s subject is not clear, then the procedure only fails

to find a proof term. For instance, in the case of (2.54b), repeated here as

(2.58a), there exists neither an explicit link nor an implicit link between

men and women.

(2.58) a. Every man will receive a1 present. ∗Some woman will open

it1.

b.



f : ©­«u :


x : entity

man(x)

ª®¬ →


y : entity
present(y )

receive(π1u , y )




z : entity
woman(z )

open(z ,@1 :: entity)





Again, one needs to apply an argument to the function f to construct a

proof of the present received by some man. Thus, unless some relation

that bridgesmen andwomen is available in the global context, there is no

way to obtain the required proof term from the available proof terms.

Anothercase thatexhibits theeffectivenessof inference is theso-called

bridging inference (Clark, 1975).

(2.59) John bought a car. He checked themotor.

Here, although the second sentence contains the definite description the
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motor, there isnoovert antecedent to resolve thepresupposition. Ashear-

ershaveageneral backgroundknowledge that every carhas amotor, how-

ever, there are no difficulties in interpreting this sentence: they can easily

infer that there is a motor from the information that there is a car.

Compared to theanalyses in standarddynamic semantics suchasDRT

(vander Sandt, 1992; Geurts, 1999; Kampet al., 2011), it is straightforward

for DTS to handle the bridging inference. DTS provides an analysis that

exactly follows the intuition described above. By using both the implicit

information in thebackgroundknowledgeandexplicit information in the

given sentences, one can construct the proof term about the existence of

amotor. SeeBekki andMineshima (2017) formore details about the anal-

ysis of bridging inference in DTS.

The idea that the reference of an anaphoric expression can be con-

structedvia inferenceoriginates fromKrahmerandPiwek (1999). It should

be noted here, however, that a naive implementation of this idea leads to

a problem similar to formal link between a pronoun and an antecedent

in the context of E-type approaches to pronouns (Heim, 1990); that is, the

theory over-generates in the case of (2.61).

(2.60) Aman has a wife. She is sitting next to him.

(2.61) * Aman is married. She is sitting next to him.

In contrast to (2.60), the pronoun she in (2.61) cannot anaphorically re-

fer to the man’s wife, because there is no NP antecedent. If there is the

knowledge that every married man has a wife, however, the referent cor-

responding to theman’s wife can be constructed via inference.

Since it is beyond the scope of this thesis to discuss this issue further,

for present purposes, we will assume that any inference is possible for

given implicit andexplicit information, thoughsomecasesofproof search
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might be very costly and not preferred.

2.8 Entailment andmeaning

Once a semantic representation is fully-specifiedby eliminating every oc-

currence of @-term, namely, the sentence’s interpretation has been fixed,

the logical consequence of the given semantic representation becomes

clear. We can verify the appropriateness of a semantic representation in

DTS by seeing the entailment patterns it allows.

Inmodel-theoretic semantics, thecorrectnessof semantic representa-

tion of a sentence predicted by a theory is checked in terms of their truth

condition: when R′ is a semantic representation of natural language sen-

tenceR, then the truthconditionofR′mustagreewith the truthcondition

of R. On the other hand, in our proof-theoretic setting, the correctness of

semantic representation of a sentence is checked in terms of entailment

relations: if sentence R1 entails R2, we should be able to prove that R′
2 is

derivable from R′
1 in dependent type theory.

For instance, the following entailment relations hold between natural

language sentences.

(2.62) A1man entered. He1 whistled.⇒ Aman entered.

(2.63) A1man entered. He1 whistled.⇒ Aman whistled.

(2.64) Every boy received a present. John is a boy. ⇒ John received a

present.

Note that (2.62) holds no matter what object the pronoun he refers to,

while (2.63) holds only under the reading where he refers to aman in the

first sentence.
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DTS can provide a semantic representation for the sentence on each

side. If those semantic presentations correctly capture the meaning of

original sentences, then the formula of the premise must entail the for-

mula of the conclusion. Thus, the following judgement (2.65)-(2.67)must

hold for (2.62)-(2.64), respectively.

(2.65) K , p :


u :


x : entity
man(x)

enter(x)




whistle(π1u)


⊢


x : entity
man(x)

enter(x)



true

(2.66) K , p :


u :


x : entity
man(x)

enter(x)




whistle(π1u)


⊢


x : entity
man(x)

whistle(x)



true

(2.67) K , p1 :
©­«u :


x : entity

boy(x)

ª®¬ →


y : entity
present(y )

receive(π1u , y )



, p2 : boy(john)

⊢


y : entity
present(y )

receive(john, y )



true

The proof of (2.65) is trivial: by taking its first projection, one can ob-

tain the proof. (2.66) are proved in (2.68).
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(2.68)

p :


u :


x : entity
man(x)

enter(x)




whistle(π1u)


π1p :


x : entity
man(x)

enter(x)




ΣE

π1π1p : entity ΣE

p :


u :


x : entity
man(x)

enter(x)




whistle(π1u)


π1p :


x : entity
man(x)

enter(x)




ΣE

π2π1p :

man(π1p)

enter(π1p)


ΣE

π1π2π1p :man(π1p) ΣE

p :


u :


x : entity
man(x)

enter(x)




whistle(π1u)


π2p : whistle(π1p) ΣE

⟨π1π2π1p , π2p⟩ :

man(π1p)

whistle(π1p)


ΣI

⟨π1π1p , ⟨π1π2π1p , π2p⟩⟩ :


x : entity
man(x)

whistle(x)




ΣI

In both cases, the proofs are obtained from the premise p by extracting

proofs from its part and reconstructing them. (2.67) is proved as follows.

(2.69)

p1 :
©­«u :


x : entity

boy(x)

ª®¬ →


y : entity
present(y )

receive(π1u , y )




john : entity p2 : boy(john)

⟨john, p2⟩ :


x : entity

boy(x)


ΣI

p1(⟨john, p2⟩) :


y : entity
present(y )

receive(π1(⟨john, p2⟩), y )




ΠI

Herewe canunderstand that john : entity is in the global context, because

boy(john) is well-typed when John is a boy is a felicitous utterance. Thus,

as π1(⟨john, p2⟩) is reduced to john, we obtain the proof of the conclusion

of (2.67).
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2.8. Entailment andmeaning

In thisway,we can show that ourpresent analysis accounts for the em-

pirical data shown in (2.62), (2.63), and (2.64). For more information on

the inference-as-tests paradigm in DTS, see Bekki andMineshima (2017).

DTShasbeenapplied tovarious linguisticphenomena, providingaproof-

theoreticaccountofnatural languagesemantics: modal subordination (Tanaka

et al., 2015), conventional implicatures (Bekki andMcCready, 2015), hon-

orification (Watanabe et al., 2014), factive presupposition (Tanaka et al.,

2017b), selectional restriction (Kinoshita et al., 2017), coercion (Kinoshita

et al., 2018), paycheck anaphora (Tanaka et al., 2018), interpretive paral-

lelism(KubotaandLevine, 2015;Kubotaetal., 2019), andquestions (Watan-

abe et al., 2019). This thesis aims to give an analysis of natural language

quantifiers in DTS and investigate how it can account for the linguistic

and logical aspects of quantifiers.
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Chapter 3

Quantifier in Natural Language

In the previous chapter, we have shown that Π-types and Σ-types corre-

spond to universal and existential quantifiers. The meaning of every and

some were given in terms of Π and Σ. The question is how other natural

language quantifiers such asmost are represented in the framework.

Before providing our analysis in the next chapter, this chapter sum-

marizes natural language quantifiers’ behavior and how the existing ap-

proaches account for them.

3.1 Quantification and determiners

Quantifiers have been studied extensively in both logic and linguistics.1

For instance, first order logic has a universal quantifier ∀ and an existen-
tial quantifier∃quantifyingover objects in thedomain (universe): ∀x .ϕ(x)

means for each e in thedomain, ϕ(e )holds and∃x .ϕ(x)means there is some

e in the domain such that ϕ(e ) holds. These logical expressions can be ap-

1Peters andWesterståhl (2006)provides anextensive surveyof the studies in logic and

linguistics. See also Szabolcsi (2010) for a helpful survey in linguistics.
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QUANTIFIER IN NATURAL LANGUAGE

plied to represent the statements every A is B and some A is B in the fol-

lowing form.

(3.1) ∀x . (A(x) → B(x))

(3.2) ∃x . (A(x) ∧ B(x))

Generalizedquantifier theory (Mostowski, 1957;Lindström,1966)gen-

eralizes thenotionof quantifier and treats universal and existential quan-

tifiers in a unified way as part of a number of other quantifiers. General-

ized quantifiers (GQs) are defined as describing a property of subsets of

the domain. Universal quantifiers and existential quantifiers are reinter-

preted as expressions describing the properties of a subset. Now, ϕ(x) is

regarded as a subset of the domain that satisfies ϕ. ∀ is then interpreted
as the subset is equal to the domain. Similarly, ∃ is describing that the

subset is non-empty. Quantifiers such as ∀ and ∃, which take one subset
anddescribe its property, are said to be of type ⟨1⟩. Statements every A is B

and some A is B are expressed as follows with quantifiersQever y andQ some

taking two sets.

(3.3) Qever y (A,B) ⇔ A ⊆ B

(3.4) Q some (A,B) ⇔ A ∩ B , �

A quantifier taking two subsets and describing their relation is said to be

of type ⟨1, 1⟩.

In natural language, a determiner is naturally taken as a type ⟨1, 1⟩

quantifier, as itdenotes thebinary relationsbetween twosets correspond-

ing to a noun and a verb phrase (Barwise and Cooper, 1981). Since a de-

terminer and noun first form a constituent and become a noun phrase,

the noun phrase is considered to be a type ⟨1⟩ quantifier.

In this thesis,weconcentrateondeterminersas the representativecase
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3.1. Quantification and determiners

of quantifiers in natural language. In the sentence of the form [Det N ]V P

where Det is a quantifier, the noun N which constitutes a type ⟨1⟩ quan-

tifier together with the quantifierDet is called restrictor. The verb phrase

V P is called (nuclear) scope.2

We will pay particular attention to the quantifier most. It is a typical

proportional quantifier that cannot be expressed by a first-order quanti-

fier. It is impossible to express the statementMost A are B in the form of

Mx(A#B), whereM is the first-order quantifier thatmeansMost things are

ϕ (Barwise and Cooper, 1981; Szabolcsi, 2010). It is an instance of quanti-

fiers that exhibit quantifying over the restrictor is essential to natural lan-

guage quantifiers.

The quantifiermost is often treated as truth-conditionally equivalent

tomore thanhalf. Thus, the statementMostAareB is expressed as follows

with several variation.

(3.5) a. |A ∩ B | > |A |
2

b. |A ∩ B | > |A − B |

Hackl (2009) argues that even the (3.5a, b) are truth-conditionally equiv-

alent, (3.5b) better expresses the meaning ofmost from the viewpoint of

their verification procedures. Hunter et al. (2008) discussed more fine

variations on (3.5b). In the next chapter, we will consider both of these

2 The quantification of natural language appears also in other linguistic expressions.

For instance, quantificational adverbs suchasalways andusually correlateswithall and

most (Lewis, 1975). As quantificational adverbs involve quantificationover tuples rather

than individuals, they are classified aspolyadic quantifiers rather thanquantifiers repre-

senting the relationship between subsets of the domain (Peters andWesterståhl, 2006).

Kamp et al. (2011) analyzes the quantificational adverbmostly by extending their anal-

ysis of the determinermost.

53
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Quantifiers Relations between sets

⟦every⟧(A)(B) A ⊆ B

⟦some⟧(A)(B) A ∩ B , ∅

⟦no⟧(A)(B) A ∩ B = ∅

⟦most⟧(A)(B) |A ∩ B | > |A |
2

|A ∩ B | > |A − B |

⟦at least n⟧(A)(B) |A ∩ B | ≥ n

⟦at most n⟧(A)(B) |A ∩ B | ≤ n

⟦exactly n⟧(A)(B) |A ∩ B | = n

Table 3.1: Quantifiers and their definition as a relation between sets.

definition and discuss their difference in our setting.3

Table 3.1 shows quantifiers we consider in this thesis and their basic

meanings represented by the relations between sets.

Some quantifiers are known to have a presupposition that its restric-

tor is non-empty. Suchquantifiers are called strongdeterminers, while the

others are called weak determiners. The distinction between weak and

strong determiners originates from Milsark (1977). The quantifiers that

can appear in a there be sentence are judged as weak, and thosewho can-

not are strong.4

(3.6) a. Thereare some/no/at least three/atmost three/exactly three

cats.

3 We also restrict ourselves to the case where the domain of quantification is finite.

For the infinite case, seeTopal andÇevik (2020),whoproposeda semanticsusingnatural

density to deal with the quantify-related statements regarding infinite sets.
4We use ‘∗’ to indicate an infelicitous utterance/interpretation.
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3.2. Intra-sentential anaphora

b. * There are every/most cats.

The quantifiers in (3.6a) are classified as weak determiners and (3.6b) are

as strong determiners.

3.2 Intra-sentential anaphora

In the previous chapter, we discussed the donkey sentence (3.7) with the

quantifier every. The construction of a donkey sentence is well-studied

also in relation to other quantifiers as in (3.8) and (3.9).

(3.7) Every farmer who owns a1 donkey beats it1.

(3.8) Most farmers who own a1 donkey beat it1.

(3.9) No farmer who owns a1 donkey beats it1.

In the sentence (3.7), the pronoun it in the nuclear scope refers to the in-

definite a donkey in the restrictor. Now, from the generalized-quantifier

viewpoint, the restrictor and the nuclear scope are denoting sets. How-

ever, there is an additional complexity in that an anaphoric dependency

exists between the nuclear scope and the restrictor. In this case, the two

sets related by the quantifier every are not independent of each other: the

set corresponding to thenuclear scope isdefinedonlyafter thepronoun is

resolved. As the quantifier every lets the restrictor accessible to the scope,

it is said tobe internally dynamic. The sameapplies tomost,no, andother

quantifiers in the Table 3.1.

It has been recognized in the literature that there are two readings in

the donkey sentence above: existential reading and universal reading.5

5There has been some controversy over whether the singular donkey pronoun it car-

ries uniqueness presupposition or not (Heim, 1982; Kadmon, 1990; Heim, 1990). The
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(3.10) EXISTENTIAL READING (WEAK READING)

Every farmer who owns a donkey beats at least one donkey he

owns.

(3.11) UNIVERSAL READING (STRONG READING)

Every farmer who owns a donkey beats every donkey he owns.

In the early discourse analysis in classical DRT, the theory predicted that

(3.7)’s truth condition corresponds to (3.11). In other words, the theory

predicted that the sentence is false in a situationwhere one of the farmers

owns two donkeys and beat only one of them while all the other farmers

consistently beat all the donkeys they own. However, some speakers hes-

itate to judge (3.7) is false in such a situation (Geurts (2002), attributed to

Parsons (1978)). What is more, the interpretation of a universal donkey

sentence seems to be not merely ambiguous: although the sentence like

(3.12a) is preferred to get universal reading, its variant (3.12b) is preferred

to get existential reading.

(3.12) a. Every guest who had a1 credit card kept it1 in his wallet.

b. Every guest who had a1 credit card used it1 to pay his hotel

bill.

These observations have led to the semantic theories that can explain ex-

istential reading as well.

As is discussed in the literature, there are a variety of factors that deter-

mine the preference of those two interpretations, including the choice of

quantifiers (Kanazawa, 1994), the content of the predicate (Yoon, 1996),

and perhapsmore general background assumptions.

discussion of existential/universal reading is based on the view that there is no system-

atic uniqueness presupposition associated with the pronoun (Chierchia, 1992).
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3.2. Intra-sentential anaphora

Regarding the choice of quantifiers, Kanazawa (1994) examines the re-

lationsbetweenexistential/universal readingand themonotonicity infer-

ence associated with quantifiers. According to the summary of the data

he observed, quantifiers are roughly categorized into three groups with

respect to the two readings.

• existential reading only: weak determiners (e.g., some, at least n, no)

• universal readingpreferred (butmayhaveexistential reading): strong

determiners exceptmost (e.g., every)

• Both reading:most

However, as Kanazawa himself pointed out, there exists exception in the

above categorization.

(3.13) Noman who had a1 credit card failed to use it1.

(3.14) Noman with an1 umbrella leaves it1 home on a day like this.

Although no is a weak determiner, these examples seems to get universal

reading on their most natural reading. He also reports that the case of

most is relatively not clear.6 It is still amatter of debatewhat factors affect

the preferred reading (Yoon, 1994; Geurts, 2002; Tałasiewicz, 2018) and

how the two readings can be captured in the semantics (Kanazawa, 2001;

King, 2004) and pragmatics (Champollion et al., 2019).

6 Brasoveanu (2008) pointed out that a single quantifier can cause both of the two

readings with respect to themultiple instances of singular donkey pronouns.

(i) Every person who buys a1 book on amazon.com and has a2 credit card uses it2
to pay for it1.

In the natural reading of this sentence, it2 receives the existential reading while it1 re-

ceives the universal reading.
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In the next chapter, we provide an analysis that account for basically

only the existential reading of quantifiers including most, because exis-

tential reading is logically weaker for the quantifiers other than no. For

the quantifier no and every, we provide also its universal reading.

3.3 Inter-sentential anaphora

Tobetter understand themeaning of quantifiers aswell as their contribu-

tion to the contexts for anaphora resolution, let us consider their external

behavior in discourses.

While quantifiers such as every andmost are internally dynamic, they

are externally static: the following examples show that neither their re-

strictor nor the nuclear scope is accessible to the subsequent discourse,

in contrast to the determiner a.

(3.15) a. A1 farmer who owns a2 donkey beats it2.

He1 treats it2 badly.

b. Every1 farmer who owns a2 donkey beats it2.
∗He1 treats it2 badly.

c. Most1 farmers who own a2 donkey beat it2.
∗He1 treats it2 badly.

The situation, however, differs when the subsequent sentence involves a

plural pronoun. The followingexamples exhibit that aplural pronouncan

refer to the restrictor as well as the nuclear scope.

(3.16) a. Every1 farmer who owns a2 donkey beats it2.

They1 treat them2 badly.
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3.3. Inter-sentential anaphora

b. Most1 farmers who own a2 donkey beat it2.

They1 treat them2 badly.

Note that, in both (3.16a, b), the first plural pronoun they in the subse-

quent sentence refers to a set of all farmers that own a donkey and beat

it. That is, the pronoun takes the largest set satisfying both restrictor and

scope as its antecedent (Evans, 1980).

The secondpluralpronoun them in the subsequent sentenceof (3.16a,

b) can be also singular under the reading where they in the subject posi-

tion takes wider scope over it.

(3.17) a. Every1 farmer who owns a2 donkey beats it2.

They1 treat it2 badly.

b. Most1 farmers who own a2 donkey beats it2.

They1 treat it2 badly.

It is not only the existence of a plural pronoun that licenses anaphoric

link to the universal quantifier’s nuclear scope. Here we repeat the quan-

tificational subordination cases we discussed in the previous chapter.

(3.18) Every boy will receive a1 present. Some boy will open it1.

(3.19) Harvey courts a1 girl at every convention.

She1 always comes to the banquet with him.

The1 girl is usually very pretty.

Even when (3.18) receives ∀–∃ reading, the pronoun it in the second sen-
tence can refer to a present in the first sentence. In this case, the pronoun

is referring to the present that the boy in the second sentence receives.

A similar observation applies to (3.19). Although it involves quantifica-

tional adverbs always andusually, whichwewill not discuss in detail, the
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example suggests that the nuclear scope of the universal quantifier is ac-

cessible even in the absence of a plural pronoun.7

Note that plural pronoun they can refer to different kind of sets: refer-

ence set,maximal set, and compliment set (Nouwen, 2003).

(3.20) Few senators admire Kennedy.

They are very junior.

(3.21) Few senators admire Kennedy.

Most of them prefer Carter.

(3.22) Few senators admire Kennedy.

They admire Carter instead.

In (3.20), they refers to a set of senators who admire Kennedy (reference

set). In (3.21), them refers to a set of senators, which is the restrictor set

(maximal set). In (3.22), they refers to a set of senators that do not admire

Kennedy (complement set). While anaphoric link to the reference set is

robust, the other two are not generally available.

(3.23) Two senators who admire Kennedy bullied Carter. They are very

junior.

(3.24) * Most senators admire Carter. They admire Kennedy instead.

The example (3.23) cannot mean that the senators who admire Kennedy

are in general junior, which means the pronoun cannot refer to the max-

7 It is known that a singular pronoun can refer even to the restrictor in some special

cases as exemplified below (taken from Roberts (1989), attributed to Barbara Partee).

(i) Each1 degree candidate walked to the stage.

He1 took his1 diploma from the Dean and returned to his seat.

Roberts (1989) called this phenomenon telescoping and explained that this anaphoric

link becomes possible due to some sort of narrative continuity in the discourse.

60
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imal set. In (3.24), the pronoun cannot refer to senators who do not ad-

mire Carter, which is the complement set. According to Nouwen (2003),

the link to the maximal set can be established only in the case of strong

determiner. The anaphoric link to the complement set is rather special.

It involves an inference that is generally not licensed, which makes this

type of anaphora oftenmarked.

3.4 Inferential property

Wehave shown thedynamic aspect of quantified expressions as linguistic

expressions. In this section, we summarize the logical relations that are

derived from the relations between sets.

The quantifiers of type ⟨1⟩ are classified into two groups: monotone

decreasing andmonotone increasing. Each of them is defined as follows,

whereM is a universe.

Monotone increasing

Q ismonotone increasing iff for A ⊆ A′ ⊆ M ,Q (A) impliesQ (A′).

Monotone decreasing

Q ismonotonedecreasing iff forA′ ⊆ A ⊆ M ,Q (A) impliesQ (A′).

For instance, quantifiersmost andno license the following inferences,

where⇒ indicates an entailment relation between natural language sen-

tences.

(3.25) Most students study English hard.

⇒Most students study English.

(3.26) No student studies English.

⇒No student studies English hard.
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Here, objects satisfying study English hard is a subset of objects satisfying

study English. As mentioned above, a determiner composed with a noun

is understood as a type ⟨1⟩ quantifier. Therefore,most students is mono-

tone increasing, while no student is monotone decreasing.

Based on the entailment pattern above, the determinermost of type

⟨1, 1⟩ quantifier is said to be right upwardmonotone, and no, right down-

wardmonotone. Here is the definition.

Right upward (or downward, resp.) monotonicity

Q is right upward (or downward, resp.) monotone iff for A ⊆ M

and B ⊆ B′ ⊆ M , (or B′ ⊆ B ⊆ M , resp.)Q (A,B) impliesQ (A,B′).

We often writeMON ↑ andMON ↓ instead of “right upward monotone”

and “right downwardmonotone,” respectively.

Similarly, monotonicity with respect to its left argument can be also

defined.

Left upward (or downward, resp.) monotonicity

Q is left upward (or downward, resp.) monotone iff forA ⊆ A′ ⊆

M (or A′ ⊆ A ⊆ M , resp.) and B ⊆ M ,Q (A,B) impliesQ (A′,B).

We oftenwrite ↑MON and ↓MON instead of “left upwardmonotone” and

“left downwardmonotone,” respectively.

It is also known that all natural language quantifiers are conservative.

The definition is as follows.

Conservativity

Q is conservative iff for A,B ⊆ M ,Q (A,B) ⇔ Q (A,A ∩ B).

In the case of quantifier most, for instance, we can see if (3.27a) is true

then (3.27b) is also true, and vice versa.
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Quantifiers Conservativity Monotonicity

MON↑ MON↓ ↑MON ↓MON

some ✓ ✓ ✓

at least n ✓ ✓ ✓

every ✓ ✓ ✓

most ✓ ✓

no ✓ ✓ ✓

at most n ✓ ✓ ✓

exactly n ✓

Table 3.2: Quantifiers and their inferential properties.

(3.27) a. Most swans are white.

b. Most swans are white swans.

Table 3.2 shows basic patterns of inferences associated with quanti-

fiers. There are other inference patterns such as symmetry and reflexivity,

which we have omitted from the table.

At first glance, the inferential properties of quantifiers appear to be

well-established and straightforward. It has been pointed out, however,

that themonotonicity inference in thepresenceofdonkeyanaphoraposes

a puzzle (Benthem, 1987; Kanazawa, 1993, 1994). Consider the contrast

between the following twomonotonicity inference for the left downward

monotone quantifier no.

(3.28) No farmer who owns a1 donkey beats it1.

⇒No farmer who owns a2 female donkey beats it2.

(3.29) Noman who owns a1 house sprinkles it1.

⇏Nomanwho owns a2 garden sprinkles it2.
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(3.28) follows the inference pattern of left downwardmonotonicity, since

farmerwhoownsa femaledonkey is a subsetof farmerwhoownsadonkey.

For (3.29), let us first assume thatman who owns a garden is a subset of

man who owns a house, that is, if a man owns a garden, he also owns a

house. Although we expect that (3.29) also follows the inference pattern

of left downward monotonicity under this assumption, the inference is

invalid in this case.

3.5 Previous approaches

GQs arewell studiedwithin themodel-theoretic approach to natural lan-

guage semantics. In this approach, the meanings of GQs are defined as

relations between sets, as we have explained so far (Barwise and Cooper,

1981). This model-theoretic conception of GQs is also adopted by dis-

course representation theory (DRT; Kamp and Reyle, 1993; Kamp et al.,

2011) and applied to discourse phenomena such as donkey anaphora.

As we have shown, DTS is a proof-theoretic semantics based on de-

pendent type theory. Even ifmeaningofquantifiershasbeenwell-discussed

in themodel-theoreticmeaning, togiveananalysiswithina type-theoretic

framework is not a trivial task; in particular, it is challenging to give anal-

ysis that maintains both logical and dynamic aspects of quantifiers .

In recentyears, frameworksbasedondependent type theoryhavebeen

developed as rich proof-theoretic semantics that can handle natural lan-

guagedynamics, includinganaphoraandpresupposition (Sundholm,1986,

1989;Ranta, 1994;Pérez, 1995;KrahmerandPiwek, 1999;Mineshima,2008;

Luo,2012b;Mineshima,2013;Bekki, 2014;ChatzikyriakidisandLuo,2014;

Bekki andMineshima, 2017). Although a framework based on dependent
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type theory has the potential to deal with both the inferential and dy-

namic aspects of quantifiers, an analysis of quantifiers has not been pur-

suedmuch so far.

One of the few is the study by Sundholm (1989). It gives an explicit set-

theoretic definitions of quantifiers in terms of logical operators provided

in the dependent type theory. The definition captures the basic meaning

of quantifiers such asmost, namely, their truth-conditionalmeaning that

has been associated with the relation between sets. Although the defini-

tion also captures the internally dynamic nature of quantifiers, the inter-

action of quantifiers with anaphora has not been sufficiently explored.

After Sundholm (1986, 1989), Ranta (1994) showed the potential of de-

pendent types with broad empirical data coverage. However, the study

provides little analysis of quantifiers in general. In Modern Type The-

ory (Luo, 2012b; Chatzikyriakidis and Luo, 2014), Lungu and Luo (2014)

give an analysis of monotonicity reasoning. While they define rules for

monotonicity reasoning of the binary quantifiers, the study does not pro-

vide an analysis of themeaning of the sentences containing those quanti-

fiers in general. In particular, the study does not deal with the analysis of

sentences containing both quantifiers and anaphora. Although Π-types

in dependent type theory can capture the internally dynamic property of

every, it is not clear how the property can be taken into account for other

quantifiers. Chatzikyriakidis and Luo (2018) provides a semantic rep-

resentation of numeral quantifiers three. Luo (2020) proposes a way to

introduce a notion of proof irrelevance into Martin-Löf type theory and

provides an account of the quantifiermost that can avoid the proportion

problem. However, an overall picture of the analysis of anaphora and in-

ference phenomena generally involved in GQs has not been explored.
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Thereareat least twopossibleapproaches toanalyzequantifiers inour

proof-theoretic setting.

One iswhatwe call explicit approach. This is the approach adopted by

Sundholm (1989), which is to give an explicit definitions of quantifiers in

terms of logical operators provided in the system.

Anotherapproach is implicit approach, which iswell-studied inproof-

theoretic semantics of natural language. This approach is to construct a

proof system which contains quantifiers as primitives in the formal sys-

tem. The study of natural logic (e.g. van Benthem, 2008;Moss, 2010; Icard

and Moss, 2014) and the study of natural deduction system containing

quantifiers (FrancezandBen-Avi, 2014)are subsumedunder thisapproach.

One of themain attractions of such an approach is its computational effi-

ciency. In particular, approaches that employ natural logic and recognize

textual entailment by using a logical prover have been successful in com-

putational linguistics (MacCartney andManning, 2008; Angeli andMan-

ning, 2014; Abzianidze, 2017).

However, at present, the studies adopting implicit approach mainly

deal with proof-theoretic inference with quantifiers and they do not take

into account dynamics. Thus, it is not clear how to account for the inter-

action between quantifiers and anaphora, which has been studied in the

dynamic semantic frameworks.

Here,weadopt theexplicit approach. Bygivinga semantic representa-

tion of quantifiers in an explicit manner, we provide an analysis of quan-

tifier meaning that can account also for their dynamic aspects.
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Chapter 4

Quantifier and Anaphora

In this section, we propose a semantic representation of quantifiers in

DTS. We first explain Sundholm (1989)’s explicit definition of quantifiers

in dependent type theory, which provides the basis of our analysis. In

DTS, semantic representation of a sentence represents the meaning of

the sentence and also serves as a context for anaphora. From this point of

view, we will examine the appropriate semantic representation of quan-

tifiers within the framework.

4.1 Constructive generalized quantifier

4.1.1 Cardinality

Meaning of expressions such as at least three students and fewer than five

committees are captured in terms of the cardinality of a given set, as Ta-

ble 3.1 has shown. Here, we will explain the way to introduce the notion

of a cardinality in our framework, which is mostly based on the study by
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QUANTIFIER AND ANAPHORA

Nat : type NatF 0 : Nat NatI0
n : Nat

suc(n) : Nat NatIs

n : Nat C : Nat→ s e : C (0) f : (k : Nat) → C (k ) → C (suc(k ))
natrec(n, e , f ) : C (n) NatE

Figure 4.1: Inference rules of natural number (s ∈ {type, kind}).

Sundholm (1989)1.

First of all, we introduce natural numbers. Figure 4.1 shows inference

rules of Nat. According to the introduction rules, a canonical element of

type Nat is either 0 or suc(n) for some n : Nat. For simplicity of notation,

we oftenwrite 1, 2, and 3 instead of suc(0), suc(suc(0)), and suc(suc(suc(0))).

The behavior of the operator natrec in the elimination rule is as follows:

first it executes n, which yields either 0 or suc(a) for some a : Nat. If it is

0, then it returns e . Otherwise, it returns f (a)(natrec(a , e , f )) and further

execute natrec(a , e , f ). Similarly to the first step, it executes a , which is a

number one less than the original n .

natrec(0, e , f ) →β e

natrec(suc(a), e , f ) →β f (a)(natrec(a , e , f )), where a : Nat

Following Aczel (1982), we define the k -element typeMk as follows.

Definition 1 (Finite sequence). For k ∈ Nat,

Mk
def
≡ natrec(k ,⊥, λxλy .(y ⊎ ⊤))

Here, natrecfirst execute k and returns⊥ if k is 0. If k is suc(a) for some a , it

1 We accommodate parts of the original notation to our notation. For instance, both

set and Prop are written as type.
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4.1. Constructive generalized quantifier

continues to execute natrec(a ,⊥, λxλy .(y ⊎⊤))⊎⊤.2 Thus,M0, M1, M2, M3,

... are given as follows.

M0 ≡ ⊥

M1 ≡ ⊥ ⊎ ⊤

M2 ≡ (⊥ ⊎ ⊤) ⊎ ⊤

M3 ≡ ((⊥ ⊎ ⊤) ⊎ ⊤) ⊎ ⊤
...

Therefore,M0, M1, M2, M3, ... are types that has zero, one, two, three, ...

elements, respectively.M0 inhabits no term, because it is equivalent to⊥.

As forM1, we have inr(⟨⟩), where ⟨⟩ : ⊤. M2 has two elements, inl(inr(⟨⟩))

and inr(⟨⟩), which is verified below.

⊥ : type ⟨⟩ : ⊤
inr(⟨⟩) : ⊥ ⊎ ⊤ ⊎IR ⊤ : type

inl(inr(⟨⟩)) : (⊥ ⊎ ⊤) ⊎ ⊤ ⊎IL

....
⊥ ⊎ ⊤ : type ⟨⟩ : ⊤
inr(⟨⟩) : (⊥ ⊎ ⊤) ⊎ ⊤ ⊎IR

Similarly,M3 has three elements, inl(inl(inr(⟨⟩))), inl(inr(⟨⟩)), and inr(⟨⟩).

Now we have special types that have a specific number of elements,

e.g., M3 having three elements, M5 having five elements, and so on. We

can account for the number of elements of a type by using an injection

and a surjection from Mk to the given type. In dependent type theory,

their definitions are given as follows.

Definition 2 (Injection). For any A, B : type and f : A → B ,

injection (f )
def
≡ (y : A) → (y ′ : A) → (f y =B f y ′) → (y =A y ′)

2 Aczel (1982) and Sundholm (1989) define the finite sequence with universe of small

types (Martin-Löf, 1984). For our purpose, we adoptNatE that concerns both type and

kind. It allows us to recursively construct types.
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QUANTIFIER AND ANAPHORA

Definition 3 (Surjection). For any A, B : type and f : A → B ,

surjection (f ) def≡ (z : B) → (y : A) × (z =B f y )

Bijections are defined as follows.

Definition 4 (Bijection). bijection (f ) def≡ (injection (f ) × surjection (f ))

Based on thesemachineries, we can represent various quantifiers. For

instance, we can represent the sentence three farmers are diligent as fol-

lows.3

(4.1)


f : M3 →


x : entity

farmer(x)


injection (f )

(y : M3) → diligent(π1(f y ))




What this formula roughly says is as follows: first, there is a mapping f ,

which is an injection fromM3 to
(
x : entity

)
× farmer(x). Existence of an

injection from a three-element set to a set of farmers means that there

is (at least) three farmers. Moreover, (y : M3) → diligent(π1(f y )), where

π1(f y ) refers to an entity that is a farmer, requires that those three entities

are all diligent. Note that the functional term f is used to construct a term

that fills an argument of the predicate diligent. Consequently, when (4.1)

is true, there are (at least) three elements x of type entity that make both

farmer(x) and diligent(x) true.

Along this line, Sundholm (1989) provides a definition of certain types

of quantifiers including finitelymany, there aremore ... than ..., andmost.

3 Here we use three as an simple example to show how the finite sequence and injec-

tion work for counting. However, it has been argued that numeral expressions such as

three are not quantifiers themselves (Link, 1987). Wewill comeback to this point later in

Section 4.4.
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4.1. Constructive generalized quantifier

He argues, however, this definition needs to be revised in order to count

the farmers correctly. We will come back to this point later.

4.1.2 Notion ofmore than half

Sundholm(1989) interpretsmost asmore thanhalf (i.e., adopting thedef-

inition |A ∩ B | > |A |/2) and provides its constructive definition. In order

to make sense of saying “more than half of A,” A should contain a finite

number of elements. Thus, we first need the notion of finiteness, which

is defined as follows.

Definition 5 (Finiteness). For any A : type,

Finite (A)
def
≡


k : Nat

f : Mk → A

bijection (f )




According to the definition, a proof termofFinite (A) is a tuplewhose first

element is some natural number. As f is a bijection, this number corre-

sponds to the exact number of elements in A.

Next, we need away to obtain the natural number that corresponds to

the majority of a given number, e.g., 3 if either 4 or 5 is given. First, the

operator sg is defined as follows.

Definition 6 (Signum). For any n : Nat,

sg(n)
def
≡ natrec(n, 1, λxλy .0)

Here, natrecfirst executes n. If n is 0, then it returns 1; otherwise, it returns

0. Thus, sg behaves as follows.

sg(0) ≡β 1

sg(suc(a)) ≡β 0 wher e a : Nat
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QUANTIFIER AND ANAPHORA

The operator rem2, which gives the remainder of a number divided by

2, is then defined as follows by using sg.

Definition 7 (Remainder). For n : Nat,

rem2(n)
def
≡ natrec(n, 0, λxλy .sg(y ))

Again, natrec first executes n and returns 0 if n is 0. If n is suc(a) for some

a : Nat, it continues to execute (λxλy .sg(y ))(a)(rem2(a)) ≡ sg(rem2(a)),

where rem2(a) is recursively computed until the argument reaches to 0.

rem2(0) ≡β 0

rem2(suc(a)) ≡β sg(rem2(a))

The operator that gives the quotient of a number divided by 2 is de-

fined as follows with rem2.

Definition 8 (Integral part). For n : Nat,

[n/2] def≡ natrec(n, 0, λxλy .(y + rem2(x)))

According to the definition, [·/2] is executed as follows.

[0/2] ≡β 0

[suc(a)/2] ≡β [a/2] + rem2(a)

Thus, for k = 0, 1, 2, ..., [k/2] gives each of the following numbers that
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4.1. Constructive generalized quantifier

corresponds to the integral part of k divided by 2.

[0/2] = 0

[1/2] = [0/2] + rem2(0) = 0 + 0 = 0

[2/2] = [1/2] + rem2(1) = 0 + 1 = 1

[3/2] = [2/2] + rem2(2) = 1 + 0 = 1

[4/2] = [3/2] + rem2(3) = 1 + 1 = 2

[5/2] = [4/2] + rem2(4) = 2 + 0 = 2
...

Weare now able to represent themajority of n : Nat by [n/2]+1. Here-

after, we writemajorityOf (n) for [n/2] + 1.

Lastly, the definition of ≥ is given as follows.

Definition 9 (≥). For anym, n : Nat,

m ≥ n
def
≡


k : Nat

m =Nat n + k


4.1.3 Definition of Most

With the above preparation, Sundholm (1989) definesMost for arbitrary

A : type, ϕ : A → type, and a : Finite (A) as follows.

Γ, A : type, ϕ : A → type, a : Finite (A) ⊢ Most(A, ϕ) : type,

whereMost(A, ϕ)
def
≡



k : Nat

k ≥ majorityOf (π1(a))
f : Mk → A
injection (f )

(y : Mk ) → ϕ(f y )







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This formula represents thatmore than half of A are ϕ. Here, a : Finite (A)

is imposed as a presupposition in order to make sense ofMost(A, ϕ).4 As

the first projection of the term a : Finite (A), π1(a), is the number of ele-

ments in A, k ismore thanhalf of A’s cardinality. Function f is an injection

that maps every element inMk to an element in A that satisfies ϕ. When

such f exists, more than half of A’s elements certainly satisfy ϕ. This cap-

tures the intendedmeaning ofmost A are ϕ.

Note that the Sundholm’s definition is based on the treatment of com-

mon nouns as types. Hence, ϕ is of type A → type. Since common nouns

are not types but predicates in DTS, we need to modify this definition

slightly for our purpose as follows.

Γ, N : entity → type, V : entity → type, a : Finite
( (

x : entity
)
× N (x)

)
⊢ Most(N ,V ) : type,

whereMost(N ,V )
def
≡



k : Nat

k ≥ majorityOf (π1(a))
f : Mk →

(
x : entity

)
× N (x)

injection (f )

(y : Mk ) → V (π1(f y ))







Here, both N andV are of type entity → type and the term a is a proof

term of Finite
( (

x : entity
)
× N (x)

)
.

4.1.4 Proportion problem

Sundholm (1989) pointed out, however, that there is a problem to adopt

theabovedefinition: this leads to thewell-knownproportionproblem (Kad-

4In Sundholm (1989)’s formalism, it is not clear how this presupposition can be han-

dled in the compositional setting. InDTS, suchpresupposition is representedas a lexical

meaning ofmost in terms of @-term, as we will see later.
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4.1. Constructive generalized quantifier

mon, 1987; Heim, 1990). This problem is not limited to the case ofmost

but is mainly caused by the definitions of injection and surjection given

earlier.

This becomes clearer if we consider a sentence where the restrictor

containsexistentialquantificationofanotherentity. Tosimplify thedemon-

stration, we consider the quantifier three.

(4.2) Three farmers who own a donkey are diligent.

Here, the restrictorof thequantifier is farmerwhoownadonkey, wherewe

consider the situation that each of the quantified farmers own a donkey.

Again, similarly to (4.1), the semantic representation of (4.2) can be given

as follows with an injection.

(4.3)



f : M3 →



x : entity

farmer(x)
z : entity
donkey(z )

own(x , z )







injection (f )

(y : M3) → diligent(π1(f y ))




Here, f should be a function fromM3 to a Σ-type that consists of nested

pairs: each termof theΣ-typewouldbea5-tuple ⟨e1, pf(e1), e2, pd(e2), po(e1,e2)⟩,

where each of the participated terms is understood as follows.5

5We often abbreviate nested pair ⟨x1, ⟨x2, x3⟩⟩ as ⟨x1, x2, x3⟩.
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e1 an entity who is a farmer

pf(e1) a proof that the entity e1 is a farmer

e2 an entity which is a donkey

pd(e2) a proof that the entity e2 is a donkey

po(e1,e2) a proof that e1 owns e2

Suppose that there is only one farmer, fa , who owns a donkey. He owns

three donkeys da1, da2, and da3. We also have a proof that fa is a diligent

person. In this situation, we have the following three 5-tuples.

(4.4) ⟨fa , pf(fa ),da1, pd(da1), po(fa ,da1)⟩

⟨fa , pf(fa ),da2, pd(da2), po(fa ,da2)⟩

⟨fa , pf(fa ),da3, pd(da3), po(fa ,da3)⟩

According to the definition of injection (Definition 2), an injection from

M3 exists because we have three tuples. As we have assumed that the first

component of each tuple, fa , is diligent, the semantic representation is

true even if there is only one farmer, which is counter-intuitive. Here we

see a typical situation of the proportion problem that is caused by quan-

tifying over tuples.

In the standard setting, the proportion problem is associated with a

sentence where the quantifier restrictor contains the relative clause with

an indefinite in it. In the proof-theoretic setting, however, quantifying

over tuples may cause problem even in absence of indefinite.

Consider the simpler variant of (4.2).

(4.5) Three farmers are diligent.

Now, similarly to (4.3), thereexists a function fromM3 to theΣ-type
(
x : entity

)
×

farmer(x). This Σ-type consists of pairs ⟨e1, pf(e1)⟩, where pf(e1) is again a

proof of farmer(e1). This means that not only entities but also proposi-
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tions such as farmer(e1) introduce a proof term. Quantifying over tuples

(pairs) may then cause problem because one proposition can have mul-

tiple different proofs.

Consider theproposition “John isdiligent” and let us assume that John

is a Canadian policeman. If we have the proof term p1 of that assumption

, as well as the proof term p2 that every Canadian is diligent, we can con-

struct a proof that John is diligent by combining p1 and p2.

john : entity, p1 :

Canadian(john)

policeman(john)

 , p2 :
©­«u :


x : entity

Canadian(x)

ª®¬ → diligent(π1u)

⊢ p2(john, π1p1) : diligent(john)

Now, suppose that we have another proof term p3 that every policeman is

diligent. We can construct a proof that John is diligent also by combining

p1 and p3.

john : entity, p1 :

Canadian(john)

policeman(john)

 , p3 :
©­«u :


x : entity

policeman(x)

ª®¬ → diligent(π1u)

⊢ p3(john, π2p1) : diligent(john)

In this way, we can obtain two different proof terms for the proposition

“John is diligent.” Therefore, counting pairs may cause the problem even

in the absence of an indefinite.

To avoid this problem, Luo (2020) proposes to extendMartin-Löf type

theory with the logic of mere propositions called h-logic and introduce

the notion of proof irrelevance. Proof irrelevance is a principle that any

two proofs of the same logical proposition should be the same. This can

solve the multiple proofs problem noted above, but is usually not avail-

able for predicative type theories such as Martin-Löf type theory, where

every proposition is also a type: for instance, two entities a and b of type
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entity are identified, which is an unwanted result. Since the extended

system havemere propositions which are distinguished from type, it can

have a rule that every two proofs of a mere proposition are equal.

Luo (2020) suggests that one canalso avoid theproportionproblemby

defining aweak existential quantifier ∃ in terms ofmere propositions and

use it to represent the relative clause of the donkey sentence instead of

Σ. The resultant semantic representation, however, seems to block some

sort of inter-sentential anaphoric link (see, Section 5.6).

To maintain the anaphoric accessibility, we will crucially use Σ-type

also for the relativeclauseof thedonkeysentence. Inorder toavoidcount-

ing same entities multiple times as in (4.4), we follow Sundholm’s pro-

posal andusedifferentversionof injection, surjection, andbijection,which

identify tuples by its first component, namely, an object of type entity

in our setting. Note that entity in DTS can be defined as an enumera-

tion type. For now, we assume that for any objects of entity, we know its

canonical form and thus can distinguish one from the other.

4.1.5 Counting entities

Sundholm(1989)defines the following injectionwhere two tuplesare iden-

tified regarding to their first component.6

Definition 10 (injectionπ1). For any A, B : type, C : B → type, and f :

A → (x : B) ×C ,

injectionπ1(f )
def
≡ (y : A) → (y ′ : A) → π1(f y ) =B π1(f y ′) → y =A y ′

6 SinceSundholm’soriginal definitioncontains a typemismatch,wepresent a slightly

modified version of it here.
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Here, f is a function whose range is a Σ-type, and injectionπ1(f ) says that

f is an injection which is relativized to the first component B . Two terms

y and y ′ of A are equated if the first components of f (y ) and f (y ′) are the

same, regardless of the rest of the tuple. The following theorem immedi-

ately follows by definition.
Theorem 1: injection and injectionπ1

For any A, B : type, C : B → type, and f : A → (x : B) × C , if

injectionπ1(f ), then injection (λx .π1(f (x))).

Proof. Assume injectionπ1(f ). Then the following holds by definition.

(y , y ′ : A) → π1(f y ) =B π1(f y ′) → y =A y ′

Assume we have y : A, y : A′, and (λx .π1(f (x)))y =B (λx .π1(f (x)))y ′. From

(λx .π1(f (x)))y →β π1(f (y )) and (λx .π1(f (x)))y ′ →β π1(f (y ′)), we have

π1(f (y )) =B π1(f (y ′)).

Thus, by injectionπ1(f ), we obtain y =A y ′. By Π-introduction, we get

(y , y ′ : A) → (λx .π1(f (x)))y =B (λx .π1(f (x)))y ′ → y =A y ′

End of proof.

Surjection is defined analogously.

Definition 11 (surjectionπ1 .). For any A, B : type, C : B → type, and

f : A → (x : B) ×C ,

surjectionπ1(f )
def
≡ (z : (x : B) ×C ) →


y : A

π1(z ) =B π1(f y )


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While the standard surjection requires that there exists a corresponding

element of A for every tuple z , surjectionπ1 only requires that the corre-

sponding element exists for z ’s first component. For instance, if there are

⟨b , c1⟩ and ⟨b , c2⟩, it is enough to have only one y such that f y =(x :B)×C

⟨b , c1⟩ because π1⟨b , c2⟩ =B π1(f y ) =B b .

Bijection is also defined in the same way as before.

Definition 12 (bijectionπ1). For any A, B : type, C : B → type, and f :

A → (x : B) ×C ,

bijectionπ1(f )
def
≡

(
injectionπ1(f ) × surjectionπ1(f )

)
Accordingly, finiteπ1 , which adopts bijectionπ1 , is defined as follows.

Definition 13 (Finiteness). For any B : type andC : B → type,

finiteπ1(x : B) ×C
def
≡


k : Nat

f : Mk → (x : B) ×C

bijectionπ1(f )




Finally, we can revise the definition ofMost as follows, where finiteπ1
and injectionπ1 are abbreviated notations of finiteπ1 and injectionπ1 , re-

spectively.

(4.6)

Γ,N : entity → type,V : entity → type, a : finiteπ1
(
x : entity

)
× N (x)

⊢ Most(N ,V ) : type,

whereMost(N ,V ) def≡



k : Nat

k ≥ majorityOf (π1(a))
f : Mk →

(
x : entity

)
× N (x)

injectionπ1(f )

(y : Mk ) → V (π1(f y ))







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4.2. Analysis ofmost in DTS

The range of f corresponds to the quantified objects, which is given by

the restrictor noun phrase ofmost. In DTS, such objects are always repre-

sented by a Σ-type of
(
x : entity

)
× N (x) for some predicateN , whose first

component is type entity. Thus, we can quantify over entities instead of

tuples.

Here is a remark on the uniformity problempointed out by Sundholm

(1989). Since Sundholm (1989) treats common nouns as types, the range

of f can be any type, but injectionπ1 is applicable only when it is a Σ-type.

Thus, as Sundholmhimself pointed out, oneneeds to defineMostby case

analysis on A.

4.2 Analysis ofmost in DTS

Sundholm (1989) sketched the constructive definition of Most in a way

that can avoid the so-called proportionproblem. Although the study pro-

vides an essential tool-set to translate the traditional set-theoretic quan-

tifier analysis into Martin-Löf type theory, an analysis of the natural lan-

guage quantifier is not yetwell explored. In particular, aswehave pointed

outpreviously, ananalysis that candealwithbothdynamic linguisticphe-

nomenaand theproof-theoretic inferenceofquantifiershasnotbeenwell

studied. In this section,wewill provide the semantic representationof the

quantifiermost inDTSon the basis of the formalismby Sundholm (1989).

Given the linguistic behavior of the quantifier most, we can say that

there are at least two points to be improved in the definition (4.6).

One is the existential presupposition. Quantifier most is known as a

strong determiner : the sentenceMost farmers own a donkey presupposes

that there exists a farmer, not only presupposing the number of farmers
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is finite.

Another is themaximization of the number. WhenMost(N ,V ) is true

(i.e., there exists a proof term ofMost(N ,V )), we will have a natural num-

ber k and a function f of Mk →
(
x : entity

)
× N (x) as part of the proof.

However,k isnotnecessarily thenumberof entities inquestion: allwecan

say is that it is anumbergreater than themajorityof entities in
(
x : entity

)
×

N (x). As aproof termcanbehave as adiscourse referent, we think it is cru-

cial that k is the exact number of entities.

Besides, we need to devise a way to give semantic representations for

other quantifiers in the sameway. This is because the definition employs

injectionπ1 . Due to its nature, the existence of an injection fromMk to the

target entities ensures that there are at least k entities. On the contrary,

it cannot guarantee that there are exactly k entities or at most k entities,

which is necessary to represent themeaning of quantifiers such as exactly

three and at most three.

Therefore, we defineMost as follows.

(4.7) Most in DTS

For Γ ⊢ N : entity → type and Γ, x : entity, u : N (x) ⊢ V :

entity → type, Γ ⊢ Most(N ,V ) : type,

whereMost(N ,V )
def
≡



k : Nat

k ≥ majorityOf
©­­­­«
π1π1

©­­­­«
@ ::


a : Finiteπ1

©­«


x : entity

N (x)

ª®¬
π1(a) ≥ 1


ª®®®®¬
ª®®®®¬

f : Mk →


x : entity

u : N (x)

V (x)




bijectionπ1(f )






Lexical entry ofmost is then given as follows.
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4.2. Analysis ofmost in DTS

most; (S/(S\N P ))/N ; λnλv .Most(n,v )

Here we represent the presupposition ofmost by the underspecified

term inDTS. The annotated type of@-termexpresses thepresupposition.

This captures that thequantifiermost triggers thepresupposition that the

quantification domain is finite and non-empty.

The resolution of @-term proceeds along the same line as the case of

existential presupposition of definite descriptions (see Section 2.6.1). By

the type checking and proof search in DTS, it will be eventually replaced

with a concrete proof term ⟨a , e ⟩ where a is a proof of finiteness and e is

a proof that the number of elements is greater than or equal to 1. From

the first component, a , we can obtain its first component π1(a) which is

the number of entities in
(
x : entity

)
× N (x) (Definition 13). On the other

hand, the second component e is discarded: it is only used to specify that

π1(a) ≥ 1, which is needed to presuppose the existence of an element.

To maximize the natural number k , we use bijectionπ1 , which is the

conjunction of injectionπ1 and surjectionπ1 instead of only injectionπ1 .

This is because surjectionπ1(f ) ensures that every entities in
(
x : entity

)
×

(u : N (x)) ×V (x) has a corresponding element inMk . The subsequent dis-

course may use this number k in the proof search for @-term resolution

(see Section 4.5). Also, this enables us to account for quantifiers such as

exactly three as well as monotone decreasing cases such as at most three.

As we mentioned in Section 3.1, the quantifier most can be defined

also as |A ∩ B | > |A − B |. If we adopt this definition, the semantic repre-

sentation ofmost can be given as follows.
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(4.8) Most(N ,V )
def
≡



u :



k : Nat
f : Mk →


x : entity

u ′ : N (x)

V (x)




bijectionπ1(f )





v :



k ′ : Nat
f ′ : Mk ′ →


x : entity

v ′ : N (x)

¬V (x)




bijectionπ1(f
′)




π1u > π1v





Here, π1u > π1v compares the cardinality of
(
x : entity

)
× (u : N (x)) ×V (x)

and
(
x : entity

)
× (u : N (x)) × ¬V (x).

If these two semantic representations at least represent the same car-

dinal condition, how do we choose one over the other? One possiblity is

that, as (Hackl, 2009) argued, to choose the second one based on the dif-

ference in their verification procedure. For this particular formulation,

however, we prefer the first version over the second one from the view

point of its anaphoric potential. Since semantic representation (4.8) has a

parallel structure, it isnatural toexpect thatu andv have thesameanaphora

accessibility. However, since u and v correspond to the reference set and

the complement set, respectively, this contrary to the Nouwen (2003)’s

observation,where the reference tocomplement set is generallynot avail-

able.

Although it may be still possible to explain the difference in anaphora

accessibility by assuming other factors, here we adopt the first one given

above as the semantic representation ofmost in our analysis.
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4.3. Donkey sentence

Most
(S/(S\N P ))/N

λnλv .Most(n,v )

farmers who own a donkey

N

λx .



farmer(x)
y : entity

u : donkey(y )

own(x , y )





S/(S\N P )

λv .Most

©­­­­­­­«
λx .



farmer(x)
y : entity

u : donkey(y )

own(x , y )





,v

ª®®®®®®®¬

>

beat it
S\N P

λx .beat(x ,@1 :: entity)

S

k : Nat

k ≥ majorityOf

©­­­­­­­­­­­­­«
π1π1

©­­­­­­­­­­­­­«
@2 ::



a : Finiteπ1

©­­­­­­­­­­«



x : entity

farmer(x)
y : entity

u : donkey(y )

own(x , y )








ª®®®®®®®®®®¬
π1(a) ≥ 1



ª®®®®®®®®®®®®®¬

ª®®®®®®®®®®®®®¬

f : Mk →



x : entity
w :



farmer(x)
y : entity

u : donkey(y )

own(x , y )





beat(x ,@1 :: entity)




bijectionπ1(f )







>

Figure 4.2: Semantic composition of (4.9).

4.3 Donkey sentence

The semantic representationofmost captures the internally-dynamicna-

ture of the quantifier. Consider the following donkey sentence.

(4.9) Most farmers who own a1 donkey beat it1.

The semantic composition is analogous to the universal donkey sen-

tence (2.20) inSection2.5.1. Hence, the semantic representationof (4.9) is

derived as in Figure 4.2. Here, @1 represents the pronoun it in the nuclear

scope and @2 represents the existential presupposition ofmost.
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As the obtained semantic representation should be of sort type, the

following judgment should hold for @2.

(4.10) K , k : Nat ⊢



a : Finiteπ1

©­­­­­­­­­­«



x : entity

farmer(x)
y : entity

u : donkey(y )

own(x , y )








ª®®®®®®®®®®¬
π1(a) ≥ 1


true

Let us assume that we have a knowledge that exactly five farmers own a

donkey. In this case, the global context K contains the following proof

term in (4.11).

(4.11) ⟨5,F ,B⟩ : Finiteπ1

©­­­­­­­­­­«



x : entity

farmer(x)
y : entity

u : donkey(y )

own(x , y )








ª®®®®®®®®®®¬
Recall that theproof of finiteness consists of anatural number, a function,

and a proof that the function satisfies bijectionπ1 , which correspond to 5,

F , and B, respectively.

Since there is no preceding discourse in (4.9), there is no option for

presupposition filtration for the presupposition represented by@2. Thus,

it is resolved by the information inK. As we have (4.11) inK and can also

prove 5 ≥ 1, which we write P, we can construct ⟨⟨5,F ,B⟩,P⟩ that satis-

fies the judgement (4.10). This proof can substitute for @2.

For @1, the following two judgement should hold.
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4.3. Donkey sentence

(4.12)

K , k : Nat, ⟨⟨5,F ,B⟩,P⟩ :



a : Finiteπ1

©­­­­­­­­­­«



x : entity

farmer(x)
y : entity

u : donkey(y )

own(x , y )








ª®®®®®®®®®®¬
π1(a) ≥ 1


, p : k ≥ majorityOf (5) ,

z : Mk , x : entity, w :



farmer(x)
y : entity

u : donkey(y )

own(x , y )





⊢ @1 :: entity : entity

(4.13)

K , k : Nat, ⟨⟨5,F ,B⟩,P⟩ :



a : Finiteπ1

©­­­­­­­­­­«



x : entity

farmer(x)
y : entity

u : donkey(y )

own(x , y )








ª®®®®®®®®®®¬
π1(a) ≥ 1


, p : k ≥ majorityOf (5) ,

f : Mk →



x : entity
w :



farmer(x)
y : entity

u : donkey(y )

own(x , y )





beat(x ,@1 :: entity)




, i : injectionπ1(f ) , x : entity,

w :



farmer(x)
y : entity

u : donkey(y )

own(x , y )





⊢ @1 :: entity : entity

Here, (4.13) is the@-termwhich appears in bijectionπ1 , in the antecedent

clause of surjectionπ1 . This means that, in Most(N ,V ), N appears three

times andV appears twice in total. If N andV contains @-term, it is du-

plicated in the semantic representation. In this case, we have to resolve

@-termwith the same index in a consistent way.

In general, if we have Γ ⊢ @i :: Λ : Λ and Γ′ ⊢ @i :: Λ : Λ, the proof
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term constructed for @i :: Λ under Γ should be also constructed under

the context [Γ′], where [Γ′] is obtained from Γ′ by only renaming the vari-

ables.7 In the current case, we can find π1π2w that can replace @1, which

corresponds to the intended reading of (4.9).

The fully resolved semantic representation is as follows.

(4.14)



k : Nat

k ≥ majorityOf (5)

f : Mk →



x : entity
w :



farmer(x)
y : entity

u : donkey(y )

own(x , y )





beat(x , π1π2w )




bijectionπ1(f )






7 The treatment of @-terms presented here is not compatible with the assumption

made by Kubota et al. (2019) in their analysis on the interpretive parallelismwithinDTS.

(i) Every Englishman thinks, and every American believes, that he is a genius.

Inorder toobtain thebound readingof thepronounhe in the above sentence, theymade

two assumptions which play key roles in their analysis (quoted from page 4).

a. Ban on the duplication of underspecified terms: In a well-formed semantic rep-

resentation of DTS, an underspecified @-termwith the same index can appear at

most once.

b. Normal form requirement on compositionally derived semantic terms: At each

step of semantic composition, the semantic term assigned to the derived linguis-

tic expression is in β-normal form.

Since the restriction (a) invokes anaphora resolution before the β-reduction of the se-

mantic representation takes place, the bound reading can be naturally derived.

In our case, @-term that appears in the object position of V in Most(N ,V ) can find

its antecedent only after the semantic composition completed. Thus, if we adopt the

restriction (a), the semantic composition just fails whenMost takesV .
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As majorityOf (5) is 3, the semantic representation can be immediately

understood as at least three farmers who own a donkey beat his donkey.

Note that the semantic representation in 4.14 corresponds to the ex-

istential reading of the donkey sentence (4.9): we count farmers if there

exists a proof of an associated donkey in a beating relation. Suppose that

there are five farmers and they own at least one donkey and beat some of

them. The situation is illustrated below.8

farmer fa fb fc fd fe

donkey da1 db1, db2 dc1, dc2 dd1 de1

beat (fa ,da1) (fb ,db1) (fc ,dc1), (fc ,dc2) - -

not-beat - (fb ,db2) - (fd ,dd1) (fe ,de1)

Now, the donkey sentence (4.9) is intuitively true in the existential read-

ing, because three in five farmers, fa , fb , and fc , fulfill the condition. Obvi-

ously, (fa ,da1) can be a destination of the function f . For fb , (fb ,db1) can be

the destination as well only because it fulfills the condition: the existence

of (fb ,db2), which is not in abeating relation, doesnotmatter. For fc , either

(fc ,dc1) or (fc ,dc2) can be a destination of f . Recall that only one of them

canbe a destination of f as f meets injectionπ1(f ). Also, none of fa , fb , and

fc is overlooked as f meets surjectionπ1(f ).

4.4 Other quantifiers

The proposed definition can be naturally extended to other quantifiers

such as at least three, exactly three, and at most three.

We treat three in at least three as an expression provides numerical

8As the rangeof f is complexΣ-type, thepreciseelements in the rangeof f are6-tuples

consists of an entity that is a farmer, a proof of the entity being a farmer, and so on.
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specification, whose syntactic category is specified as N U M , and at least

as anphrasal expressionwhichmodifies such anumeral. Their lexical en-

tries are given as follows.9

three;N U M ; 3

at least; S/(S\N P )/N /N U M ; λk ′.λN .λV.



k : Nat

k ≥ k ′
f : Mk →


x : entity

u : N x

V x




bijectionπ1(f )






Then the semantic representation of quantifier at least three is given as

follows.

(4.15) λN .λV.



k : Nat

k ≥ 3
f : Mk →


x : entity

u : N x

V x




bijectionπ1(f )






Letusabbreviate it asAtLeastThree. By similarprocedure,weobtainAtLeastN

in general for the semantic representation of at least n, where n corre-

sponds to the natural numberN .

Exactly n and at most n can be represented in the same way.

9 Here we simply treat the semantic type of N U M is Nat. It is also possible to treat it

as an object of type entity and define an operation to convert it to an object of typeNat.
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(4.16) ExactlyN(N ,V )
def
≡



k : Nat

k =Nat N
f : Mk →


x : entity

u : N (x)

V (x)




bijectionπ1(f )







(4.17) AtMostN(N ,V ) def≡



k : Nat

k ≤ N
f : Mk →


x : entity

u : N (x)

V (x)




bijectionπ1(f )






They are all defined in terms of bijectionπ1 . In this way, we can give

the semantic representation of the downwardmonotone quantifier such

as at most n.

For the bare numeral three in the sentence three farmers are diligent,

there is no expression that takes the numeral and behaves as a quantifier.

Here we assume that we have the following empty expression.10

10 Here we treat numerals as themselves are not quantifiers. This view point agrees

with studies where numerals are accounted for as expressions modifying nouns (Link,

1987; Krifka, 1996, among others).

Under the numeral-as-modifier approach, expressions such as the three students can

be naturally handled. Link (1987), however, allows postulating an extra node for numer-

als to avoid strings like pretty three girls. Also, Krifka (1996) assumes a morphologically

empty determiner for his analysis of NPs like two students in order to derive the quan-

tificational meaning.

Although we adopt different analysis here, the use of N U M and �Q is similarly mo-

tivated. Based on our current analysis, definite article the in the three N V can be an-

alyzed as an expression whose syntactic category is S/(S\N P )/N /N U M , similarly to at
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�Q ; S/(S\N P )/N /N U M ; λk .λN .λV.



n : Nat

n = k
f : Mn →


x : entity

u : N x

V x




injectionπ1(f )






With this bare expression,we canhave aquantifierN for thebarenumeral

n in general.

(4.18) N(N ,V )
def
≡



n : Nat

n =Nat N
f : Mn →


x : entity

u : N (x)

V (x)




injectionπ1(f )






Note that this semantic representation corresponds to the distributive

reading of the numeral expressions, as it is understood as there are n en-

tities which satisfy both propertiesN andV . On the other hand, in the fol-

lowing case, this reading seems to be not the preferred one.

(4.19) Threemen lifted the piano.

(4.20) Threemenmet in the park.

On the distributive reading of (4.19), the sentence means that there were

three men each lifting a piano. However, there exists another reading,

which seems to bemore natural, that there has been at least one joint lift-

ing with three people involved (Link, 1987). The second reading is called

collective reading. In (4.20) where the collective verbmet appears, only

least, which is the different lexical entry we presented in the earlier chapter.
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the collective reading seems to be plausible. To account for both the col-

lective reading and the distributive reading in a compositional way, we

can integrate the existing analysis of plural objects into our framework.

See Link (1983) for the standard approach. Proposals on the treatment of

plural objects in a dependently-typed setting has been alsomade by Bol-

dini (2001) and Chatzikyriakidis and Luo (2013). Since the full discussion

of this phenomenon is beyond the scope of this thesis, we will focus on

the distributive reading of numeral expressions.

The difference between ExactlyN and N is that only the former maxi-

mize the natural number k in the representation by bijectionπ1 . This en-

sures that Exactly n N V becomes false in the case where there are more

thanN elements.

The sentences At least nNV and nNV have the same truth condition,

but we define them in a different way. This is because the determiners

behave differently when the noun phrases are referred to from the subse-

quent sentences. As Kadmon (1987) observed in the following sentences,

ten N differs from at least ten N in anaphora possibilities.

(4.21) [At least ten kids]i walked into the room. Theyi were making an

awful lot of noise.

(4.22) [Ten kids]i walked into the room. Theyi were making an awful

lot of noise.

Both of the first sentences of (4.21) and (4.22) can be true in the situa-

tion where there are actually more than ten kids. Suppose that there are

twelve kids who walked into the room. In (4.21), they in the second sen-

tence refers to all the twelve kids who walked into the room. By contrast,

they in (4.22) refers to a collection of ten kids in question. Thus, at least

ten kids behaves as themaximal collection of kids, while ten does not.

93



QUANTIFIER AND ANAPHORA

We defineAtLeastN andN to reflect this difference in anaphora possi-

bilities. We define AtLeastN with the condition k ≥ N , where k is maxi-

mized by bijectionπ1 . On the other hand, we defineNwith the cardinality

condition k = N . It can still be true when there are more than three ob-

jects, as we use injectionπ1 .

Quantifiers some, no, and every can be represented in the sameman-

ner. Existential reading of some and no can be represented as follows.

(4.23) Some(N ,V )
def
≡


f : M1 →


x : entity

u : N (x)

V (x)




injectionπ1(f )



(4.24) No(N ,V )
def
≡


f : M0 →


x : entity

u : N (x)

V (x)




bijectionπ1(f )



Recall thatM1 ≡ ⊥ ⊎ ⊤. Then it follows that (4.23) and
(
x : entity

)
×

(u : N (x)) ×V (x) are mutually deducible. Similarly, byM0 ≡ ⊥, (4.24) and

¬
(
x : entity

)
× (u : N (x)) ×V (x) aremutually deducible.

As for every, we canhave the following semantic representation,which

captures the cardinality condition of the restrictor and the nuclear scope.
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(4.25) Every(N ,V )
def
≡



a :



n : Nat
f : Mn →


x : entity

N (x)


bijectionπ1(f )






g : Mπ1a →


x : entity

u : N (x)

V (x)




bijectionπ1(g )


PR (π1a ≥ 1)




Here, PR (A)

def
≡ (@i :: A) =A (@i :: A). PR is the operator which we call

presupposition operator. It can be used to represent the presupposition

that is independent of the assertive content. Since it is defined in terms of

an identity, it does not contribute to the assertive content of the semantic

representation. In the typechecking stage, however, the@-term in thePR

operator triggers the proof search just like other @-terms, which requires

that the proposition A is provable under the context. In the current case,

the PR operator triggers the proof search of π1a ≥ 1, which requires that

the cardinality of the restrictor is at least one. This captures the existential

presupposition of the strong determiner every.

One crucial problem of (4.25) is that a formula we can deduce from it

is weaker thanwe expect. As both f and g are bijection, we can prove that

the following proposition holds.

(4.26)


x : entity

N (x)

 ↔


x : entity
u : N (x)

V (x)




This is, however, not sufficient for the meaning of every, because the an-

tecedent and the consequence clauses consider different entities. This
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motivates us to more directly represent the relation A ⊆ B (not |A | = |A ∩

B |). More appropriate representation for every is as follows.

(4.27)



u :


a :



k : Nat
f : Mk →


x : entity

N (x)


bijectionπ1(f )



(
z : Mπ1a

)
→ V (π1f (z ))


PR (π1π1u ≥ 1)


Now, we treat that the finiteness of the restrictor is also a part of the pre-

supposition of every and represent the inclusive relation between the re-

strictor and the nuclear scope. The semantic representation in (4.27) cor-

responds to existential reading. To account for both the universal reading

and the existential reading, we have the following semantic representa-

tion.

(4.28)



u :


a :



k : Nat
f : Mk →


x : entity

N (x)


bijectionπ1(f )



(
z : Mπ1a

)
→ (v : N (π1f (z ))) → V (π1f (z ))


PR (π1π1u ≥ 1)


In the semantic representationof donkey sentence, e.g., every farmerwho

owns a donkey beats it,he @-term corresponding to the donkey pronoun

appears inV . Thus, it can always find at least two antecedent: one is in v

and theother is in π2f (z ). If the@-term is resolvedbyusingv , the resultant

semantic representation corresponds to the universal reading. If the @-

term is resolved by using π2f (z ), it corresponds to the existential reading.

Let us illustrate this by the example of universal donkey sentence. For
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simplicity, let us ignore the second part, PR (π1π1u ≥ 1). The semantic

representation of Every farmer who owns a donkey beats it is given as fol-

lows.

(4.29)



k : Nat

f : Mk →



x : entity

farmer(x)
y : entity
donkey(y )

own(x , y )








b : bijectionπ1(f )

(z : Mk ) →

©­­­­­­­«
v :



farmer(π1f (z ))
y : entity
donkey(y )

own(π1f (z ), y )






ª®®®®®®®¬
→ beat(π1f (z ),@1 :: entity)






The possible resolution for @1 in question is π1π2v and π1π2π2(f (z )).

Let us deduce simpler formula from (4.29). The key is that we have the

proofofbijectionπ1(f ), fromwhich,wecanobtain theproofof surjectionπ1(f ),

which we write sf .

(4.30) sf :

©­­­­­­­­­­«
w :



x : entity

farmer(x)
y : entity
donkey(y )

own(x , y )








ª®®®®®®®®®®¬
→


y : Mk

π1z = π1f (y )


Here,we informally refers tok and f appears in theoriginal formula (4.29),

butof coursebothshouldbeextracted fromtheproofof (4.29)byΣ-elimination.

We also have the following formula, which is the last component of (4.29).

(A represents the proof term which has replaced @1. In the current case,

it is either π1π2v or π1π2π2(f (z )).)
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(4.31) p : (z : Mk ) →

©­­­­­­­«
v :



farmer(π1f (z ))
y : entity
donkey(y )

own(π1f (z ), y )






ª®®®®®®®¬
→ beat(π1f (z ),A)

(4.30) plays two crucial role. One is, by taking the proof of farmer who

ownsadonkey, returns aproof ofMk , which canbe fed to (4.31). Theother

is to provide the identity relation of the entity.

From(4.30) and (4.31),wewill eventually obtain either of the following

formula with respect to the result of the resolution of @1.

(4.32)

λz ′.p(π1(sf (z ′))) :©­­­­­­­­­­«
z ′ :



x : entity

farmer(x)
y : entity
donkey(y )

own(x , y )








ª®®®®®®®®®®¬
→

©­­­­­­­«
v :



farmer(π1z ′)
y : entity
donkey(y )

own(π1z ′, y )






ª®®®®®®®¬
→ beat(π1z ′, π1π2v )

(4.33)

λz ′.p(π1(sf (z ′))) :©­­­­­­­­­­«
z ′ :



x : entity

farmer(x)
y : entity
donkey(y )

own(x , y )








ª®®®®®®®®®®¬
→

©­­­­­­­«
v :



farmer(π1z ′)
y : entity
donkey(y )

own(π1z ′, y )






ª®®®®®®®¬
→ beat(π1z ′, π1π2π2(f (π1sf (z ′))))

Although it is not immediately obviouswhat is goingonhere, in (4.32), the

object position ofbeat refers tov , which is a universally quantifiedobject.

On the contrary, in (4.33), it refers to a particular entity which is obtained

via f with respect to z ′.

It is easy to show that (4.32) and the following classical semantic rep-

resentation of universal quantifier are mutually deducible.

(4.34)

©­­­­­­­­­­«
z ′ :



x : entity

farmer(x)
y : entity
donkey(y )

own(x , y )








ª®®®®®®®®®®¬
→ beat(π1z ′, π1π2π2z ′)
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Onthecontrary, from(4.33),wecanprove the followingproposition,which

better reflects the existential reading.

(4.35)

©­­­­­­­­­­«
z ′ :



x : entity

farmer(x)
y : entity
donkey(y )

own(x , y )








ª®®®®®®®®®®¬
→


u :


y : entity
donkey(y )

own(π1z ′, y )




beat(π1z ′, π1u)


The semantic representationofno that account for bothuniversal and

existential reading can be given analogously based on (4.24).

(4.36)


f : M0 →


x : entity

u : N (x)

(v : N (x)) → V (x)




bijectionπ1(f )


Again, this is mutually deducible with the following formula.

(4.37) ¬


x : entity

u : N (x)

(v : N (x)) → V (x)




Here again, if the @-term inV is resolved by using v , the semantic repre-

sentation corresponds to the universal reading; if it is resolved by usingu ,

it corresponds to the existential reading.11

4.5 Plural anaphora

In theprevious section,weprovidedsemantic representationsofGQssuch

asmost and the cardinal quantifier three. In this section, we will see their

11 It is also possible to get the semantic representation ofmost for both universal and

existential reading in a same manner. We will not further pursue the direction in this

thesis.
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behavior in the discourse, especially how they interact with plural pro-

nouns.

4.5.1 Plural anaphora and dependent interpretation

Consider the following examples involving plural anaphora ((4.40) is due

to Krifka (1996)).

(4.38) Every1 boy received a1 present.

They1 opened it2.

(4.39) Most1 farmers own a2 donkey.

They1 love it2.

(4.40) Three1 students wrote a2 paper.

They1 sent it2 to L&P.

Let us focus on a reading of (4.38) where every boy receives wide scope

over a present (henceforth, the ∀–∃ reading). In that reading, the singular
pronoun it in the second sentence refers to its antecedent in the nuclear

scope of the quantifier in the first sentence: the second sentence of (4.38)

canmean that every boy received a present and opened the present he re-

ceived. By∀–∃ reading, a similar interpretationapplies to (4.39) and (4.40);

the second sentence of (4.39) is understood to mean that most farmers

own a donkey and love the donkey he own; the second sentence of (4.40)

means that three students each wrote a paper and each student sent the

paper he wrote to L&P.

Another thing to pay attention to is that, in all of the above examples,

the singularpronoun it in the secondsentence receives the interpretation

that depends on the subject: it in (4.38) is interpreted as the present he

received, where he refers to each of the subject boy; the same applies to
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(4.39) and (4.40).

The source of such interpretations must be the interpretations of the

first sentences, the quantificational sentences. For instance, the interpre-

tation of it in (4.40) is possible because we know from the first sentence

that there exists a paper for each of the three students. This suggests that

the ∀–∃ reading of the first sentence induces a dependency relation be-
tween students and papers, which plays a crucial role in the interpreta-

tion of the singular pronoun in the second sentence.

Therefore, analysisof anaphorasuchas (4.38), (4.39), and (4.40) should

also account for this dependent interpretation.

4.5.2 Dependency relation

As the dependency interpretation is crucially involved in plural anaphora

in general, it has beenwidely discussed in the literature (KampandReyle,

1993; vandenBerg, 1996a,b;Krifka, 1996;Nouwen,2003;Brasoveanu,2008).

In classical Discourse Representation Theory (DRT) (KampandReyle,

1993), reference toadependency relation ishandledbyusingacopymech-

anism. First, thefirst sentence in (4.38), every boy receivedapresent, yields

the following discourse representation structure (DRS).

(4.41) x

boy(x) @
@@

�
��

@
@@

�
��

every
x

y

present(y )

receive(x , y )

This form of DRS is called duplex condition and used to represent a sen-

tence involving a quantifier. The construction of this DRS triggers the op-

101



QUANTIFIER AND ANAPHORA

X’

x

boy(x) @
@@

�
��

@
@@

�
��

every
x

y

present(y )

receive(x , y )

X ′ = Σx

x y

boy(x)

present(y )

receive(x , y )

x

x ∈ X ′ @
@@
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a. DRS for (4.38) before applying copy operation. b. DRS for (4.38) after applying copy operation.

Figure 4.3: DRS associated with (4.38).

eration called abstraction, which constructs a new plural discourse ref-

erent X ′ consisting of an object that satisfies the condition of x . The pro-

noun they refers to thisX ′ andyields theDRS inFigure 4.3a,whereuniver-

sal quantificationoverX ′ takesplace. In thisDRS,however, there isnodis-

course referent which can be associated with singular y in open(x , y ). In

such a case, there is an option to apply a copy operation, which copies the

conditions of x constituting X ′ to the restrictor part of the duplex condi-

tion. ThecorrespondingDRS is given inFigure4.3b. In thisway, the singu-

lar variable y in open(x , y ) can refer to each present associated with each

boy. What plays an important role here is operations performed based on

DRS construction.

Krifka (1996) tries to account for the phenomenawithout introducing

an additional level of semantic representation such asDRSs. Heproposes
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ananalysisbasedonanenrichedassignment functioncalledparametrized

sum individuals based on the approach interpreting a sentence as a re-

lation between assignment functions. Parametrized sum individuals are

sets of pairs of an individual and a variable assignment associated with

that individual. A possible instance of parametrized individuals for every

boy receivedapresentmayhave the following representation,where x and

y are variables for boys bi and presents pi , respectively .

⟨x , {⟨b1, {⟨y , p1⟩}⟩, ⟨b2, {⟨y , p2⟩}⟩, ⟨b3, {⟨y , p3⟩}⟩, ...}⟩

The individuals can be either singular or plural. Since individuals are fol-

lowed by assignments associated with them, this structure captures de-

pendency relations between objects. In the case of the distributive inter-

pretation, eachparametrized individual is independentlyevaluatedagainst

predicates. Thus, singularpronounscanbe interpretedalongeachparametrized

individual, which produces an effect of interpretation sensitive to the de-

pendency relation. By introducing such a recursive notion of variable as-

signment, the theory keeps to interpret a sentence as a relation between

assignment functions.

van den Berg (1996a,b) proposed to encode dependency relations by

adopting information states for plurals in Dynamic Plural Logic. In this

approach, formulas are interpreted relative to information states, which

are sets of assignment functions, instead of to assignment functions as in

standard Dynamic Predicate Logic (Groenendijk and Stokhof, 1991) and

Krifka (1996)’s approach. A possible information state for every boy re-

ceived a presentmayhave the following structure, where x and y are again

variables for boys bi and presents pi , respectively.

{{⟨x , b1⟩, ⟨y , p1⟩}, {⟨x , b2⟩, ⟨y , p2⟩}, {⟨x , b3⟩, ⟨y , p3⟩}, ...}
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Whendistributionoverx is involved, predicatesareevaluatedagainst each

assignment of information states. The assignment of new values takes

place independently of each assignment function; thus, the variables in-

troducedmay be dependent on x . This is the source of dependency.

Themain intuition behind these analyses, and also behind the analy-

sis we will present here, is that the dependency relation is introduced by

distributive reading. In general, interpretation of pronouns can be sen-

sitive to linguistically introduced dependency relations between objects:

in Chapter 2, we have seen that this dependency relation is involved in

plural anaphora as well as quantificational subordination cases. The ap-

proaches mentioned above, however, account for only part of these phe-

nomena. InDRT, the copymechanism is triggeredby the resolutionof the

plural pronoun they. Thus, it needs additional stipulation or operation to

handlemore general cases includingquantificational subordination. The

samecanbesaidof approachesbyKrifka (1996) andvandenBerg (1996b).

van den Berg’s analysis can account for (4.42) where a subset relation al-

lows reference to a dependency relation.

(4.42) Every boy will receive a1 present. Every young boy will open it1.

(4.43) Every boy will receive a1 present. John will open it1.

In general, however, a semantic link between the restrictor of the univer-

sal quantifier and the subject of the subsequentdiscourse is not limited to

the subset relation, as in (4.43). Rather, the dependent interpretation in-

volves amore general kind of inference, of which a semantic link in terms

of subset relations is a special instance.

We will show that, in DTS, dependent types are readily provided as

information source of such dependency between objects and can con-

tribute to the context for pronoun resolution. In Chapter 2, we have ex-
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4.5. Plural anaphora

plained that cases such as (4.42) and (4.43) can be explained in terms of

Π-types in DTS setting. In Section 4.4, we have shown that the seman-

tic representation of every on is analogous toΠ-types, which captures the

dependency relation.

Below, we provide a lexical entry of plural pronoun they and show that

we can account for dependency interpretation in plural anaphora.

4.5.3 Plural pronoun

Letus take (4.40) asourworkingexample,which is repeatedhere as (4.44).

(4.44) Three1 students wrote a2 paper.

They1 sent it2 to L&P.

The first sentence that involves three is represented as follows.

(4.45)



n : Nat

n = 3

f : Mk →



x : entity

u : student(x)
y : entity

v : paper(y )

write(x , y )







injectionπ1(f )






Here, f is a function that returns tuples. Each of the tuples involves two

entities, one is a student and the other is a paper, that come together with

the proof that the student writes the paper. In other words, (4.45) repre-

sents the dependency between students and papers.

The pronoun they in the second sentence is represented by an under-

specified term, as other anaphoric expressions are. Singular pronouns
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such as it or he are represented in terms of @-terms annotated with type

entity, which ensures that the termwill be eventually replacedwith some

entity in the context. In contrast, the semantic representation of they is

defined as referring tomultiple entities in the context.

Therefore, we want to have a type as follows to annotate the @-term:

(4.46)



k : Nat
k ≥ 2

f : Mk → entity

injection (f )





Let us write this type PL for short. With PL, we can give a semantic rep-

resentation of they as follows.

(4.47) λv .
(
z : Mπ1(@i ::PL)

)
→ v ((π1π2π2(@i :: PL))z ) ,

Here, π1(@i :: PL) is a cardinal number and π1π2π2(@i :: PL) is a function

Mk → entity. The semantic representation of they analyzed as introduc-

ing distributive interpretation.12

By assigning CCG category S/(S\N P ) to they, it is straightforward to

obtain the following semantic representation for the second sentence of

(4.44). The Underspecified term@1 is introduced by they and @2 by it.

(4.48) (
z : Mπ1(@1::PL)

)
→ sendItToL&P((π1π2π2(@1 :: PL))z ,@2 :: entity)

After combining twosentencesby theprogressiveconjunction, anaphora

resolution takes place. From the proof term S1 of the first sentence (4.45)

, one can construct the following proof term for @1:

(4.49) ⟨3, p3≥2, λx .π1((π1π2π2S1)x), pinjection(λx .π1((π1π2π2(S1))x))⟩

12 Some may prefer to introduce distributivity separately from they. As the sentence

needs to receive distributive reading in any way, it is not harmless to assume this lexical

entry with respect to our current purpose.
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Here, p3≥2 is a proof that 3 is greater or equal to 2. The term π1π2π2S1 is a

function introducedby thefirst sentence,whohas typeM3 →
(
x : entity

)
×

A where A is the complex Σ-type. Recall that, given f : Mk →
(
x : entity

)
×

A and i : injectionπ1(f ), we can obtain λx .π1f (x) : Mk → entity and

i ′ : injection (λx .π1f (x)) (see Section 4.1.5). The third and fourth com-

ponent of (4.49) are constructed from π1π2π2(S1) in this way.

When @1 is resolved with the proof term shown in (4.49), one obtains

the following intermediate semantic representation.

(4.50)



S1 :



n : Nat

n = 3

f : Mk →



x : entity

u : student(x)
y : entity

v : paper(y )

write(x , y )







injectionπ1(f )






(z : M3) → sendItToL&P(π1((π1π2π2S1)z ),@2 :: entity)


Therefore, by resolving @2 with π1π2π2((π1π2π2S1)z ), one can obtain

the fully-specified representationof (4.44). After the anaphora resolution,

the first and second arguments of sendItToL&P both involve (π1π2π2S1)z .

This is a proof that a student x write a paper y . As the first and second

arguments of sendItToL&P refer to the entities corresponding to x and

y , respectively, the two arguments satisfywritewhich is witnessed by the

proof (π1π2π2S1)z . In this way, the semantic representation captures the

dependency relation between students and papers.

Note also that, as we have discussed in Section 4.4, the universally-

quantified entities in the second sentence are only those who weremen-
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tioned in the first sentence, whose cardinality is three. This is becausePL

is to look for not entities themselves but a function introducedby the pre-

ceding sentence. As the quantifier three introduces a function fromM3 to

the Σ-type, we are able to refer to only those three students as is intended.

The same analysis applies to the case where the quantifier of the first

sentence introduces bijectionπ1 . Since bijectionπ1 is defined as a con-

junction of injectionπ1 and surjectionπ1 , one can construct an object of

PL also from such sentences.

An advantage of the proposed DTS analysis is that dependent types

are readily provided as structures that can capture dependency between

objects: from the proof p of (x : A) × B , we can obtain π1p : A, which is

accompanied by the witness π2p : B(π1p); from the proof f of (x : A) → B ,

we can obtain the witness f (p) : B(p) for any p : A. Thus, by following the

standard dynamic conjunction operation and anaphora resolution pro-

cedure as proof search, those dependency relation encoded as proofs can

naturally contribute to anaphora resolution in general, including plural

anaphora and quantificational subordination.
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Chapter 5

Quantifier and Inference

In this chapter, wewill show that the semantic representations of quanti-

fiers defined in the previous chapter capture their inferential properties.

5.1 Entailment of quantified sentences

5.1.1 Inferential properties

As we have mentioned in the earlier chapter, quantifiers exhibit various

inference patterns in relation to the sets they associate with. Conserva-

tivity is a general property that all natural language quantifiers have. It

is model-theoretically formulated as follow (see, e.g., Peters and Wester-

ståhl, 2006).

QuantifierQ is conservative if and only if, for all universeM and

A,B ⊆ M ,QM (A,B) ⇔ QM (A,A ∩ B)

Monotonicity is anotherwell-knownphenomenon. Thereare four types

of monotonicity: right upward (MON↑), right downward (MON↓), left up-

109



QUANTIFIER AND INFERENCE

ward (↑MON), and left downward (↓MON). Here we repeat the definition

of right upwardmonotonicity.

QuantifierQ is Right upwardmonotone (MON↑) if and only if, for allM ,

A ⊆ M , and B ⊆ B′ ⊆ M ,QM (A,B) impliesQM (A,B′).

For our purpose, these properties need to be defined fromboth proof-

theoretic and dynamic perspective (Kanazawa, 1994). We first consider

conservativity and right upward/downward monotonicity. We can for-

mulate them as entailments in dependent type theory.

Definition14 (Conservativity). AquantifierQ is conservative ifboth judge-

ments

Γ, p : Q(A,B) ⊢ Q(A, (u : A) × B) true

Γ, p : Q(A, (u : A) × B) ⊢ Q(A,B) true

hold, where

Γ ⊢ A : entity → type

Γ, x : entity, u : A(x) ⊢ B : entity → type

Γ ⊢ Q(A,B) : type

Definition 15 (Right upward monotonicity). A quantifier Q is right up-

wardmonotone if the judgement

Γ, p : Q(A,B), q :
(
x : entity

)
→ (u : A(x)) → B(x) → B′(x) ⊢ Q(A,B′) true

holds, where

Γ ⊢ A : entity → type

Γ, x : entity, u : A(x) ⊢ B : entity → type

Γ, x : entity, u : A(x) ⊢ B′ : entity → type

Γ ⊢ Q(A,B) : type
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In our proof-theoretic setting, the meaning of a sentence is justified

by the entailment of its semantic representation. In this section, we will

provide a proof that these entailment relations hold for the semantic rep-

resentation of quantifiers given in the previous section.

Whenhuman judge entailment relationsbetween sentences, we focus

on the particular reading where the interpretation of anaphoric expres-

sions is already fixed. This means that anaphora resolution has already

taken place, in other words, the judgement does not contain any@-term.

Therefore, for some strong determiner Q , we can assume that there ex-

ists some proof in the context which can resolve the existential presup-

position of both the premise and the consequence. Also, as shown in the

above definitions, the scope B can contain the proof termu of the restric-

tor A as a free variable, ifB contained an@-term that has been resolved by

the proof of A. This is the dynamic setting which has been also explored

in the context of DPL (Kanazawa, 1994).

When the quantifierQ is eithermost, at least n, at most n, or exactly n,

our semantic representations of quantified sentences, which correspond

to ∃-reading, can be schematically written as follows.



k : Nat

r : R(k ,N)
f : Mk →


x : entity

u : A(x)

B(x)




bijectionπ1 f






(5.1)

We call this type Q∃. Here, N is a natural number and R is a binary

relation between natural numbers. They are determined with respect to
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type N R quantifiers monotonicity

Q∃
most ∗ ≥ most MON↑

Q∃
at Le ast n ≥ at least n ↑MON↑

Q∃
at M ost n ≤ at most n ↓MON↓

Q∃
e xact l y n = exactly n neither

Table 5.1: Relation between the quantifier types and inference. If the

number N changes depending on the restrictor’s cardinality, it is indi-

cated by ∗.

the choice of the quantifiers. Table 5.1 summarize the relations between

the quantifiers and the combinations of R andN used in their semantic

representations. All of them are conservative, but they exhibit a different

pattern of right monotonicity: when R is the ≥-relation, the quantifiers

aremonotone increasing; if it is the ≤-relation, the quantifiers aremono-

tone decreasing. The choice of the specific number N is, for instance, 3

for at least three. For the quantifiermost,N is a natural number that cor-

responds to more than half of the restrictor’s cardinality. As we have ex-

plained in the previous chapter, the number is obtained through the pre-

supposition resolution.

5.2 Conservativity

The proof of conservativity is straightforward, as the following two are

mutually deducible for any A,B : type regardless of the choice of the par-

ticular k .
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
f : Mk →


x : entity

u : A(x)

B(x)




bijectionπ1(f )


⊣⊢


g : Mk →



x : entity
v : A(x)

u : A(x)

B(x)





bijectionπ1(g )


Thus, we can always construct a proof of Q(A, (u : A) × B) from a proof of

Q(A,B), and vice versa.

We will prove only the case of typeQ∃. The theorem on their conser-

vativity is formulated as below.

Theorem 2: Conservativity (TypeQ∃ quantifiers)



k : Nat

r : R(k ,N)
f : Mk →


x : entity

u : A(x)

B(x)




bijectionπ1(f )






true ⊣⊢



k : Nat

r : R(k ,N)
g : Mk →



x : entity
v : A(x)

u : A(x)

B(x)





bijectionπ1(g )







true

holds under the context Γ, where

Γ ⊢ A : entity → type

Γ, x : entity,u : A(x) ⊢ B : entity → type

v < f v (A) ∪ f v (B)

Proof. The proof of the left-to-right direction is given as follows. When

the type on the left side is inhabited, there exists a proof of this type. We

write itM .

FromM , we canextract its part by ΣE . Wewrite the letters shownbelow
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in the left hand side for the proof terms in the right hand side.

k ≡ π1M : Nat (5.2)

r ≡ π1π2M : R(k ,N) (5.3)

f ≡ π1π2π2M : Mk →
(
x : entity

)
× (u : A(x)) × B(x) (5.4)

b f ≡ π2π2π2M : bijectionπ1(f ) (5.5)

Let us begin with constructing the function g . Assume y : Mk . By ap-

plying ΠE to y and f , we get

f (y ) :
(
x : entity

)
× (u : A(x)) × B(x) (5.6)

By applying ΣE several times, we get each of the following terms.

π1f (y ) : entity (5.7)

π2f (y ) : { (u : A(x)) × B(x) }[π1 f (y )/x] (5.8)

π1π2f (y ) : { A(x) }[π1 f (y )/x] (5.9)

Here, thenotation { A(x) }[a/x]means thateveryoccurrenceof the freevari-

able x in A is substituted with a .

By ΣI with (5.9) and (5.8), we get

⟨π1π2f (y ), π2f (y )⟩ :



v : A(x)

(u : A(x)) × B(x)


[π1 f (y )/x]

(5.10)

By ΣI together with (5.7), we obtain

⟨π1f (y ), ⟨π1π2f (y ), π2f (y )⟩⟩ :


x : entity

v : A(x)

(u : A(x)) × B(x)



, (5.11)

fromwhich, we get the following by discharging the assumption.

λy .⟨π1f (y ), ⟨π1π2f (y ), π2f (y )⟩⟩ : Mk →


x : entity

v : A(x)

(u : A(x)) × B(x)




(5.12)
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We write this function g .

Next, we prove that injectionπ1(g ) and surjectionπ1(g ) hold.

Given y : Mk , y ′ : Mk , if π1g (y ) = π1g (y ′) holds, π1f (y ) = π1f (y ′) holds

because λy .π1g (y ) ≡ λy .π1f (y )holds according to (5.12). As injectionπ1(f )

is true by (5.5), y = y ′ holds. Thus, we can conclude that injectionπ1(g )

holds.

Toprove surjectionπ1(g ), assume z :
(
x : entity

)
×(v : A(x))×(u : A(x))×

B(x). wewill prove that


y : Mk

π1z = π1g (y )

 true, namely,


y : Mk

π1z = π1f (y )

 true
holds.

From z , we obtain:

π1z : entity (5.13)

π2z : { (v : A(x)) × (u : A(x)) × B(x) }[π1z/x] (5.14)

π2π2z : { (u : A(x)) × B(x) }[π1z/x][π1π2z/v ] (5.15)

Asv < f v (A)∪f v (B), { (u : A(x)) × B(x) }[π1z/x][π1π2z/v ] ≡ { (u : A(x)) × B(x) }[π1z/x].

Thus, by applying ΣI with (5.13), we obtain

⟨π1z , π2π2z⟩ :


x : entity

(u : A(x)) × B(x)

 (5.16)

Fromb f of (5.5),weget π2b f :
©­«z ′ :


x : entity

(u : A(x)) × B(x)

ª®¬ →


y : Mk

π1z ′ = π1f (y )

 .
Thus, byapplyingΠE with π2b f and(5.16),weobtainourgoal


y : Mk

π1z = π1f (y )

 .
We can prove the right-to-left direction in an analogous way.

End of proof.

Note that the proof above is independent of the types such as entity

andMk .
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In the proof above, we are careful to handle the variables when prov-

ing (v : A(x)) × (u : A(x)) ×B(x) from (u : A(x)) ×B(x) and vice versa. This is

because there may be a dependency between A and B , as anaphora reso-

lution has already taken place. Specifically, the proof above can account

for the conservativity of a sentence involving anaphora.

(5.1) Most farmers who own a1 donkey beat it1.

⇔Most farmerswhoownadonkey are farmerswhoowna1 don-

key and beat it1.

It is also straightforward to prove a theoremwhere B depends on v not on

u , in other words, only v occurs free in B . Such a case corresponds to the

following entailment.

(5.2) Most farmers who own a1 donkey beat it1.

⇔Most farmerswhoowna1 donkey are farmerswhoownadon-

key and beat it1.

5.3 Proofs of right monotonicity

5.3.1 Overview of the proofs

The proof of right monotonicity is more tricky. Let us first consider right

upwardmonotonicity.

Our intuitionbehind the rightupwardmonotonicityofmost is that the

originally established relationship between A and B is preserved even if B

is enlarged to B′. In other words, we are interested in only the preserva-

tion of the relation between those numbers. As we adopt bijection in the

semantic representation, however, we need to construct a new bijection

that extends B to B′, which gives the corresponding specific numbers.
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f : Mk →


x : entity

A


bijectionπ1(f )

g : Mm →


x : entity

u : A

B′




bijectionπ1(g ) , m ≤ k

⟨1⟩ w� Theorem 3 Theorem 3
~w ⟨6⟩

f ′ : Mk →
{

x : entity | A
}

bijection (f ′)
g ′ : Mm →

x : entity |


u : A

B′




bijection (g ′) , m ≤ k

⟨2⟩w� Theorem 4 Theorem 4
~w ⟨5⟩

f ′′ : Mk →


x : entity |


A

u : A

B′



⊎


A

¬


u : A

B′





bijection (f ′′)

g ′′ : Mm →


x : entity |


A

u : A

B′





bijection (g ′′),m ≤ k

⟨3⟩w� Theorem 5 Theorem 10
~w ⟨4⟩

f ∗ : Mk →


x : entity |


A

u : A

B′




⊎


x : entity |


A

¬


u : A

B′





bijection (f ∗)

Figure 5.1: Diagram showing the proof steps of Theorem 11.

Therefore, we will carry out the proof in two steps. In the first step, we

assume the finiteness of the restrictor and show that its part,
(
x : entity

)
×

(u : A(x))×B′(x), is alsofinitewith respect to entity. This proofwill give the

cardinal number of
(
x : entity

)
×(u : A)×B′. In the next step, wewill prove

that the number satisfies the expected large/small relation with respect

to the restrictor.

The proof process for the first step is illustrated in Figure 5.1.

The step ⟨1⟩, Theorem 3, concerns the mutual conversion between

bijectionπ1 andbijection. For this theorem,we introducesubset types (Nord-

ström et al., 1990; Jacobs, 1998). We use the subset type for the transition
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Formation rule

A : type

x : A i
....

B(x) : type
{x : A | B(x)} : type {|}F , i

Introduction rule
M : A N : B[M /x]
iB(M ) : {x : A | B(x)} {|}I

Elimination rule (standard)

M : {x : A | B(x)}

x : A i y : B(x) i....
N : C (x)

N [oB(M )/x] {|}E , i where y < f v (N ) ∪ f v (C )

Elimination rules we adopt

M : {x : A | B(x)}
oB(M ) : A

{|}E
M : {x : A | B(x)}
?(M ) : B[oB(M )/x] {|}E?

Computation rules

iB(oB(M )) →β M oB(iB(M )) →β M

Figure 5.2: Inference rules of subset type.

from the Σ-type to the type consisting only of entities. Figure 5.2 shows

the inference rules. The introduction rule looks similar to that of the Σ-

type. Unlike the Σ-type, the subset type {x : A | B(x)} consists only of A’s

elements satisfying B , where B is often called specification. A proof of the

specification is used only to confirm themembership of the subset and is

forgottenafterward. Thisproperty is reflected in the standardelimination

rule. According to the standard elimination rule, when z is an element

of {x : A | B(x)}, we cannot use proof of B(z ), even though it is obvious to

118



5.3. Proofs of right monotonicity

hold.

Therefore, we use the abnormal elimination rule here. The elimina-

tion rule on the left is derived from the standardone. The elimination rule

on the right is adopted for using the proof of B(z ). As we can not know the

precise proof term, we express it in terms of a constructor. We will cru-

cially use this rule in Theorem 3 and Theorem 5.1

Theorem 4 concerns the inference on the specification of subset type.

Theorem 10 states that if the disjoint union of types is finite, then a type

is also finite. In all the proof steps shown in Figure 5.1, we assume that for

arbitrary P : entity → type, P is a decidable predicate; that is, for every

x : entity, it is either P (x) or ¬P (x).

Wewill give the proofs of these theorems in the following sections and

then prove that the quantifiers we have defined satisfy the right mono-

tonicity property as intended in Section 5.4.

5.3.2 Theorem: convertibility of bijection and bijectionπ1

Theorem 3

(1) For any P : entity → type and k : Nat,

Γ, f : Mk →


x : entity

P (x)

 , b f : bijectionπ1(f )

⊢


f ′ : Mk →
{

x : entity | P (x)
}

bijection (f ′)

 true
1 This rule may disrupt the harmony of the system, as an introduction immediately

followed by an elimination cannot give exactly the same proof of B(z ), whichmeans the

system does not satisfy the normalization property. A detailed investigation of the im-

pact on the system is left for future work.
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(2) For any P : entity → type and k : Nat,

Γ, f ′ : Mk →
{

x : entity | P (x)
}
, b′

f : bijection (f ′)

⊢


f : Mk →


x : entity

P (x)


bijectionπ1(f )


true

Proof. (1) The function f ′ : Mk →
{

x : entity | P (x)
}
is constructed as

follows.

f : Mk →


x : entity

P (x)

 y : Mk
1

f (y ) :


x : entity

P (x)


ΠE

π1f (y ) : entity ΣE

f : Mk →


x : entity

P (x)

 y : Mk
1

f (y ) :


x : entity

P (x)


ΠE

π2f (y ) : P (π1f (y )) ΣE

iP (π1f (y )) :
{

x : entity | P (x)
} {|}I

λy .iP (π1f (y )) : Mk →
{

x : entity | P (x)
} ΠI , 1

Next, we prove that it is an injection. Assume y : Mk , y ′ : Mk , and

u : iP (π1f (y )) ={x :entity|P (x)} iP (π1f (y ′)).

We have

reflentity(oP (iP (π1f (y )))) : oP (iP (π1f (y ))) =entity oP (iP (π1f (y ))). (5.17)

By substitution with u , we get2

p15(reflentity(oP (iP (π1f (y ))))) : oP (iP (π1f (y ))) =entity oP (iP (π1f (y ′))), (5.18)

which is computed to

p15(reflentity(oP (iP (π1f (y ))))) : π1f (y ) =entity π1f (y ′) (5.19)

2 By the bold face pi with subscripted index, we indicate that we use the theorems or

derived rules presented in the appendix.
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As f satisfies injectionπ1(f ), we conclude that y = y ′ holds.

Next, we will prove that the function is a surjection. We will prove
y : Mk

z ={x :entity|P (x)} iP (π1f (y ))

 by assuming z :
{

x : entity | P (x)
}
. From z ,

we obtain oP (z) : entity and ?(z) : P (oP (z)) by subset elimination. Hence,

by ΣI , we obtain

⟨oP (z), ?(z)⟩ :


x : entity

P (x)

 (5.20)

As f satisfies surjectionπ1(f ), we have

π2b f :
©­«z :


x : entity

P (x)

ª®¬ →


y : Mk

π1z =entity π1f (y )

 . (5.21)

By applying ΠE to (5.20) and (5.21), we get

(π2b f )(⟨oP (z), ?(z)⟩) :


y : Mk

oP (z) =entity π1f (y )

 . (5.22)

We abbreviate the term obtained in (5.22) tow . By applying ΣE to (5.22),

we obtain

π1(w ) : Mk (5.23)

π2(w ) : oP (z) =entity π1f (π1(w )). (5.24)

Now, we have

refl{x :entity|P (x)}(iP (oP (z))) : iP (oP (z)) ={x :entity|P (x)} iP (oP (z)) (5.25)

By the substitution with (5.24), we get

p15(refl{x :entity|P (x)}(iP (oP (z))))

: iP (oP (z)) ={x :entity|P (x)} iP (π1f (π1(w )))
, (5.26)
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which is computed to

p15(refl{x :entity|P (x)}(iP (oP (z))))

: z ={x :entity|P (x)} iP (π1f (π1(w )))
, (5.27)

Thus, by applying ΣI to (5.23) and (5.27), wefinally get the followingproof.

⟨π1(w ),p15(refl{x :entity|P (x)}(iP (oP (z))))⟩ :


y : Mk

z ={x :entity|P (x)} iP (π1f (y ))


(2) The proof for the other direction is analogous to (1). The function

f : Mk →


x : entity

P (x)

 is constructed as follows.
f ′ : Mk →

{
x : entity | P (x)

}
y : Mk

1

f ′(y ) :
{

x : entity | P (x)
} ΠE

oP (f ′(y )) : entity {|}E

f ′ : Mk →
{

x : entity | P (x)
}

y : Mk
1

f ′(y ) :
{

x : entity | P (x)
} ΠE

?(f ′(y )) : P (oP (f ′(y ))) {|}E?

⟨oP (f ′(y )), ?(f ′(y ))⟩ :


x : entity

P (x)


ΣI

λy .⟨oP (f ′(y )), ?(f ′(y ))⟩ : Mk →


x : entity

P (x)


ΠI , 1

We show that injectionπ1(f ) holds. Assume y : Mk , y ′ : Mk , and u :

oP (f ′(y )) =entity oP (f ′(y ′)).

We have

refl{x :entity|P (x)}(iP (oP (f ′(y ))))

: iP (oP (f ′(y ))) ={x :entity|P (x)} iP (oP (f ′(y )))
(5.28)

By substitution with u , we get

p15(refl{x :entity|P (x)}(iP (oP (f ′(y )))))

: iP (oP (f ′(y ))) ={x :entity|P (x)} iP (oP (f ′(y ′))),
(5.29)

which is computed to

p15(refl{x :entity|P (x)}(iP (oP (f ′(y ))))) : f ′(y ) ={x :entity|P (x)} f ′(y ′). (5.30)
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As f ′ is an injection, we conclude that y = y ′ holds.

Next, we show that surjectionπ1(f ) holds. We prove


y : Mk

π1z = oP (f ′(y ))


by assuming z :


x : entity

P (x)

 .
From the assumption, we get π1z : entity and π2z : P (π1z ) by ΣE . Thus,

by subset introduction, we obtain

iP (π1z) :
{

x : entity | P (x)
}
. (5.31)

As surjection (f ′) holds, we have

π2b f :
(
z :

{
x : entity | P (x)

})
→


y : Mk

z = f ′(y )

 . (5.32)

By applying ΠE to (5.31) and (5.32), we get

(π2b f )(iP (π1z)) :


y : Mk

iP (π1z) = f ′(y )

 (5.33)

We abbreviate the obtained proof term tow ′. By applying ΣE , we obtain

π1w ′ : Mk (5.34)

π2w ′ : iP (π1z) = f ′(π1w ′) (5.35)

Now, we have

reflentity(oP (iP (π1z))) : oP (iP (π1z)) =entity oP (iP (π1z)) (5.36)

Thus, by substitution with (5.35), we get

p15(reflentity(oP (iP (π1z)))) : oP (iP (π1z)) =entity oP (f ′(π1w ′)), (5.37)

which is computed to

p15(reflentity(oP (iP (π1z)))) : π1z =entity oP (f ′(π1w ′)). (5.38)
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Therefore, by applying ΣI to (5.34) and (5.38), we finally get the follow-

ing proof.

⟨π1w ′,p15(reflentity(oP (iP (π1z))))⟩ :


y : Mk

π1z = oP (f ′(y ))


End of proof.

5.3.3 Theorem: subset typeswithequivalent specification

Theorem 4

For any P, Q : entity → type and k : Nat,

Γ, f : Mk →
{

x : entity | P (x)
}
, b f : bijection (f ) ,

t :
(
x : entity

)
→ (P (x) ↔ Q (x)) ⊢


g : Mk →

{
x : entity | Q (x)

}
bijection (g )

 true

Proof. Webeginwithconstructinga functionof Mk →
{

x : entity | Q (x)
}
.

Let t1 be of type
(
x : entity

)
→ P (x) → Q (x) and t2 be of type

(
x : entity

)
→

Q (x) → P (x). We can construct the function as follows.

....
oP (f (y )) : entity

f : Mk →
{

x : entity | P (x)
}

y : Mk
1

f (y ) :
{

x : entity | P (x)
} ΠE

oP (f (y )) : entity
{|}E

t1 :
(
x : entity

)
→ P (x) → Q (x)

t1(oP (f (y ))) : P (oP (f (y ))) → Q (oP (f (y )))
ΠE

....
f (y ) :

{
x : entity | P (x)

}
?(f (y )) : P (oP (f (y )))

{|}E?

(t1(oP (f (y )))) (?(f (y ))) : Q (oP (f (y )))
ΠE

iQ (oP (f (y ))) :
{

x : entity | Q (x)
} {|}I

λy .iQ (oP (f (y ))) : Mk →
{

x : entity | Q (x)
} ΠI , 1

We next prove that λy .iQ (oP (f (y ))) is a bijection.

To prove injection
(
λy .iQ (oP (f (y )))

)
, we assume y : Mk , y ′ : Mk , and

u : iQ (oP (f (y ))) ={x :entity|Q (x)} iQ (oP (f (y ′))) and show that y =Mk y ′ holds.

From f : Mk →
{

x : entity | P (x)
}
and the assumptions y and y ′, we

124



5.3. Proofs of right monotonicity

have:

f (y ) :
{

x : entity | P (x)
}

f (y ′) :
{

x : entity | P (x)
}

With f (y ), f (y ′), and u : iQ (oP (f (y ))) ={x :entity|Q (x)} iQ (oP (f (y ′))), it fol-

lows that f (y ) ={x :entity|P (x)} f (y ′) holds by Theorem 28 (see page 210).

Therefore, as f is an injection, we conclude that y = y ′.

To prove surjection
(
λy .iQ (oP (f (y )))

)
, we assume z :

{
x : entity | Q (x)

}
and construct a proof of


y : Mk

z ={x :entity|Q (x)} iQ (oP (f (y )))

 .
By the derivation,

z ′ :
{

x : entity | Q (x)
}

oQ (z ′) : entity {|}E

t2 :(
x : entity

)
→ Q (x) → P (x)

oQ (z ′) : entity

t2(oQ (z ′))
: Q (oQ (z ′)) → P (oQ (z ′))

ΠE z ′ :
{

x : entity | Q (x)
}

?(z ′) : Q (oQ (z ′)) {|}E?

(
t2(oQ (z ′))

)
(?(z ′)) : P (oQ (z ′)) ΠE

iP (oQ (z ′))f (y ) :
{

x : entity | P (x)
}

{|}I

b f : bijection (f )
π2(b f ) : surjection (f ) ΣE

π2(b f ) :(
z :

{
x : entity | P (x)

})
→


y : Mk

z ={x :entity|P (x)} f (y )



def

(π2b f )(iP (oQ (z ′))f (y )) :


y : Mk

iP (oQ (z ′)) ={x :entity|P (x)} f (y )


ΠE

,

we obtain

(π2b f )(iP (oQ (z ′))f (y )) :


y : Mk

iP (oQ (z ′)) ={x :entity|P (x)} f (y )

 . (5.39)

We write thisw . By applying ΣE , we get

π1w : Mk (5.40)

π2w : iP (oQ (z ′)) ={x :entity|P (x)} f (π1w ) (5.41)
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Now, the following holds.

refl : iQ (oP (iP (oQ (z ′)))) ={x :entity|Q (x)} iQ (oP (iP (oQ (z ′)))) (5.42)

With (5.41), we get the following formula by substitution.

refl : iQ (oP (iP (oQ (z ′)))) ={x :entity|Q (x)} iQ (oP (f (π1w ))) (5.43)

As iQ (oP (iP (oQ (z ′)))) ≡β z ′, we get

refl : z ′ ={x :entity|Q (x)} iQ (oP (f (π1w ))). (5.44)

Therefore, byapplyingΣI with (5.40)and (5.44),wecanconstruct theproof:

⟨π1(w ), refl⟩ :


y : Mk

z ={x :entity|Q (x)} iQ (oP (f (y )))

 (5.45)

End of proof.

5.3.4 Theorem: subset types with disjoint specification

Theorem 5

For any P, Q : entity → type and k : Nat,

Γ, t :
(
x : entity

)
→ P (x) → Q (x) → ⊥,

f : Mk →
{

x : entity | P (x) ⊎Q (x)
}
, b f : bijection (f )

⊢


f ∗ : Mk →
{

x : entity | P (x)
}
⊎
{

x : entity | Q (x)
}

bijection (f ∗)

 true

Proof. Wefirst constructa function thathas typeMk →
{

x : entity | P (x)
}
⊎{

x : entity | Q (x)
}
.
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Assume y : Mk . With f , we obtain f (y ) :
{

x : entity | P (x) ⊎Q (x)
}
, from

which we get the following proofs by the subset elimination rules (we ab-

breviate λx .P (x) ⊎Q (x) as PQ .

oPQ (f (y )) : entity (5.46)

?(f (y )) : P (oPQ (f (y ))) ⊎Q (oPQ (f (y ))) (5.47)

By (5.47), proof can be divided into two cases, (i) and (ii):

(i) Assume z : P (oPQ (f (y ))). We get the following by {|}I together with

(5.46).

iP (oPQ (f (y ))) :
{

x : entity | P (x)
}

(5.48)

By ⊎I ,

inl(iP (oPQ (f (y )))) :
{

x : entity | P (x)
}
⊎
{

x : entity | Q (x)
}

(5.49)

(ii) Assume z : Q (oPQ (f (y ))). We get the following by {|}I together with

(5.46).

iQ (oPQ (f (y ))) :
{

x : entity | Q (x)
}

(5.50)

By ⊎I ,

inr(iQ (oPQ (f (y )))) :
{

x : entity | P (x)
}
⊎
{

x : entity | Q (x)
}

(5.51)

From (i) and (ii), by ⊎E , we obtain

case ?(f (y )) of (λz .inl(iP (oPQ (f (y )))), λz .inr(iQ (oPQ (f (y )))))

:
{

x : entity | P (x)
}
⊎
{

x : entity | Q (x)
}

(5.52)

Thus, by applying ΠI to y : Mk , we obtain the function

λy .case ?(f (y )) of (λz .inl(iP (oPQ (f (y )))), λz .inr(iQ (oPQ (f (y )))))

: Mk →
{

x : entity | P (x)
}
⊎
{

x : entity | Q (x)
}
. (5.53)
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We abbreviate the function as λy .case ?(f (y )) of (λz .L(y ), λz .R(y )).

Next, we will prove that (5.53) is an injection. We assume y : Mk and

y ′ : Mk , and show that the following holds.

case ?(f (y )) of (λz .L(y ), λz .R(y )) = case ?(f (y ′)) of (λz .L(y ′), λz .R(y ′))

→ y =Mk y ′

(5.54)

By ?(f (y )) and ?(f (y ′)), which have both the type
{

x : entity | P (x)
}
⊎{

x : entity | Q (x)
}
, the proof is divided into four cases.

1. case inl(t ) of (λz .L(y ), λz .R(y )) = case inl(t ′) of (λz .L(y ′), λz .R(y ′))

→ y =Mk y ′

2. case inl(t ) of (λz .L(y ), λz .R(y )) = case inr(t ′) of (λz .L(y ′), λz .R(y ′))

→ y =Mk y ′

3. case inr(t ) of (λz .L(y ), λz .R(y )) = case inl(t ′) of (λz .L(y ′), λz .R(y ′))

→ y =Mk y ′

4. case inr(t ) of (λz .L(y ), λz .R(y )) = case inr(t ′) of (λz .L(y ′), λz .R(y ′))

→ y =Mk y ′

In cases 2 and3, the equation in the antecedent clause leads to contra-

diction as their canonical form is different (see Theorem 25 on page 204).

Thus, we can apply ⊥E to derive the consequence.

In case 1,

case inl(t ) of (λz .L(y ), λz .R(y )) = case inl(t ′) of (λz .L(y ′), λz .R(y ′))

≡ L(y ) = L(y ′)

≡ inl(iP (oPQ (f (y )))) = inl(iP (oPQ (f (y ′)))) (5.55)
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As λx .inl(x) is an injection (see Lemma 20 on page 200),

iP (oPQ (f (y ))) = iP (oPQ (f (y ′))) (5.56)

By Theorem 28, we can eliminate i and o, so as to get f (y ) = f (y ′). As f is

an injection, we can conclude that y = y ′ holds.

The proof of the last case, 4, is similar to case 1.

case inr(t ) of (λz .L(y ), λz .R(y )) = case inr(t ′) of (λz .L(y ′), λz .R(y ′))

≡ R(y ) = R(y ′)

≡ inr(iQ (oPQ (f (y )))) = inr(iQ (oPQ (f (y ′)))) (5.57)

Again, because λx .inr(x) is an injection (Lemma 21) andwe can eliminate

i and o (Theorem 28), we obtain f (y ) = f (y ′). Thus, y = y ′.

By combining cases 1 to 4 above and applying⊎E several times, we can

conclude that (5.54) holds.

Lastly, we will prove that (5.53) is also a surjection. We assume z :{
x : entity | P (x)

}
⊎
{

x : entity | Q (x)
}
andprove


y : Mk

z = case ?(f (y )) of (λz .L(y ), λz .R(y ))

 .
By z , the proof can be divided into two cases, either it is inl(z ′) or inr(z ′)

for some z ′.

(I) Assume z ′ :
{

x : entity | P (x)
}
. We will give a proof term of

y : Mk

inl(z ′) = case ?(f (y )) of (λz .L(y ), λz .R(y ))

 . (5.58)

First, by the following derivation,

b f : bijection (f )

(π2b f ) :
(
z :

{
x : entity | P (x) ⊎Q (x)

})
→


y : Mk

z = f (y )


ΣE

z ′ :
{

x : entity | P (x)
}

?(z ′) : P (oP (z ′)) {|}E?

inl(?(z ′)) : P (oP (z ′)) ⊎Q (oP (z ′)) ⊎I
z ′ :

{
x : entity | P (x)

}
oP (z ′) : entity {|}E

iPQ (oP (z ′)) :
{

x : entity | P (x) ⊎Q (x)
} {|}I

(π2b f )(iPQ (oP (z ′))) :


y : Mk

iPQ (oP (z ′)) ={x :entity|P (x)⊎Q (x)} f (y )


ΠE

,
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we construct

(π2b f )(iPQ (oP (z ′))) :


y : Mk

iPQ (oP (z ′)) ={x :entity|P (x)⊎Q (x)} f (y )

 . (5.59)

We abbreviate (π2b f )(iPQ (oP (z ′))) asw . From (5.59), we obtain

π1w : Mk (5.60)

π2w : iPQ (oP (z ′)) ={x :entity|P (x)⊎Q (x)} f (π1w ) (5.61)

Now, let us prove

?(f (π1w )) = ?(f (π1w ))

→ inl(z ′) = case ?(f (π1w )) of (λz .L(π1w ), λz .R(π1w )).
(5.62)

Once it isproved, byapplyingΠE with (5.62)and refl : ?(f (π1w )) = ?(f (π1w )),

we obtain

inl(z ′) = case ?(f (π1w )) of (λz .L(π1w ), λz .R(π1w )), (5.63)

fromwhich, byapplyingΣI togetherwith (5.60),weobtainourgoal, (5.58).

The proof of (5.62) is divided into two cases, with respect to ?(f (π1w )) :

P (oPQ (iPQ (oP (z ′)))) ⊎Q (oPQ (iPQ (oP (z ′)))).

(I-i) Assume v : P (oPQ (iPQ (oP (z ′)))). We will prove
?(f (π1w )) = inl(v )

→ inl(z ′) = case ?(f (π1w )) of (λz .L(π1w ), λz .R(π1w )).

By assuming ?(f (π1w )) = inl(v ), the following equation holds. Here,
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(5.68) is obtained by the substitution with (5.61).

case ?(f (π1w )) of (λz .L(π1w ), λz .R(π1w )) (5.64)

≡ case inl(v ) of (λz .L(π1w ), λz .R(π1w )) (5.65)

≡ L(π1w ) (5.66)

≡ inl(iP (oPQ (f (π1w )))) (5.67)

= inl(iP (oPQ (iPQ (op(z ′))))) (5.68)

≡ inl(z ′) (5.69)

(I-ii) Assume v : Q (oPQ (iPQ (oP (z ′)))). We will prove

?(f (π1w )) = inr(v )

→ inl(z ′) = case ?(f (π1w )) of (λz .L(π1w ), λz .R(π1w )).
(5.70)

As Q (oPQ (iPQ (oP (z ′)))) ≡ Q (oP (z ′)), we have v : Q (oP (z ′)). On the

other hand, as we have assumed z ′ :
{

x : entity | P (x)
}
, we also have

?(z ′)P (oP (z ′)). Thus, from the assumption t :
(
x : entity

)
→ P (x) →

Q (x) → ⊥, we obtain a contradiction. Therefore, by ⊥E , we can de-

duce (5.70).

By combining (I-i) and (I-ii), (5.62) is proved.

(II) The proof of the other side can be given analogously by assuming

z ′ :
{

x : entity | Q (x)
}
.

From (I) and (II) above, by ⊎E , we obtain a proof of
y : Mk

z = case ?(f (y )) of (λz .L(y ), λz .R(y ))

 .
Therefore, we conclude that a proof exists for(

z :
{

x : entity | P (x)
}
⊎
{

x : entity | Q (x)
})

→


y : Mk

z = case ?(f (y )) of (λz .L(y ), λz .R(y ))

 .
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End of proof.

5.3.5 Lemma: segmentation of a type

We are to prove the theorem that says that if some type is finite, then its

part is also finite.

Theorem

Given A : type, B : type, and k : Nat, if there exists a function f :

Mk → A ⊎ B such that bijection (f ) is true, there exists a function

g : Mm → A for somem ≤ k such that bijection (g ) is true.

Here, g is a function whose co-domain is A, which is a part of the co-

domain of f . We want to construct such a function from f . However, it is

impossible unless we know, for each of the elements inMk , either it goes

toA orB . Therefore, herewe consider an additional function,h. The func-

tion h is designed as follows: for each element in Mk , if f maps it to an

element of A, h maps it toMm ; otherwise, h maps it toMn (Lemma 8).

Toprove this inductively, weuseMk ′, wherek ′ ≤ k . There always exists

an injection fromMk ′ toMk that can connect all the element inMk ′ with

the first k ′ elements inMk . We formulate this as Lemma 6.3

3 Hereafter, we use the abbreaviated notation (x , x ′ : A) → B for (x : A) → (x ′ : A) → B

if there is no confusion.
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Preparation

Lemma 6: Γ ⊢ (k ′ : Nat) → (n : Nat) →


f : Mk ′ → Mk ′+n

injection (f )

 true

Proof. Given k ′ : Nat, we prove the consequence by induction on n :

Nat.

(1) Firstwegive theproof for thecasen = 0. Wecanprove theexistence

of a function ofMk ′ → Mk ′ by the identity function:

idMk ′ : Mk ′ → Mk ′.

Now, for any x , y : Mk ′, if idMk ′ (x) = idMk ′ (y ) then x = y . Hence, we have

the following proof, which we write IidMk ′
.

IidMk ′
: injection

(
idMk ′

)
Thus, by ΣI , we get

(idMk ′ , IidMk ′
) :


f : Mk ′ → Mk ′+0

injection (f )

 . (5.71)

(2)Assumethatwehave theproofu : (f ′ : Mk ′ → Mk ′+n ′)×injection (f ′)

for n′ : Nat. We will give the proof for suc(n′). For any x : Mk ′,

(π1u)(x) : Mk ′+n ′.

By ⊎IL ,

inl((π1u)(x)) : Mk ′+n ′ ⊎T .

Hence, by ΠI ,

λx .inl((π1u)(x)) : Mk ′ → Mk ′+n ′ ⊎T .
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AsMk ′+n ′ ⊎T ≡ Msuc(k ′+n ′) ≡ Mk ′+suc(n ′),

λx .inl((π1u)(x)) : Mk ′ → Mk ′+suc(n ′). (5.72)

From IH, we have π2u : injection (π1u). Also, injection (λx .inl(x)) holds

for λx .inl(x) (see Lemma 20 on page 200). As the composition of two in-

jections is also an injection (see Lemma 22 on page 201), we can obtain a

proof of injection (λx .inl(π1u(x))). We write it Iλx .inl((π1u)(x)) as below.

Iλx .inl((π1u)(x)) : injection (λx .inl((π1u)(x))) (5.73)

By applying ΣI to (5.72) and (5.73),

(λx .inl((π1u)(x)), Iλx .inl((π1u)(x))) :


f ′′ : Mk ′ → Mk ′+suc(n ′)

injection (f ′′)

 .
Hence, by ΠI , we obtain

λn′.λu .(λx .inl((π1u)(x)), Iλx .inl((π1u)(x))) :

(n′ : Nat) →


f ′ : Mk ′ → Mk ′+n ′

injection (f ′)

 →


f ′′ : Mk ′ → Mk ′+suc(n ′)

injection (f ′′)

 .
(5.74)

Combining (1) with (2), that is, by applying NatE to (5.71) and (5.74),

we get

natrec(n, (idMk ′ , IidMk ′
), λn′.λu .(λx .inl((πu)(x)), Iλx .inl((πu)(x)))) :


f : Mk ′ → Mk ′+n

injection (f )


for any n and the given k ′. Therefore,

λk ′.λn.natrec(n, (idMk ′ , IidMk ′
), λn′.λu .(λx .inl((πu)(x)), Iλx .inl((πu)(x)))) :


f : Mk ′ → Mk ′+n

injection (f )

 .
End of proof.

The following judgement immediately follows from Lemma 6.4

4Whenweapply the same inference rules successively in anobviousway,wewill omit
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Corollary 7:

Γ ⊢ (k ,k ′ : Nat) → (u : k ′ ≤ k ) →


i : Mk ′ → Mk

injection (i )

 true

Proof. The followingderivationshows theconstructionof theproof,where

p stands for the proof of Lemma 6.

k : Nat 1

k ′ : Nat 1

u :


n : Nat

k = k ′ + n


1

π1(u) : Nat
ΣEL

p :
(k ′ : Nat)

→ (n : Nat) →


i : Mk ′ → Mk ′+n

injection (i )



(Lm6)

p(k ′)(π1(u)) :


i : Mk ′ → Mk ′+π1(u)

injection (i )


ΠE ∗ u :


n : Nat

k = k ′ + n


1

π2(u) : k = k ′ + π1(u)
ΣER

p(k ′)(π1(u)) :


i : Mk ′ → Mk

injection (i )


conv

λk .λk ′.λu .p(k ′)(π1(u)) : (k ,k ′ : Nat) → (u : k ′ ≤ k ) →


i : Mk ′ → Mk

injection (i )


ΠI , 1∗

End of proof.

We have proved that we can construct an injection from Mk ′ to Mk

whenever k ′ ≤ k holds. For simplicity of notation, we let ik ′≤k stand for

such an injection of typeMk ′ → Mk .

Proof of Lemma 8

We are to construct a function h : Mk ′ → Mk that we mentioned in the

beginning of this section. The function h maps every element x inMk ′ to

Mm if f maps ik ′≤k (x) to an element of A. Otherwise, h maps it toMn . The

existence of such h is formulated as Lemma 8.

the derivation steps by indicating this by the superscript ∗ next to the inference rules’
label.
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Lemma 8:
Γ, A : type, B : type ⊢

(k ,k ′ : Nat) → (u : k ′ ≤ k ) → (f : Mk → A ⊎ B) → bijection (f ) →

m : Nat

n : Nat

k ′ = m + n

h : Mk ′ → Mm ⊎Mn

bijection (h)

(x : Mk ′) →



©­«v1 :


z : A

f (ik ′≤k (x)) =A⊎B inl(z)

ª®¬ →


w : Mm

h(x) =Mm⊎Mn inl(w )

©­«v2 :


z : B

f (ik ′≤k (x)) =A⊎B inr(z)

ª®¬ →


w : Mn

h(x) =Mm⊎Mn inr(w )















true

Proof. Let k : Nat be an arbitrary number. Proof is given by induction

on k ′ : Nat.

(1) First, we prove the following formula for the case k ′ = 0.

(k : Nat) → (u0 : 0 ≤ k ) → (f : M (k ) → A ⊎ B) → bijection (f ) →

m : Nat

n : Nat

0 = m + n

h : M (0) → M (m) ⊎ M (n)

bijection (h)

(x : M (0)) →



©­«v1 :


z : A

f (i0≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (m)

h(x) =M (m)⊎M (n) inl(w )

©­«v2 :


z : B

f (i0≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n)

h(x) =M (m)⊎M (n) inr(w )















.

Assume k : Nat, uo : 0 ≤ k , f : M (k ) → A ⊎ B , bijection (f ). The

following derivation holds, where q1 and q2 are proved below in D′
1 and

D′
2.
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0 : Nat NatI0

0 : Nat NatI0

D′
1

q1 : 0 = 0 + 0

D′
2

q2 :



h : M (0) → M (0) ⊎ M (0)

bijection (h)

(x : M (0)) →



©­«v1 :


z : A

f (i0≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (0)

h(x) =M (0)⊎M (0) inl(w )

©­«v2 :


z : B

f (i0≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (0)

h(x) =M (0)⊎M (0) inr(w )









⟨q1,q2⟩ :



0 = 0 + 0

h : M (0) → M (0) ⊎ M (0)

bijection (h)

(x : M (0)) →



©­«v1 :


z : A

f (i0≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (0)

h(x) =M (0)⊎M (0) inl(w )

©­«v2 :


z : B

f (i0≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (0)

h(x) =M (0)⊎M (0) inr(w )











×I

⟨0, ⟨q1,q2⟩⟩ :



n : Nat

0 = 0 + n

h : M (0) → M (0) ⊎ M (n)

bijection (h)

(x : M (0)) →



©­«v1 :


z : A

f
(
(π1(i(k )(0)(u0)))(x)

)
=A⊎B inl(z)

ª®¬ →


w : M (0)

h(x) =M (0)⊎M (n) inl(w )

©­«v2 :


z : B

f
(
(π1(i(k )(0)(u0)))(x)

)
=A⊎B inr(z)

ª®¬ →


w : M (n)

h(x) =M (0)⊎M (n) inr(w )













ΣI

⟨0, ⟨0, ⟨q1,q2⟩⟩⟩ :



m : Nat

n : Nat

0 = m + n

h : M (0) → M (m) ⊎ M (n)

bijection (h)

(x : M (0)) →



©­«v1 :


z : A

f
(
(π1(i(k )(0)(u0)))(x)

)
=A⊎B inl(z)

ª®¬ →


w : M (m)

h(x) =M (m)⊎M (n) inl(w )

©­«v2 :


z : B

f
(
(π1(i(k )(0)(u0)))(x)

)
=A⊎B inr(z)

ª®¬ →


w : M (n)

h(x) =M (m)⊎M (n) inr(w )















ΣI

(5.75)

D′
1:

Nat : type
Nat : type

0 : Nat NatI0 0 : Nat NatI0
0 + 0 : Nat 0 : Nat NatI0 0 + 0 ≡β 0 (Th17)

reflNat(0) : 0 + 0 = 0
(Th16)

p13(reflNat(0)) : 0 = 0 + 0
=Sym

Thus, q1 in (5.75) is p13(reflNat(0)).

D′
2:

First, as M (0)
def
≡ ⊥, we obtain λz .casez () : M (0) → M (0) ⊎ M (0) from

the following delivation.
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z : ⊥ 1

z : ⊥ 2
....

⊥ ⊎ ⊥ : type
⊥ ⊎ ⊥ : type wk

λz .⊥ ⊎ ⊥ : ⊥ → type ΠI , 2

casez () : ⊥ ⊎ ⊥ ⊥E

λz .casez () : ⊥ → ⊥ ⊎ ⊥ ΠI , 1 (5.76)

Second, we show that λz .casez () : M (0) → M (0) ⊎ M (0) is a bijection.

By definition,

bijection (λz .casez ()) ≡

injection (λz .casez ())

surjection (λz .casez ())

 .
As injection (λz .casez ()) ≡ (y : ⊥) → (y ′ : ⊥) → (λz .casez ())(y ) = (λz .casez ())(y ′) →

y = y ′, the proof is given by the following delivation.

y : ⊥ 1

z ′ : ⊥ 2
....

(y ′ : ⊥) → (λz .casez ())(z ′) = (λz .casez ())(y ′) → z ′ = y ′ : type
λz ′. (y ′ : ⊥) → (λz .casez ())(z ′) = (λz .casez ())(y ′) → z ′ = y ′ : ⊥ → type ΠI , 2

casey () : (y ′ : ⊥) → (λz .casez ())(y ) = (λz .casez ())(y ′) → y = y ′ ⊥E

λy .casey () : (y : ⊥) → (y ′ : ⊥) → (λz .casez ())(y ) = (λz .casez ())(y ′) → y = y ′ ΠI , 1

On the other hand, the proof is given by the following delivation as

surjection (λz .casez ()) ≡ (z ′ : ⊥ ⊎ ⊥) →


y : ⊥

z ′ = (λz .casez ())(y )

 .
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z ′ : ⊥ ⊎ ⊥ 1

z ′′ : ⊥ 2

z ′ : ⊥ 3
....

y : ⊥

inl(z ′) = (λz .casez ())(y )

 : type
λz ′.


y : ⊥

inl(z ′) = (λz .casez ())(y )


: ⊥ → type

ΠI , 3

casez ′′() :


y : ⊥

inl(z ′′) = (λz .casez ())(y )


⊥E

z ′′ : ⊥ 2

z ′ : ⊥ 4
....

y : ⊥

inr(z ′) = (λz .casez ())(y )

 : type
λz ′.


y : ⊥

inr(z ′) = (λz .casez ())(y )


: ⊥ → type

ΠI , 4

casez ′′() :


y : ⊥

inr(z ′′) = (λz .casez ())(y )


⊥E

case z ′ of (λz ′′.casez ′′(), λz ′′.casez ′′()) :


y : ⊥

z ′ = (λz .casez ())(y )


⊎E , 2

λz ′.case z ′ of (λz ′′.casez ′′(), λz ′′.casez ′′()) : (z ′ : ⊥ ⊎ ⊥) →


y : ⊥

z ′ = (λz .casez ())(y )


ΠI , 1

Therefore, by ΣI , we obtain

⟨λy .casey (), λz ′.case z ′ of (λz ′.casez ′(), λz ′.casez ′())⟩ : bijection (λz .casez ()) .

(5.77)

Third, the following delivation holds.

x : ⊥ 1

x : ⊥ 2
....

©­«v1 :


z : A

f (i0≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (0)

(λz .casez ())(x) =M (0)⊎M (0) inl(w )

©­«v2 :


z : B

f (i0≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (0)

(λz .casez ())(x) =M (0)⊎M (0) inr(w )




: type

λx .



©­«v1 :


z : A

f (i0≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (0)

(λz .casez ())(x) =M (0)⊎M (0) inl(w )

©­«v2 :


z : B

f (i0≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (0)

(λz .casez ())(x) =M (0)⊎M (0) inr(w )




: ⊥ → type

ΠI , 2

casex () :



©­«v1 :


z : A

f (i0≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (0)

(λz .casez ())(x) =M (0)⊎M (0) inl(w )

©­«v2 :


z : B

f (i0≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (0)

(λz .casez ())(x) =M (0)⊎M (0) inr(w )





⊥E

λx .casex () : (x : ⊥) →



©­«v1 :


z : A

f (i0≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (0)

(λz .casez ())(x) =M (0)⊎M (0) inl(w )

©­«v2 :


z : B

f (i0≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (0)

(λz .casez ())(x) =M (0)⊎M (0) inr(w )





ΠI , 1

(5.78)

Thus, by applying ΣI with (5.76), (5.77), and (5.78) in order, we obtain:
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⟨λz .casez (), ⟨⟨λy .casey (), λz ′.case z ′ of (λz ′.casez ′(), λz ′.casez ′())⟩, λx .casex ()⟩⟩ :

h : M (0) → M (0) ⊎ M (0)

bijection (h)

(x : M (0)) →



©­«v1 :


z : A

f (i0≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (0)

h(x) =M (0)⊎M (0) inl(w )

©­«v2 :


z : B

f (i0≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (0)

h(x) =M (0)⊎M (0) inr(w )









.

This is what q2 stands for in (5.75).

(2) Assume that the formula holds for k ′ = d , i.e., we have the following

proof term IH .

IH :

(k : Nat) → (u : d ≤ k ) → (f : M (k ) → A ⊎ B) → bijection (f ) →

m : Nat

n : Nat

d = m + n

h : M (d) → M (m) ⊎ M (n)

bijection (h)

(x : M (d)) →



©­«v1 :


z : A

f (id≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (m)

h(x) =M (m)⊎M (n) inl(w )

©­«v2 :


z : B

f (id≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n)

h(x) =M (m)⊎M (n) inr(w )















.

Wewill prove it for k ′ = suc(d), i.e., the proof of the following proposition

exists.

(k : Nat) → (u ′ : suc(d) ≤ k ) → (f : M (k ) → A ⊎ B) → bijection (f ) →

m′ : Nat

n′ : Nat

suc(d) = m′ + n′

h′ : M (suc(d)) → M (m′) ⊎ M (n′)

bijection (h′)

(x : M (suc(d))) →



©­«v1 :


z : A

f (isuc(d)≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (m′)

h′(x) =M (m ′)⊎M (n ′) inl(w )

©­«v2 :


z : B

f (isuc(d)≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n′)

h′(x) =M (m ′)⊎M (n ′) inr(w )














(5.79)

Assume k : Nat, u ′ : suc(d) ≤ k , f : M (k ) → A ⊎ B , and q : bijection (f ).
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5.3. Proofs of right monotonicity

FromIH and these assumptions, by applyingΠE several times, weobtain

IH(k )(p19(u ′))(f )(q) :

m : Nat

n : Nat

d = m + n

h : M (d) → M (m) ⊎ M (n)

bijection (h)

(x : M (d)) →



©­«v1 :


z : A

f (id≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (m)

h(x) =M (m)⊎M (n) inl(w )

©­«v2 :


z : B

f (id≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n)

h(x) =M (m)⊎M (n) inr(w )















,

where p19(u ′) is a proof of d ≤ k obtained from u ′ : suc(d) ≤ k and Theo-

rem19. Fromtheproof above,weobtaineachof the followingproof terms

by applying ΣE several times. We write the letters shown in the left hand

side for the proof terms in the right hand side.

m ≡ π1(IH(k )(p19(u ′))(f )(q)) : Nat

n ≡ π1π2(IH(k )(p19(u ′))(f )(q)) : Nat

u1 ≡ π1π2π2(IH(k )(p19(u ′))(f )(q)) : d = m + n

h ≡ π1π2π2π2(IH(k )(p19(u ′))(f )(q)) : Md → Mm ⊎Mn

u2 ≡ π1π2π2π2π2(IH(k )(p19(u ′))(f )(q)) : bijection (h)

u3 ≡ π2π2π2π2π2(IH(k )(p19(u ′))(f )(q)) : (x : M (d)) → · · ·

(5.80)

We let C stand for the proposition in the consequence of (5.79).

m′ : Nat

n′ : Nat

suc(d) = m′ + n′

h′ : M (suc(d)) → M (m′) ⊎ M (n′)

bijection (h′)

(x : M (suc(d))) →



©­«v1 :


z : A

f (isuc(d)≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (m′)

h′(x) =M (m ′)⊎M (n ′) inl(w )

©­«v2 :


z : B

f (isuc(d)≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n′)

h′(x) =M (m ′)⊎M (n ′) inr(w )















.
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We will construct proof terms t1, t2, and t3 that appear in the following

delivation.

.... D1

t1 :
z : A

f (isuc(d)≤k (inr(⟨⟩)))

=A⊎B inl(z)


⊎


z : B

f (isuc(d)≤k (inr(⟨⟩)))

=A⊎B inr(z)



T1

p′

:


z : A

f (isuc(d)≤k (inr(⟨⟩)))

=A⊎B inl(z)



2

.... D2
t2 : C

p′

:


z : B

f (isuc(d)≤k (inr(⟨⟩)))

=A⊎B inr(z)



2

.... D3
t3 : C

case t1 of (λp′.t2, λp′.t3) : C
⊎E , 2

(5.81)

T1 is abbreviation for:

λx .C :


z : A

f (isuc(d)≤k (inr(⟨⟩))) =A⊎B inl(z)

 ⊎


z : B

f (isuc(d)≤k (inr(⟨⟩))) =A⊎B inr(z)

 → type

Henceforth, we will omit the derivation for the trivial case of type infer-

ence.

The intuition behind (5.81) is as follows: now we consider the case

where the function’s domain is extended from Md to Msuc(d). By the in-

duction hypothesis, we already knowwhich elements inMd are related to

A andwhich are to B . Thus, we only care about the newly-added element,

inr(⟨⟩). We again have two possibilities, whether it is related to A orB . This

is shown in thederivationD1 below. Wewill thenprove thatwecanobtain

the consequence in either cases, inD2 andD3.
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D1:

f

: M (k ) → A ⊎ B

k : Nat u ′

: suc(d) ≤ k
....

isuc(d)≤k :
M (suc(d)) → M (k )

⟨⟩ : ⊤ ⊤I ⊤ : type ⊤F

inr(⟨⟩) :
M (suc(d))

⊎IL

isuc(d)≤k (inr(⟨⟩)) :
M (k )

→E

f (isuc(d)≤k (inr(⟨⟩)))
: A ⊎ B

→E

T2

y : A 1

....
A ⊎ B : type

y : A 1 A : type
inl(y ) : A ⊎ B

⊎IL

reflA⊎B(inl(y ))
: inl(y ) =A⊎B inl(y )

= I

⟨y , reflA⊎B(inl(y ))⟩ :
z : A

inl(y ) =A⊎B inl(z)


ΣI

T3

inl(⟨y , reflA⊎B(inl(y ))⟩) :
z : A

inl(y ) =A⊎B inl(z)


⊎


z : B

inl(y ) =A⊎B inr(z)



⊎IL

y : B 1

....
A ⊎ B : type

y : B 1 B : type
inr(y ) : A ⊎ B

⊎IR

reflA⊎B(inr(y ))
: inr(y ) =A⊎B inr(y )

= I

⟨y , reflA⊎B(inr(y ))⟩ :
z : B

inr(y ) =A⊎B inr(z)


ΣI

T4

inr(⟨y , reflA⊎B(inr(y ))⟩) :
z : A

inr(y ) =A⊎B inl(z)


⊎


z : B

inr(y ) =A⊎B inr(z)



⊎IR

case f (isuc(d)≤k (inr(⟨⟩))) of (λy .inl(⟨y , reflA⊎B(inl(y ))⟩), λy .inr(⟨y , reflA⊎B(inr(y ))⟩)) :
z : A

f (isuc(d)≤k (inr(⟨⟩))) =A⊎B inl(z)

 ⊎


z : B

f (isuc(d)≤k (inr(⟨⟩))) =A⊎B inr(z)


⊎E , 1

Thus, t1 in (5.81) is:

case f (isuc(d)≤k (inr(⟨⟩))) of (λy .inl(⟨y , reflA⊎B(inl(y ))⟩), λy .inr(⟨y , reflA⊎B(inr(y ))⟩)).

T2:

λy .


z : A

y =A⊎B inl(z)

 ⊎


z : B

y =A⊎B inr(z)

 : A ⊎ B → type

T3: 
z : B

inl(y ) =A⊎B inr(z)

 : type

T4: 
z : A

inr(y ) =A⊎B inl(z)

 : type

Next, we will give D2 in the derivation (5.81). For D2, we will show

D2−1,D2−2, andD2−3 in
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....
h′ : M (suc(d)) → M (suc(m)) ⊎ M (n)

.... D2−2

⟨t2−2−1, t2−2−2⟩ :
bijection (h′)

.... D2−3

t2−3 :

(x : M (suc(d))) →

©­«v1 :


z : A

f (isuc(d)≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (m′)

h′(x) =M (m ′)⊎M (n ′) inl(w )

©­«v2 :


z : B

f (isuc(d)≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n′)

h′(x) =M (m ′)⊎M (n ′) inr(w )




⟨⟨t2−2−1, t2−2−2⟩, t2−3⟩ :

bijection (h′)

(x : M (suc(d))) →



©­«v1 :


z : A

f (isuc(d)≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (m′)

h′(x) =M (m ′)⊎M (n ′) inl(w )

©­«v2 :


z : B

f (isuc(d)≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n′)

h′(x) =M (m ′)⊎M (n ′) inr(w )







×I

⟨h′, ⟨⟨t2−2−1, t2−2−2⟩, t2−3⟩⟩ :

h′ : M (suc(d)) → M (m′) ⊎ M (n′)

bijection (h′)

(x : M (suc(d))) →



©­«v1 :


z : A

f (isuc(d)≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (m′)

h′(x) =M (m ′)⊎M (n ′) inl(w )

©­«v2 :


z : B

f (isuc(d)≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n′)

h′(x) =M (m ′)⊎M (n ′) inr(w )









ΣI

,

(5.82)

with which we will be able to provideD2 by the following derivation.
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....
m : Nat

suc(m) : Nat NatIs

....
n : Nat

Nat : type d : Nat

....
m + n : Nat

....
λx .suc(d) =Nat suc(x) :

Nat→ type

....
u1 : d =Nat m + n

Nat : type suc(d) : Nat
reflNat(suc(d)) : suc(d) =Nat suc(d) = I

p15(p13(u1); reflNat(suc(d))) : suc(d) =Nat suc(m + n)

(Th15)

....
suc(d) =Nat suc(m + n)
≡β suc(d) =Nat suc(m) + n

p15(p13(u1); reflNat(suc(d))) : suc(d) =Nat suc(m) + n

conv
.... (5.82)

⟨h′, ⟨⟨t2−2−1, t2−2−2⟩, t2−3⟩⟩ :
h′ : M (suc(d)) → M (m′) ⊎ M (n′)

· · ·


⟨p15(p13(u1); reflNat(suc(d))), ⟨h′, ⟨⟨t2−2−1, t2−2−2⟩, t2−3⟩⟩⟩ :

suc(d) = m′ + n′

h′ : M (suc(d)) → M (m′) ⊎ M (n′)

bijection (h′)

(x : M (suc(d))) →



©­«v1 :


z : A

f (isuc(d)≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (m′)

h′(x) =M (m ′)⊎M (n ′) inl(w )

©­«v2 :


z : B

f (isuc(d)≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n′)

h′(x) =M (m ′)⊎M (n ′) inr(w )











×I

⟨n, ⟨p15(p13(u1); reflNat(suc(d))), ⟨h′, ⟨⟨t2−2−1, t2−2−2⟩, t2−3⟩⟩⟩⟩ :

n′ : Nat

suc(d) = m′ + n′

h′ : M (suc(d)) → M (m′) ⊎ M (n′)

bijection (h′)

(x : M (suc(d))) →



©­«v1 :


z : A

f (isuc(d)≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (m′)

h′(x) =M (m ′)⊎M (n ′) inl(w )

©­«v2 :


z : B

f (isuc(d)≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n′)

h′(x) =M (m ′)⊎M (n ′) inr(w )













ΣI

⟨suc(m), ⟨n, ⟨p15(p13(u1); reflNat(suc(d))), ⟨h′, ⟨⟨t2−2−1, t2−2−2⟩, t2−3⟩⟩⟩⟩⟩ :

m′ : Nat

n′ : Nat

suc(d) = m′ + n′

h′ : M (suc(d)) → M (m′) ⊎ M (n′)

bijection (h′)

(x : M (suc(d))) →



©­«v1 :


z : A

f (isuc(d)≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (m′)

h′(x) =M (m ′)⊎M (n ′) inl(w )

©­«v2 :


z : B

f (isuc(d)≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n′)

h′(x) =M (m ′)⊎M (n ′) inr(w )















ΣI

(5.83)

D2−1:

....
M (suc(d)) : type

y : M (suc(d)) 2 T5

....
M (m) : type

....
M (n) : type ⊤ : type ⊤I

y ′ : M (d) 1

....
h :

M (d)
→ M (m) ⊎ M (n)

h(y ′)
: M (m) ⊎ M (n)

→E

case h(y ′) of (λz .inl(inl(z)), λz .inr(z))
: M (suc(m)) ⊎ M (n)

(Th12)

y ′ : ⊤ 1
....

M (m) : type

inr(y ′)
: M (m) ⊎ ⊤

⊎IR ....
M (n) : type

inl(inr(y ′))
: M (suc(m)) ⊎ M (n)

⊎IL

case y of (λy ′.case h(y ′) of (λz .inl(inl(z)), λz .inr(z)), λy ′.inl(inr(y ′)))
: M (suc(m)) ⊎ M (n)

⊎E , 1

λy .case y of (λy ′.case h(y ′) of (λz .inl(inl(z)), λz .inr(z)), λy ′.inl(inr(y ′)))
: M (suc(d)) → M (suc(m)) ⊎ M (n)

ΠI , 2

T5:

λy .M (suc(m)) ⊎ M (n) : M (suc(d)) → type
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In what follows, h′ stands for the obtained proof term

λy .case y of (λy ′.case h(y ′) of (λz .inl(inl(z)), λz .inr(z)), λy ′.inl(inr(y ′))).

D2−2:

To giveD2−2 in the derivation (5.82), weprovebijection (h′). We construct

proof terms t2−2−1 and t2−2−2 in the following delivation.
.... D2−2−1

t2−2−1 : injection (h′)

.... D2−2−2
t2−2−2 : surjection (h′)

⟨t2−2−1, t2−2−2⟩ : bijection (h′) ×I

D2−2−1:

For injection (h′) ≡β (y : M (suc(d))) → (y ′ : M (suc(d))) → h′(y ) =M (suc(m))⊎M (n)

h′(y ′) → y =M (suc(d)) y ′, we construct a proof term t2−2−1 by the following

derivation.

....
M (suc(d))
: type

y

: M (suc(d))

1

T6

....
M (suc(d))
: type

y ′

: M (suc(d))

3

T7

y : M (d) 2 y ′ : M (d) 4.... D2−2−1(1)

t2−2−1(1) :

h′(inl(y )) = h′(inl(y ′))

→ inl(y ) = inl(y ′)

y : M (d) 2 y ′ : ⊤ 4
.... D2−2−1(2)

t2−2−1(2) :

h′(inl(y )) = h′(inr(y ′))

→ inl(y ) = inr(y ′)

case y ′ of (λy ′.t2−2−1(1), λy ′.t2−2−1(2)) :
h′(inl(y )) =M (suc(m))⊎M (n) h′(y ′)

→ inl(y ) =M (suc(d)) y ′

⊎E , 4

λy ′.case y ′ of (λy ′′.t2−2−1(1), λy ′′.t2−2−1(2)) :
(y ′ : M (suc(d)))
→ h′(inl(y )) =M (suc(m))⊎M (n) h′(y ′) → inl(y ) =M (suc(d)) y ′

ΠI , 3

....
M (suc(d))
: type

y ′

: M (suc(d))

5

T8

y : ⊤ 2 y ′ : M (d) 6.... D2−2−1(3)

t2−2−1(3) :

h′(inr(y )) = h′(inl(y ′))

→ inr(y ) = inl(y ′)

y : ⊤ 2 y ′ : ⊤ 6
.... D2−2−1(4)

t2−2−1(4) :

h′(inr(y )) = h′(inr(y ′))

→ inr(y ) = inr(y ′)

case y ′ of (λy ′.t2−2−1(3), λy ′.t2−2−1(4)) :
h′(inr(y )) =M (suc(m))⊎M (n) h′(y ′)

→ inr(y ) =M (suc(d)) y ′

⊎E , 6

λy ′.case y ′ of (λy ′′.t2−2−1(3), λy ′′.t2−2−1(4)) :
(y ′ : M (suc(d)))
→ h′(inr(y )) =M (suc(m))⊎M (n) h′(y ′) → inr(y ) =M (suc(d)) y ′

ΠI , 5

case y of (λy .λy ′.case y ′ of (λy ′′.t2−2−1(1), λy ′′.t2−2−1(2)), λy .λy ′.case y ′ of (λy ′′.t2−2−1(3), λy ′′.t2−2−1(4))) :
(y ′ : M (suc(d)))
→ h′(y ) =M (suc(m))⊎M (n) h′(y ′) → y =M (suc(d)) y ′

⊎E , 2

λy .case y of (λy ′′′.λy ′.case y ′ of (λy ′′.t2−2−1(1), λy ′′.t2−2−1(2)), λy ′′′.λy ′.case y ′ of (λy ′′.t2−2−1(3), λy ′′.t2−2−1(4))) :
(y : M (suc(d))) → (y ′ : M (suc(d))) → h′(y ) =M (suc(m))⊎M (n) h′(y ′) → y =M (suc(d)) y ′

ΠI , 1

,

(5.84)

T6:
λy . (y ′ : M (suc(d))) → h ′(y ) =M (suc(m))⊎M (n) h ′(y ′) → y =M (suc(d)) y ′ : M (suc(d)) → type

T7:

λy ′.h ′(inl(y )) =M (suc(m))⊎M (n) h ′(y ′) → inl(y ) =M (suc(d)) y ′ : M (suc(d)) → type

T8:

λy ′.h ′(inr(y )) =M (suc(m))⊎M (n) h ′(y ′) → inr(y ) =M (suc(d)) y ′ : M (suc(d)) → type
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The following term that is at the bottom of (5.84) corresponds to t2−2−1.

λy .case y of (λy ′′′.λy ′.case y ′ of (λy ′′.t2−2−1(1), λy ′′.t2−2−1(2)), λy ′′′.λy ′.case y ′ of (λy ′′.t2−2−1(3), λy ′′.t2−2−1(4)))

(5.85)

As the assumptions y : Msuc(d) and y ′ : Msuc(d) are both disjoint union

of types, the proof is devided into the following four cases with respect to

the assumptions.

• y : Md and y ′ : Md (derivationD2−2−1(1) for t2−2−1(1))

• y : Md and y ′ : ⊤ (derivationD2−2−1(2) for t2−2−1(2))

• y : ⊤ and y ′ : Md (derivationD2−2−1(3) for t2−2−1(3))

• y : ⊤ and y ′ : ⊤ (derivationD2−2−1(4) for t2−2−1(4))

Below, we prove the four cases one-by-one.

D2−2−1(1):

....
h′(inl(y )) =M (suc(m))⊎M (n) h′(inl(y ′)) : type

....
M (d) :
type

y :
M (d)

y ′ :
M (d)

....
λy ′.inl(y ) =M (suc(d)) inl(y ′) :

M (d) → type

....
u2 :
bijection (h)

π1(u2) :
injection (h)

ΣEL

y :
M (d)

y ′ :
M (d)

(π1(u2))(y )(y ′) :
h(y ) =M (m)⊎M (n) h(y ′)

→ y =M (d) y ′

ΠE ∗

u ′ :

h′(inl(y ))
=M (suc(m))⊎M (n)

h′(inl(y ′))

1

....
h′(inl(y ))
=M (suc(m))⊎M (n)

h′(inl(y ′))
≡β
h(y ) =M (m)⊎M (n) h(y ′)

u ′ :
h(y ) =M (m)⊎M (n) h(y ′)

conv

((π1(u2))(y )(y ′))(u ′) :
y =M (d) y ′

→E

....
M (suc(d)) :

type

y :
M (d)

⊤ :
type

⊤I

inl(y ) :
M (suc(d))

⊎IL

reflM (suc(d))(inl(y )) :
inl(y ) =M (suc(d)) inl(y )

= I

p15(((π1(u2))(y )(y ′))(u ′); reflM (suc(d))(inl(y ))) :
inl(y ) =M (suc(d)) inl(y ′)

=Sub

λu ′.p15(((π1(u2))(y )(y ′))(u ′); reflM (suc(d))(inl(y ))) :
h′(inl(y )) =M (suc(m))⊎M (n) h′(inl(y ′)) → inl(y ) =M (suc(d)) inl(y ′)

ΠI , 1
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D2−2−1(2):
....

h :
M (d)
→ M (m) ⊎ M (n)

y :
M (d)

h(y ) :
M (m) ⊎ M (n)

ΠE

T9

x : M (m) 1 y ′ : ⊤.... Da

a :

case inl(x) of (λz .inl(inl(z)), λz .inr(z))

=M (suc(m))⊎M (n) inl(inr(y ′))

→ inl(y ) =M (suc(d)) inr(y ′)

x : M (n) 1 y ′ : ⊤.... Db

b :

case inr(x) of (λz .inl(inl(z)), λz .inr(z))

=M (suc(m))⊎M (n) inl(inr(y ′))

→ inl(y ) =M (suc(d)) inr(y ′)

case h(y ) of (λx .a, λx .b) :

case h(y ) of (λz .inl(inl(z)), λz .inr(z)) =M (suc(m))⊎M (n) inl(inr(y ′))

→ inl(y ) =M (suc(d)) inr(y ′)

⊎E , 1

....
case h(y ) of (λz .inl(inl(z)), λz .inr(z))

=M (suc(m))⊎M (n) inl(inr(y ′))

→ inl(y ) =M (suc(d)) inr(y ′)
≡β h′(inl(y )) =M (suc(m))⊎M (n) h′(inr(y ′))

→ inl(y ) =M (suc(d)) inr(y ′)

case h(y ) of (λx .a, λx .b) :
h′(inl(y )) =M (suc(m))⊎M (n) h′(inr(y ′)) → inl(y ) =M (suc(d)) inr(y ′)

conv

,

(5.86)

whereDa andDb are given below.

T9:
λy .case y of (λz .inl(inl(z)), λz .inr(z)) =M (suc(m))⊎M (n) inl(inr(y ′)) → inl(y ) =M (suc(d)) inr(y ′) : M (m) ⊎ M (n) → type

Da inD2−2−1(2):

....
case inl(x) of (λz .inl(inl(z)), λz .inr(z))

=M (suc(m))⊎M (n) inl(inr(y ′)) : type

p20 : injection (λx .inl(x)) (Lm20)

....
M (suc(m)) : type

....
M (n) : type

x : M (m) ⊤ : type
inl(x) : M (suc(m)) ⊎IL

....
M (m) : type y ′ : ⊤
inr(y ′) : M (suc(m)) ⊎IR

p20(M (suc(m))(M (n))(inl(x))(inr(y ′)) :

inl(inl(x)) =M (suc(m))⊎M (n) inl(inr(y ′))

→ inl(x) =M (suc(m)) inr(y ′)

ΠE ∗

u ′ :

case inl(x) of (λz .inl(inl(z)), λz .inr(z))

=M (suc(m))⊎M (n) inl(inr(y ′))

2

....
case inl(x) of (λz .inl(inl(z)), λz .inr(z))

=M (suc(m))⊎M (n) inl(inr(y ′))

≡β
inl(inl(x)) =M (suc(m))⊎M (n) inl(inr(y ′))

u ′ : inl(inl(x)) =M (suc(m))⊎M (n) inl(inr(y ′))
conv

(p20(M (suc(m))(M (n))(inl(x))(inr(y ′)))(u ′) :
inl(x) =M (suc(m)) inr(y ′)

→E

....
M (m) : type ⊤ : type ⊤I x : M (m) y ′ : ⊤

p25(x ; y ′) :
¬(inl(x) =M (suc(m)) inr(y ′))

(Th25)

(
p25(x ; y ′)

) (
(p20(M (suc(m))(M (n))(inl(x))(inr(y ′)))(u ′)

)
:

⊥

→E

....
λb .inl(y ) =M (suc(d)) inr(y ′) :

⊥ → type

case(p25(x ;y ′)
) (

(p20(M (suc(m)))(M (n))(inl(x))(inr(y ′)))(u ′)
) () :

inl(y ) =M (suc(d)) inr(y ′)

⊥E

λu ′.case(p25(x ;y ′)
) (

(p20(M (suc(m)))(M (n))(inl(x))(inr(y ′)))(u ′)
) () :

case inl(x) of (λz .inl(inl(z)), λz .inr(z)) =M (suc(m))⊎M (n) inl(inr(y ′))

→ inl(y ) =M (suc(d)) inr(y ′)

ΠI , 2

Db inD2−2−1(2):

....
case inr(x) of (λz .inl(inl(z)), λz .inr(z))

=M (suc(m))⊎M (n) inl(inr(y ′)) : type

u ′ :

case inr(x) of (λz .inl(inl(z)), λz .inr(z))

=M (suc(m))⊎M (n) inl(inr(y ′))

3

....
case inr(x) of (λz .inl(inl(z)), λz .inr(z))

=M (suc(m))⊎M (n) inl(inr(y ′))

≡β
inr(x) =M (suc(m))⊎M (n) inl(inr(y ′))

u ′ :
inr(x) =M (suc(m))⊎M (n) inl(inr(y ′))

conv

p13(u ′) :
inl(inr(y ′)) =M (suc(m))⊎M (n) inr(x)

(Th13)

....
M (suc(m)) : type

....
M (n) : type

....
M (m) : type y ′ : ⊤
inr(y ′) : M (suc(m)) ⊎IR

x : M (n)

p25(inr(y ′); x) :
¬(inl(inr(y ′)) =M (suc(m))⊎M (n) inr(x))

(Th25)

(p25(inr(y ′); x))(p13(u ′)) :
⊥

→E

....
λb .inl(y ) =M (suc(d)) inr(y ′) :

⊥ → type

case(p25(inr(y ′);x))(p13(u ′))() :
inl(y ) =M (suc(d)) inr(y ′)

⊥E

λu ′.case(p25(inr(y ′);x))(p13(u ′))() :

case inr(x) of (λz .inl(inl(z)), λz .inr(z)) =M (suc(m))⊎M (n) inl(inr(y ′))

→ inl(y ) =M (suc(d)) inr(y ′)

ΠI , 3
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D2−2−1(3):

....
h : M (d) → M (m) ⊎ M (n) y ′ : M (d)

h(y ′) : M (m) ⊎ M (n) ΠE T10

x ′ : M (m) 1 y : ⊤.... Da ′

a’ :

inl(inr(y ))

=M (suc(m))⊎M (n) case inl(x ′) of (λz .inl(inl(z)), λz .inr(z))

→ inr(y ) =M (suc(d)) inl(y ′)

x ′ : M (n) 1 y : ⊤.... Db ′

b’ :

inl(inr(y ))

=M (suc(m))⊎M (n) case inr(x ′) of (λz .inl(inl(z)), λz .inr(z))

→ inr(y ) =M (suc(d)) inl(y ′)

case h(y ′) of (λx ′.a’, λx ′.b’) :

inl(inr(y )) =M (suc(m))⊎M (n) case h(y ′) of (λz .inl(inl(z)), λz .inr(z))

→ inr(y ) =M (suc(d)) inl(y ′)

⊎E , 1
....

inl(inr(y )) =M (suc(m))⊎M (n) case h(y ′) of (λz .inl(inl(z)), λz .inr(z))

→ inr(y ) =M (suc(d)) inl(y ′)

≡β h′(inr(y )) =M (suc(m))⊎M (n) h′(inl(y ′)) → inr(y ) =M (suc(d)) inl(y ′)
case h(y ′) of (λx ′.a’, λx ′.b’) : h′(inr(y )) =M (suc(m))⊎M (n) h′(inl(y ′)) → inr(y ) =M (suc(d)) inl(y ′)

conv ,

(5.87)

whereDa ′ andDb ′ are given below.

T10:
λy .inl(inr(y )) =M (suc(m))⊎M (n) case y of (λz .inl(inl(z)), λz .inr(z)) → inr(y ) =M (suc(d)) inl(y ′) : M (m) ⊎ M (n) → type

Da ′ inD2−2−1(3):

....
inl(inr(y ))

=M (suc(m))⊎M (n) case inl(x ′) of (λz .inl(inl(z)), λz .inr(z)) : type

p20 : injection (λx .inl(x)) (Lm20)

....
M (suc(m)) : type

....
M (n) : type

x ′ : M (m) ⊤ : type ⊤I

inl(x ′) : M (suc(m)) ⊎IL

....
M (m) : type y : ⊤
inr(y ) : M (suc(m)) ⊎IR

p20(M (suc(m)))(M (n))(inl(x ′))(inr(y )) :
inl(inl(x ′)) =M (suc(m))⊎M (n) inl(inr(y )) → inl(x ′) =M (suc(m)) inr(y )

ΠE ∗

u ′ :

inl(inr(y ))

=M (suc(m))⊎M (n) case inl(x ′) of (λz .inl(inl(z)), λz .inr(z))

2

....
inl(inr(y ))

=M (suc(m))⊎M (n) case inl(x ′) of (λz .inl(inl(z)), λz .inr(z))

≡β
inl(inr(y ))

=M (suc(m))⊎M (n) inl(inl(x ′))

u ′ :
inl(inr(y )) =M (suc(m))⊎M (n) inl(inl(x ′))

conv

p13(u ′) :
inl(inl(x ′)) =M (suc(m))⊎M (n) inl(inr(y ))

(Th13)

(p20(M (suc(m)))(M (n))(inl(x ′))(inr(y )))(p13(u ′)) :
inl(x ′) =M (suc(m)) inr(y )

→E

....
M (m) : type ⊤ : type ⊤I x ′ : M (m) y : ⊤

p25(x ′; y ) :
¬(inl(x ′) =M (suc(m)) inr(y ))

(Th25)

(
(p20(M (suc(m)))(M (n))(inl(x ′))(inr(y )))(p13(u ′))

) (
p25(x ′; y )

)
:

⊥

→E

....
λb .inr(y ) =M (suc(d)) inl(y ′) :

⊥ → type

case(p25(x ′;y )
) (

(p20(M (suc(m)))(M (n))(inl(x ′))(inr(y )))(p13(u ′))
) () :

inr(y ) =M (suc(d)) inl(y ′)

⊥E

λu ′.case(p25(x ′;y )
) (

(p20(M (suc(m)))(M (n))(inl(x ′))(inr(y )))(p13(u ′))
) () :

inl(inr(y ))

=M (suc(m))⊎M (n) case inl(x ′) of (λz .inl(inl(z)), λz .inr(z))

→ inr(y ) =M (suc(d)) inl(y ′)

ΠI , 2

Db ′ inD2−2−1(2):

....
inl(inr(y ))

=M (suc(m))⊎M (n) case inr(x ′) of (λz .inl(inl(z)), λz .inr(z)) : type

u ′ :

inl(inr(y ))

=M (suc(m))⊎M (n) case inr(x ′) of (λz .inl(inl(z)), λz .inr(z))

3

....
inl(inr(y ))

=M (suc(m))⊎M (n) case inr(x ′) of (λz .inl(inl(z)), λz .inr(z))

≡β
inl(inr(y )) =M (suc(m))⊎M (n) inr(x ′)

u ′ :
inl(inr(y )) =M (suc(m))⊎M (n) inr(x ′)

conv

....
M (suc(m)) : type

....
M (n) : type

....
M (m) : type y : ⊤
inr(y ) : M (suc(m)) ⊎IR

x ′ : M (n)

p25(inr(y ); x ′) :
¬(inl(inr(y )) =M (suc(m))⊎M (n) inr(x ′))

(Th25)

(p25(inr(y ); x ′))(u ′) :
⊥

→E

....
λb .inr(y ) =M (suc(d)) inl(y ′) :

⊥ → type

case(p25(inr(y );x ′))(u ′)() :
inr(y ) =M (suc(d)) inl(y ′)

⊥E

λu ′.case(p25(inr(y );x ′))(u ′)() :

inl(inr(y ))

=M (suc(m))⊎M (n) case inr(x ′) of (λz .inl(inl(z)), λz .inr(z))

→ inr(y ) =M (suc(d)) inl(y ′)

ΠI , 3

D2−2−1(4):

Given y : ⊤ and y ′ : ⊤, assume u ′ : h′(inr(y )) =M (suc(m))⊎M (n) h′(inr(y ′)).

Since h′(inr(y )) ≡β inl(inr(y )) and h′(inr(y ′)) ≡β inl(inr(y ′)), we have the fol-
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lowing by conv .

u ′ : inl(inr(y )) =M (suc(m))⊎M (n) inl(inr(y ′)) (5.88)

By Lemma 23, we have proof p23 : injection (λy .inl(inr(y ))). Therefore, we

obtain

p23(M (m))(⊤)(M (n))(y )(y ′)(u ′) : y =⊤ y ′, (5.89)

by applying ΠE several times. Now, by applying = I with inr(y ) : M (suc(d)),

we have

reflM (suc(d))(inr(y )) : inr(y ) =M (suc(d)) inr(y ). (5.90)

Thus, by substitution by identity (5.89) and (5.90), we obtain

p15(p23(M (m))(⊤)(M (n))(y )(y ′)(u ′); reflM (suc(d))(inr(y ))) :

inr(y ) =M (suc(d)) inr(y ′),
(5.91)

fromwhich we obtain the following by ΠI with u ′.

λu ′.p15(p23(M (m))(⊤)(M (n))(y )(y ′)(u ′); reflM (suc(d))(inr(y ))) :

h′(inr(y )) =M (suc(m))⊎M (n) h′(inr(y ′)) → inr(y ) =M (suc(d)) inr(y ′).
(5.92)

D2−2−2 inD2 at (5.82):

Next,weprove surjection (h′). As surjection (h′) ≡ (w : M (suc(m)) ⊎ M (n)) →
y : M (suc(d))

w =M (suc(m))⊎M (n) h′(y )

 , the proof t2−2−2 in (5.82) is constructed by the

following derivation.

....
M (suc(m)) ⊎ M (n) : type

w : M (suc(m)) ⊎ M (n) 1 T11

w ′ : M (suc(m)) 2 T12

w ′′ : M (m) 3.... D2−2−2(1)

t2−2−2(1) :
y : M (suc(d))

inl(inl(w ′′)) =M (suc(m))⊎M (n) h′(y )



w ′′ : ⊤ 3
.... D2−2−2(2)

t2−2−2(2) :
y : M (suc(d))

inl(inr(w ′′)) =M (suc(m))⊎M (n) h′(y )


case w ′ of (λw ′′.t2−2−2(1), λw ′′.t2−2−2(2)) :

y : M (suc(d))

inl(w ′) =M (suc(m))⊎M (n) h′(y )



⊎E , 3 w ′ : M (n) 2.... D2−2−2(3)

t2−2−2(3) :
y : M (suc(d))

inr(w ′) =M (suc(m))⊎M (n) h′(y )


case w of (λw ′.case w ′ of (λw ′′.t2−2−2(1), λw ′′.t2−2−2(2)), λw ′.t2−2−2(3)) :

y : M (suc(d))

w =M (suc(m))⊎M (n) h′(y )


⊎E , 2

λw .case w of (λw ′.case w ′ of (λw ′′.t2−2−2(1), λw ′′.t2−2−2(2)), λw ′.t2−2−2(3)) :

(w : M (suc(m)) ⊎ M (n)) →


y : M (suc(d))

w =M (suc(m))⊎M (n) h′(y )


ΠI , 1
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AsMsuc(m) ⊎Mn ≡ (Mm ⊎⊤)⊎Mn , the proof is devided into three cases.

When we assumeMm orMn , the proof is given by IH. In case of ⟨⟩ : ⊤, as

this is the one to be added to theMm side, it should be associatedwith the

suc(d)-th element ofMsuc(d).

D2−2−2(1),D2−2−2(2), andD2−2−2(3) are given below.
T11:

λw .


y : M (suc(d))
w =M (suc(m))⊎M (n) h ′(y )

 : M (suc(m)) ⊎ M (n) → type

T12:

λw ′.


y : M (suc(d))
inl(w ′) =M (suc(m))⊎M (n) h ′(y )

 : M (suc(m)) → type

D2−2−2(1) inD2−2−2:

Given w ′′ : M (m), we prove


y : M (suc(d))

inl(inl(w ′′)) =M (suc(m))⊎M (n) h′(y )

 . From
the assumption, we get

inl(w ′′) : M (m) ⊎ M (n), (5.93)

by ⊎I . From IH and assumptions k : Nat, p19(u) : d ≤ k (by Theorem 19

and the assumptionu : suc(d) ≤ k ), f : M (k ) → A⊎B , andq : bijection (f ),

by applying ΠE several times and then applying ΣE several times, we ob-

tain

π2(u2) : surjection (h) . (5.94)

By applying ΠE with (5.94) and (5.93), we have

(π2(u2))(inl(w ′′)) :


y ′ : M (d)

inl(w ′′) =M (m)⊎M (n) h(y ′)

 . (5.95)
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Let s be (π2(u2))(inl(w ′′)). By applying ΣEL and ΣER with (5.95), respectively,

we obtain:

π1(s) : M (d) (5.96)

π2(s) : inl(w ′′) =M (m)⊎M (n) h(π1(s)). (5.97)

Wehave inl(π1(s)) : M (suc(d))by applying⊎I with (5.96). ByΠE withh′ and

inl(π1(s)), we have

h′(inl(π1(s))) : M (suc(m)) ⊎ M (n), (5.98)

fromwhich, by = I , we obtain

reflM (suc(m))⊎M (n)(h′(inl(π1(s)))) :

h′(inl(π1(s))) =M (suc(m))⊎M (n) h′(inl(π1(s))).
(5.99)

As h′(inl(π1(s))) ≡β case h(π1(s)) of (λz .inl(inl(z)), λz .inr(z)), we have

reflM (suc(m))⊎M (n)(h′(inl(π1(s)))) :

case h(π1(s)) of (λz .inl(inl(z)), λz .inr(z)) =M (suc(m))⊎M (n) h′(inl(π1(s))).
(5.100)

From (5.97) and symmetric property of identity (Theorem 13), we have

p13(π2(s)) : h(π1(s)) =M (m)⊎M (n) inl(w ′′). By (5.100) and substitution by

identity (Theorem 15), p13(π2(s)), we obtain

reflM (suc(m))⊎M (n)(h′(inl(π1(s)))) :

case inl(w ′′) of (λz .inl(inl(z)), λz .inr(z)) =M (suc(m))⊎M (n) h′(inl(π1(s))).
(5.101)

As case inl(w ′′) of (λz .inl(inl(z)), λz .inr(z)) ≡β inl(inl(w ′′)) holds, we have

reflM (suc(m))⊎M (n)(h′(inl(π1(s)))) :

inl(inl(w ′′)) =M (suc(m))⊎M (n) h′(inl(π1(s))).
(5.102)
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Thus, by ΣI with inl(π1(s)) : M (suc(d)) and (5.102), we obtain

⟨inl(π1(s)), reflM (suc(m))⊎M (n)(h′(inl(π1(s))))⟩ :


y : M (suc(d))

inl(inl(w ′′)) =M (suc(m))⊎M (n) h′(y )


(5.103)

D2−2−2(2) inD2−2−2:

Suppose we havew ′′ : ⊤. We prove


y : M (suc(d))

inl(inr(w ′′)) =M (suc(m))⊎M (n) h′(y )

 .
From h′ and inr(⟨⟩) : M (suc(d)), by = I , we have

reflM (suc(m))⊎M (n)(h′(inr(⟨⟩))) : h′(inr(⟨⟩)) =M (suc(m))⊎M (n) h′(inr(⟨⟩)). (5.104)

Since h′(inr(⟨⟩)) ≡β inl(inr(⟨⟩)) holds, by β-conversion and conv , we obtain

reflM (suc(m))⊎M (n)(h′(inr(⟨⟩))) : inl(inr(⟨⟩)) =M (suc(m))⊎M (n) h′(inr(⟨⟩)). (5.105)

By applying ⊤E with the givenw ′′ : ⊤ and (5.105), we obtain

casew ′′(reflM (suc(m))⊎M (n)(h′(inr(⟨⟩)))) : inl(inr(w ′)) =M (suc(m))⊎M (n) h′(inr(⟨⟩))

(5.106)

From inr(⟨⟩) : M (suc(d)) and (5.106), by ΣI , we obtain

⟨inr(⟨⟩), casew ′′(reflM (suc(m))⊎M (n)(h′(inr(⟨⟩))))⟩ :


y : M (suc(d))

inl(inr(w ′′)) =M (suc(m))⊎M (n) h′(y )


(5.107)

D2−2−2(3):

The proof is similar toD2−2−2(1).

Given w ′′ : M (n), we prove


y : M (suc(d))

inr(w ′) =M (suc(m))⊎M (n) h′(y )

 . From the

assumption, we get

inr(w ′′) : M (m) ⊎ M (n), (5.108)

by ⊎I . From IH and assumptions k : Nat, p19(u) : d ≤ k (by Theorem 19

and the assumptionu : suc(d) ≤ k ), f : M (k ) → A⊎B , andq : bijection (f ),
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by applying ΠE several times and then applying ΣE several times, we ob-

tain

π2(u2) : surjection (h) . (5.109)

By applying ΠE with (5.109) and (5.108), we have

(π2(u2))(inr(w ′′)) :


y ′ : M (d)

inr(w ′′) =M (m)⊎M (n) h(y ′)

 . (5.110)

Let s’ be (π2(u2))(inr(w ′′)). By applying ΣEL and ΣER with (5.110), respec-

tively, we obtain:

π1(s’) : M (d) (5.111)

π2(s’) : inr(w ′′) =M (m)⊎M (n) h(π1(s’)). (5.112)

We have inl(π1(s’)) : M (suc(d)) by applying ⊎I with (5.111). By ΠE with h′

and inl(π1(s’)), we have

h′(inl(π1(s’))) : M (suc(m)) ⊎ M (n), (5.113)

fromwhich, by = I , we obtain

reflM (suc(m))⊎M (n)(h′(inl(π1(s’)))) :

h′(inl(π1(s’))) =M (suc(m))⊎M (n) h′(inl(π1(s’))).
(5.114)

As h′(inl(π1(s’))) ≡β case h(π1(s’)) of (λz .inl(inl(z)), λz .inr(z)), we have

reflM (suc(m))⊎M (n)(h′(inl(π1(s’)))) :

case h(π1(s’)) of (λz .inl(inl(z)), λz .inr(z)) =M (suc(m))⊎M (n) h′(inl(π1(s’))).
(5.115)

From (5.112) and symmetric propery of identity (Theorem 13), we have

p13(π2(s’)) : h(π1(s’)) =M (m)⊎M (n) inr(w ′′). By (5.115) and substitution by

identity (Theorem 15), p13(π2(s’)), we obtain

reflM (suc(m))⊎M (n)(h′(inl(π1(s’)))) :

case inr(w ′′) of (λz .inl(inl(z)), λz .inr(z)) =M (suc(m))⊎M (n) h′(inl(π1(s’))).
(5.116)
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As case inr(w ′′) of (λz .inl(inl(z)), λz .inr(z)) ≡β inr(w ′′) holds, we have

reflM (suc(m))⊎M (n)(h′(inl(π1(s’)))) :

inr(w ′′) =M (suc(m))⊎M (n) h′(inl(π1(s’))).
(5.117)

Thus, by ΣI with inl(π1(s’)) : M (suc(d)) and (5.117), we obtain

⟨inl(π1(s’)), reflM (suc(m))⊎M (n)(h′(inl(π1(s’))))⟩ :


y : M (suc(d))

inr(w ′′) =M (suc(m))⊎M (n) h′(y )


(5.118)

Finally, we proveD2−3 inD2:

....
M (suc(d)) : type

x : M (suc(d)) 2 T13

x ′ : M (d) 1.... D2−3−1

t2−3−1 :

©­«v ′
1 :


z : A

f
(
(isuc(d)≤k )(inl(x ′))

)
=A⊎B inl(z)

ª®¬ →


w : M (suc(m))

h′(inl(x ′)) =M (suc(m))⊎M (n) inl(w )

©­«v ′
2 :


z : B

f
(
(isuc(d)≤k )(inl(x ′))

)
=A⊎B inr(z)

ª®¬ →


w : M (n)

h′(inl(x ′)) =M (suc(m))⊎M (n) inr(w )





x ′ : ⊤ 1
p′ :


z : A

f (isuc(d)≤k (inr(⟨⟩))) =A⊎B inl(z)

.... D2−3−2

t2−3−2 :

©­«v ′
1 :


z : A

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inl(z)

ª®¬ →


w : M (suc(m))

h′(inr(x ′)) =M (suc(m))⊎M (n) inl(w )

©­«v ′
2 :


z : B

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inr(z)

ª®¬ →


w : M (n)

h′(inr(x ′)) =M (suc(m))⊎M (n) inr(w )




case x of (λx ′.t2−3−1, λx ′.t2−3−2) :

©­«v1 :


z : A

f (isuc(d)≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (suc(m))

h′(x) =M (suc(m))⊎M (n) inl(w )

©­«v2 :


z : B

f (isuc(d)≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n)

h′(x) =M (suc(m))⊎M (n) inr(w )





⊎E , 1

λx .case x of (λx ′.t2−3−1, λx ′.t2−3−2) :

(x : M (suc(d))) →



©­«v1 :


z : A

f (isuc(d)≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (suc(m))

h′(x) =M (suc(m))⊎M (n) inl(w )

©­«v2 :


z : B

f (isuc(d)≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n)

h′(x) =M (suc(m))⊎M (n) inr(w )





ΠI , 2

The proof t2−3 is given at the bottom of the derivation.

The left hand side can be proved by IH. For the right hand side, it leads

to contradiction, because at the beginning of the derivationD2, we have

assumed that the newly added element is associated with A, not B .

D2−3−1 andD2−3−2 are given below.

T13:

λx .



©­«v1 :


z : A

f (isuc(d)≤k (x)) =A⊎B inl(z)

ª®¬ →


w : M (suc(m))

h ′(x) =M (suc(m))⊎M (n) inl(w )

©­«v2 :


z : B

f (isuc(d)≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n)

h ′(x) =M (suc(m))⊎M (n) inr(w )




: M (suc(d)) → type
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D2−3−1:

Given x ′ : M (d), by applying ΠE with u3 of (5.80), we obtain

u3(x ′) :



©­«v1 :


z : A

f
(
(π1(i(k )(d)(p19(u ′))))(x ′)

)
=A⊎B inl(z)

ª®¬ →


w : M (m)

h(x ′) =M (m)⊎M (n) inl(w )

©­«v2 :


z : B

f
(
(π1(i(k )(d)(p19(u ′))))(x ′)

)
=A⊎B inr(z)

ª®¬ →


w : M (n)

h(x ′) =M (m)⊎M (n) inr(w )




(5.119)

By Lemma 27, we obtain an identity by the following delivation,D2−3−1(1).

....
M (k ) : type

p27 :

(k , l ,n : Nat) → (p1 : k = suc(l) + n) → (y : M (l )) →

(π1(i(k )(suc(l))(⟨n, p1⟩)))(inl(y ))

=M (k ) (π1(i(k )(l )(p19(⟨n, p1⟩))))(y )

(Lm27)

k : Nat d : Nat
u ′ : suc(d) ≤ k
π1(u ′) : Nat ΣEL

u ′ : suc(d) ≤ k

π2(u ′) :
k =Nat suc(d) + π1(u ′)

ΣER

x ′ : M (d)

p27(k )(d)(π1(u ′))(π2(u ′))(x ′) :
(π1(i(k )(suc(d))(⟨π1u ′, π2u ′⟩)))(inl(x ′)) =M (k ) (π1(i(k )(d)(p19(⟨π1u ′, π2u ′⟩))))(x ′)

ΠE ∗

u ′ ≡ ⟨π1u ′, π2u ′⟩....
(π1(i(k )(suc(d))(⟨π1u ′, π2u ′⟩)))(inl(x ′))

=M (k ) (π1(i(k )(d)(p19(⟨π1u ′, π2u ′⟩))))(x ′)

≡β
(isuc(d)≤k )(inl(x ′))

=M (k ) (π1(i(k )(d)(p19(u ′))))(x ′)

p27(k )(d)(π1(u ′))(π2(u ′))(x ′) :
(isuc(d)≤k )(inl(x ′)) =M (k ) (π1(i(k )(d)(p19(u ′))))(x ′)

conv

p13(p27(k )(d)(π1(u ′))(π2(u ′))(x ′)) :
(π1(i(k )(d)(p19(u ′))))(x ′) =M (k ) (isuc(d)≤k )(inl(x ′))

(Th13)

Therefore, the following delivation holds.

....
M (k ) : type

....
(π1(i(k )(d)(p19(u ′))))(x ′) :

M (k )

....
(isuc(d)≤k )(inl(x ′)) :

M (k )
T14

.... D2−3−1(1)

p13(p27(k )(d)(π1(u ′))(π2(u ′))(x ′)) :

(π1(i(k )(d)(p19(u ′))))(x ′)

=M (k ) (isuc(d)≤k )(inl(x ′))

....
u3(x ′) :

©­«v1 :


z : A

f
(
(π1(i(k )(d)(p19(u ′))))(x ′)

)
=A⊎B inl(z)

ª®¬ →


w : M (m)

h(x ′) =M (m)⊎M (n) inl(w )

©­«v2 :


z : B

f
(
(π1(i(k )(d)(p19(u ′))))(x ′)

)
=A⊎B inr(z)

ª®¬ →


w : M (n)

h(x ′) =M (m)⊎M (n) inr(w )




p15(p13(p27(k )(d)(π1(u ′))(π2(u ′))(x ′));u3(x ′)) :



©­«v1 :


z : A

f
(
(isuc(d)≤k )(inl(x ′))

)
=A⊎B inl(z)

ª®¬ →


w : M (m)

h(x ′) =M (m)⊎M (n) inl(w )

©­«v2 :


z : B

f
(
(isuc(d)≤k )(inl(x ′))

)
=A⊎B inr(z)

ª®¬ →


w : M (n)

h(x ′) =M (m)⊎M (n) inr(w )





(Th15)

T14:

λy .



©­«v1 :


z : A

f
(
y
)
=A⊎B inl(z)

ª®¬ →


w : M (m)
h(x) =M (m)⊎M (n) inl(w )

©­«v2 :


z : B

f
(
y
)
=A⊎B inr(z)

ª®¬ →


w : M (n)
h(x) =M (m)⊎M (n) inr(w )




: M (k ) → type

Let

v1
def
≡ π1(p15(p13(p27(k )(d)(π1(u ′))(π2(u ′))(x ′));u3(x ′)))

v2
def≡ π2(p15(p13(p27(k )(d)(π1(u ′))(π2(u ′))(x ′));u3(x ′)))
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in

v1 :
©­«v1 :


z : A

f
(
(isuc(d)≤k )(inl(x ′))

)
=A⊎B inl(z)

ª®¬ →


w : M (m)

h(x ′) =M (m)⊎M (n) inl(w )


(5.120)

v2 :
©­«v2 :


z : B

f
(
(isuc(d)≤k )(inl(x ′))

)
=A⊎B inr(z)

ª®¬ →


w : M (n)

h(x ′) =M (m)⊎M (n) inr(w )

 .
(5.121)

Now assume

v ′
1 :


z : A

f
(
(isuc(d)≤k )(inl(x ′))

)
=A⊎B inl(z)

 (5.122)

By applyingΠE with (5.120) and (5.122) and then applying ΣER , we obtain:

π2(v1(v ′
1)) : h(x ′) =M (m)⊎M (n) inl(π1(v1(v ′

1))) (5.123)

By = I ,

reflM (suc(m))⊎M (n)(case h(x ′) of (λz .inl(inl(z)), λz .inr(z))) :

case h(x ′) of (λz .inl(inl(z)), λz .inr(z)) =M (suc(m))⊎M (n) case h(x ′) of (λz .inl(inl(z)), λz .inr(z))
(5.124)

By (5.124) and substitutionby identity (Theorem15)with (5.123), wehave

p15(π2(v1(v ′
1)); reflM (suc(m))⊎M (n)(case h(x ′) of (λz .inl(inl(z)), λz .inr(z)))) :

case h(x ′) of (λz .inl(inl(z)), λz .inr(z))

=M (suc(m))⊎M (n) case inl(π1(v1(v ′
1))) of (λz .inl(inl(z)), λz .inr(z)),

fromwhich we can obtain

p15(π2(v1(v ′
1)); reflM (suc(m))⊎M (n)(case h(x ′) of (λz .inl(inl(z)), λz .inr(z)))) :

h′(inl(x ′)) =M (suc(m))⊎M (n) inl(inl(π1(v1(v ′
1)))) (5.125)

by β-reduction and conv , as the following equivalence holds.

case inl(π1(v1(v ′
1))) of (λz .inl(inl(z)), λz .inr(z)) ≡β inl(inl(π1(v1(v ′

1))))

case h(x ′) of (λz .inl(inl(z)), λz .inr(z)) ≡β h′(inl(x ′))
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By applying ΣI with inl(π1(v1(v ′
1))) : M (suc(m)) and (5.125), we have

⟨inl(π1(v1(v ′
1))),p15(π2(v1(v ′

1)); reflM (suc(m))⊎M (n)(case h(x ′) of (λz .inl(inl(z)), λz .inr(z))))⟩ :
w : M (suc(m))

h′(inl(x ′)) =M (suc(m))⊎M (n) inl(w )


(5.126)

Thus, by ΠI with (5.122) and (5.126), we obtain

λv ′
1.⟨inl(π1(v1(v ′

1))),p15(π2(v1(v ′
1)); reflM (suc(m))⊎M (n)(case h(x ′) of (λz .inl(inl(z)), λz .inr(z))))⟩ :©­«v ′

1 :


z : A

f
(
(isuc(d)≤k )(inl(x ′))

)
=A⊎B inl(z)

ª®¬ →


w : M (suc(m))

h′(inl(x ′)) =M (suc(m))⊎M (n) inl(w )


(5.127)

On the other hand, let us assume

v ′
2 :


z : B

f (isuc(d)≤k (x)) =A⊎B inr(z)

 (5.128)

By applyingΠE with (5.121) and (5.128) and then applying ΣER , we obtain:

π2(v2(v ′
2)) : h(x ′) =M (m)⊎M (n) inr(π1(v2(v ′

2))) (5.129)

Again, by = I ,

reflM (suc(m))⊎M (n)(case h(x ′) of (λz .inl(inl(z)), λz .inr(z))) :

case h(x ′) of (λz .inl(inl(z)), λz .inr(z)) =M (suc(m))⊎M (n) case h(x ′) of (λz .inl(inl(z)), λz .inr(z))
(5.130)

By (5.130) and substitution by identity (15) with (5.129), we have

p15(π2(v2(v ′
2)); reflM (suc(m))⊎M (n)(case h(x ′) of (λz .inl(inl(z)), λz .inr(z)))) :

case h(x ′) of (λz .inl(inl(z)), λz .inr(z))

=M (suc(m))⊎M (n) case inr(π1(v2(v ′
2))) of (λz .inl(inl(z)), λz .inr(z)),

fromwhich we can obtain

p15(π2(v2(v ′
2)); reflM (suc(m))⊎M (n)(case h(x ′) of (λz .inl(inl(z)), λz .inr(z)))) :

h′(inl(x ′)) =M (suc(m))⊎M (n) inr(π1(v2(v ′
2)))

(5.131)
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by β-reduction and conv , as the following equivalence holds.

case inr(π1(v2(v ′
2))) of (λz .inl(inl(z)), λz .inr(z)) ≡β inr(π1(v2(v ′

2)))

case h(x ′) of (λz .inl(inl(z)), λz .inr(z)) ≡β h′(inl(x ′))

By applying ΣI with π1(v2(v ′
2)) : M (n) and (5.131), we have

⟨π1(v2(v ′
2)),p15(π2(v2(v ′

2)); reflM (suc(m))⊎M (n)(case h(x ′) of (λz .inl(inl(z)), λz .inr(z))))⟩ :
w : M (n)

h′(inl(x ′)) =M (suc(m))⊎M (n) inr(w )


(5.132)

Thus, by ΠI with (5.128) and (5.132), we obtain

λv ′
2.⟨π1(v2(v ′

2)),p15(π2(v2(v ′
2)); reflM (suc(m))⊎M (n)(case h(x ′) of (λz .inl(inl(z)), λz .inr(z))))⟩ :©­«v ′

2 :


z : B

f (isuc(d)≤k (x)) =A⊎B inr(z)

ª®¬ →


w : M (n)

h′(inl(x ′)) =M (suc(m))⊎M (n) inr(w )


(5.133)

Thus, by applying ΣI with (5.127) and (5.133), we finally obtain the fol-

lowing proof as t2−3−1.

⟨λv ′
1.⟨inl(π1(v1(v ′

1))),p15(π2(v1(v ′
1)); reflM (suc(m))⊎M (n)(case h(x ′) of (λz .inl(inl(z)), λz .inr(z))))⟩,

λv ′
2.⟨π1(v2(v ′

2)),p15(π2(v2(v ′
2)); reflM (suc(m))⊎M (n)(case h(x ′) of (λz .inl(inl(z)), λz .inr(z))))⟩⟩ :

©­«v1 :


z : A

f
(
(isuc(d)≤k )(inl(x ′))

)
=A⊎B inl(z)

ª®¬ →


w : M (suc(m))

h′(inl(x ′)) =M (suc(m))⊎M (n) inl(w )

©­«v2 :


z : B

f
(
(isuc(d)≤k )(inl(x ′))

)
=A⊎B inr(z)

ª®¬ →


w : M (n)

h′(inl(x ′)) =M (suc(m))⊎M (n) inr(w )




(5.134)
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D2−3−2:

.... T15
z : A

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inl(z)

 : type
v ′
1 :


z : A

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inl(z)


1

x ′ : ⊤
inr(x ′) : M (suc(m)) ⊎IR

....
M (suc(m)) ⊎ M (n) : type

....
h′(inr(x ′)) : M (suc(m)) ⊎ M (n)

....
inl(inr(x ′)) : M (suc(m)) ⊎ M (n) h′(inr(x ′)) ≡β inl(inr(x ′))

reflM (suc(m))⊎M (n)(h′(inr(x ′)) :
h′(inr(x ′)) =M (suc(m))⊎M (n) inl(inr(x ′))

(Th16)

⟨inr(x ′), reflM (suc(m))⊎M (n)(h′(inr(x ′))⟩ :
w : M (suc(m))

h′(inr(x ′)) =M (suc(m))⊎M (n) inl(w )


ΣI

⟨inr(x ′), reflM (suc(m))⊎M (n)(h′(inr(x ′))⟩ :
w : M (suc(m))

h′(inr(x ′)) =M (suc(m))⊎M (n) inl(w )


wk

λv ′
1.⟨inr(x ′), reflM (suc(m))⊎M (n)(h′(inr(x ′))⟩ :©­«v ′
1 :


z : A

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inl(z)

ª®¬ →


w : M (suc(m))

h′(inr(x ′)) =M (suc(m))⊎M (n) inl(w )


ΠI , 1

x ′ : ⊤.... D2−3−2(1)

t2−3−2(1) :
©­«v2 :


z : B

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inr(z)

ª®¬ →


w : M (n)

h′(inr(x ′)) =M (suc(m))⊎M (n) inr(w )


⟨λv ′

1.⟨inr(x ′), reflM (suc(m))⊎M (n)(h′(inr(x ′))⟩, t2−3−2(1)⟩ :



©­«v1 :


z : A

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inl(z)

ª®¬ →


w : M (suc(m))

h′(inr(x ′)) =M (suc(m))⊎M (n) inl(w )

©­«v2 :


z : B

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inr(z)

ª®¬ →


w : M (n)

h′(inr(x ′)) =M (suc(m))⊎M (n) inr(w )




true

×I

D2−3−2(1):

....
z : B

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inr(z)

 : type

v ′
2 :


z : B

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inr(z)


2

.... D2−3−2(2)
t2−3−2(2) : ⊥

.... T16

λp .


w : M (n)

h′(inr(x ′)) =M (suc(m))⊎M (n) inr(w )

 : ⊥ → type

caset2−3−2(2)() :


w : M (n)

h′(inr(x ′)) =M (suc(m))⊎M (n) inr(w )


⊥E

λv ′
2.caset2−3−2(2)() :

©­«v ′
2 :


z : B

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inr(z)

ª®¬ →


w : M (n)

h′(inr(x ′)) =M (suc(m))⊎M (n) inr(w )


ΠI , 2

D2−3−2(2):

....
A ⊎ B : type

....
inl(π1(casex ′(p′))) : A ⊎ B

....
f
(
(isuc(d)≤k )(inr(x ′))

)
: A ⊎ B

....
inr(π1(v ′

2)) : A ⊎ B

x ′ : ⊤

....

λx ′.


z : A

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inl(z)

 :
⊤ → type

p′ :
z : A

f (isuc(d)≤k (inr(⟨⟩))) =A⊎B inl(z)


casex ′(p′) :


z : A

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inl(z)


⊤E

π2(casex ′(p′)) :

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inl(π1(casex ′(p′)))

ΣER

p13(π2(casex ′(p′))) :

inl(π1(casex ′(p′)))

=A⊎B f
(
(isuc(d)≤k )(inr(x ′))

)
(Th13)

v ′
2 :


z : B

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inr(z)


π2(v ′

2) :

f
(
(isuc(d)≤k )(inr(x ′))

)
=A⊎B inr(π1(v ′

2))

ΣER

p14(p13(π2(casex ′(p′))); π2(v ′
2)) :

inl(π1(casex ′(p′))) =A⊎B inr(π1(v ′
2))

(Th14)
A : type B : type

....
π1(casex ′(p′)) : A

....
π1(v ′

2) : B

p25(π1(casex ′(p′)); π1(v ′
2)) :

¬(inl(π1(casex ′(p′))) =A⊎B inr(π1(v ′
2)))

(Th25)

(
p25(π1(casex ′(p′)); π1(v ′

2))
) (
p14(p13(π2(casex ′(p′))); π2(v ′

2))
)
: ⊥ ΠE

Now we have proved D2−1, D2−2, and D2−3. D2 is thus given as in the

derivation shown at (5.83).

D3: Using the same technique as in the derivation ofD2, we can obtain a

counterpart of the proof t2 from the assumption.

End of proof.

By Lemma 8 proved above, we can deduce the following corollary by

putting k ′ = k .
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Corollary 9:(
A,B : type

)
→ (k : Nat) → (f : Mk → A ⊎ B) → bijection (f ) →

m : Nat

n : Nat

k = m + n

h : Mk → Mm ⊎Mn

bijection (h)

(x : Mk ) →



©­«u3 :


z : A

f (x) =A⊎B inl(z)

ª®¬ →


w : Mm

h(x) =Mm⊎Mn inl(w )

©­«u4 :


z : B

f (x) =A⊎B inr(z)

ª®¬ →


w : Mn

h(x) =Mm⊎Mn inr(w )















5.3.6 Theorem: Finiteness of a part

Nowwewill prove the following theorem, whichwementioned in the be-

ginning of the previous section.

Theorem 10

Given A : type, B : type, and k : Nat, if there exists a function f :

Mk → A ⊎ B such that bijection (f ) is true, there exists a function

g : Mm → A for somem ≤ k such that bijection (g ) is true.

Proof. Theproofwill bedivided into twosteps: (1)first,webeginbycon-

stucting a functionMm → A for some m : Nat; (2) next, we prove that the

function is bijection.

(1) By assumption A : type, B : type, k : Nat, f : Mk → A ⊎ B , and

b f : bijection (f ), Corollary 9 yields a proof term of the following type. Let

us write this term c .
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

m : Nat

n : Nat

k = m + n

h : Mk → Mm ⊎Mn

bijection (h)

(x : Mk ) →



©­«u3 :


z : A

f (x) =A⊎B inl(z)

ª®¬ →


w : Mm

h(x) =Mm⊎Mn inl(w )

©­«u4 :


z : B

f (x) =A⊎B inr(z)

ª®¬ →


w : Mn

h(x) =Mm⊎Mn inr(w )















By applying ΣE several times to c , we get the following terms, whichwe

abbreviate tom, n, h, bh , andC , respectively.

m
def
≡ π1(c ) : Nat

n
def
≡ π1π2(c ) : Nat

h
def
≡ π1π2π2π2(c ) : Mk → Mm ⊎Mn

bh
def
≡ π1π2π2π2π2(c ) : bijection (h)

C
def
≡ π2π2π2π2π2(c ) :

(x : Mk ) →



©­«u3 :


z : A

f (x) =A⊎B inl(z)

ª®¬ →


w : Mm

h(x) =Mm⊎Mn inl(w )

©­«u4 :


z : B

f (x) =A⊎B inr(z)

ª®¬ →


w : Mn

h(x) =Mm⊎Mn inr(w )




.

Termh−1 of typeMm ⊎Mn → Mk stands for λw .π1π2bh(w ), which is the

inverse of h obtained from surjection (h) by the following derivation.
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bh : bijection (h)

bh :

injection (h)

surjection (h)


def

π2bh : surjection (h) ×E

π2bh : (w : Mm ⊎Mn) →


y : Mk

w =Mm⊎Mn h(y )


def

w : Mm ⊎Mn
1

π2bh(w ) :


y : Mk

w =Mm⊎Mn h(y )


ΠE

π1π2bh(w ) : Mk
ΣE

λw .π1π2bh(w ) : Mm ⊎Mn → Mk
ΠI , 1

Similarly, we obtain the inverse of f , λw .π1π2b f (w ) : A ⊎ B → Mk , from

b f : bijection (f ). We write it f −1.

We construct g ′ : (w : Mm) →


a : A

inl(a) =A⊎B f (h−1(inl(w )))

 for m : Nat,

which gives λw .π1g ′(w ) : Mm → A.

....
Mm : type

f : Mk → A ⊎ B

h−1 :

Mm ⊎Mn

→ Mk

w : Mm
4

....
Mn : type

inl(w )
: Mm ⊎Mn

⊎IL

h−1(inl(w ))
: Mk

→E

f (h−1(inl(w ))) : A ⊎ B
→E

....
λx .f (h−1(inl(w ))) =A⊎B x

→


a : A

inl(a) =A⊎B x


: A ⊎ B → type

t : A 3 u : f (h−1(inl(w ))) =A⊎B inl(t )
1

.... DA

⟨t , reflA⊎B(inl(t ))⟩

:


a : A

inl(a) =A⊎B inl(t )


λu .⟨t , reflA⊎B(inl(t ))⟩

: f (h−1(inl(w ))) =A⊎B inl(t )

→


a : A

inl(a) =A⊎B inl(t )



ΠI , 1

t : B 3 u : f (h−1(inl(w ))) =A⊎B inr(t )
2

.... DB

dB

:


a : A

inl(a) =A⊎B inr(t )


λu .dB

: f (h−1(inl(w ))) =A⊎B inr(t )

→


a : A

inl(a) =A⊎B inr(t )



ΠI , 2

case f (h−1(inl(w ))) of (λt .λu .⟨t , reflA⊎B(inl(t ))⟩, λt .λu .dB)

: f (h−1(inl(w ))) =A⊎B f (h−1(inl(w )))

→


a : A

inl(a) =A⊎B f (h−1(inl(w )))



⊎E , 3 ....
A ⊎ B : type

....
f (h−1(inl(w ))) : A ⊎ B

reflA⊎B(f (h−1(inl(w )))) :
f (h−1(inl(w ))) =A⊎B f (h−1(inl(w )))

= I

(case f (h−1(inl(w ))) of (λt .λu .⟨t , reflA⊎B(inl(t ))⟩, λt .λu .dB))(reflA⊎B(f (h−1(inl(w )))))

:


a : A

inl(a) =A⊎B f (h−1(inl(w )))


→E

λw .(case f (h−1(inl(w ))) of (λt .λu .⟨t , reflA⊎B(inl(t ))⟩, λt .λu .dB))(reflA⊎B(f (h−1(inl(w )))))

: (w : Mm) →


a : A

inl(a) =A⊎B f (h−1(inl(w )))


ΠI , 4

DA andDB , as well as dB , are given below.
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DA

t : A

....
A ⊎ B : type

t : A
inl(t ) : A ⊎ B

⊎I

reflA⊎B(inl(t )) : inl(t ) =A⊎B inl(t ) = I
u : f (h−1(inl(w ))) =A⊎B inl(t )

reflA⊎B(inl(t )) : inl(t ) =A⊎B inl(t ) wk

⟨t , reflA⊎B(inl(t ))⟩ :


a : A

inl(a) =A⊎B inl(t )


ΣI

DB As theconditionC statedaboveholds for f andh, term f (h−1(inl(w ))) :

A⊎B cannot consist of a proof ofB . Wewill show that the assumption t : B

leads to a contradiction.

....
A ⊎ B

: type

....
f (f −1(inr(t )))

: A ⊎ B

....
inr(t )
: A ⊎ B

....
λx .©­«u4 :


z : B

x =A⊎B inr(z)

ª®¬
→


w : Mn

h(f −1(inr(t ))) =Mm⊎Mn inr(w )


: A ⊎ B → type

t24

: (x : A ⊎ B)
→ x =A⊎B f (f −1(x))

(Th24)
....

inr(t )
: A ⊎ B

t24(inr(t ))
: f (f −1(inr(t ))) =A⊎B inr(t )

ΠE

C : (x : Mk ) →



©­«u3 :


z : A

f (x) =A⊎B inl(z)

ª®¬ →


w : Mm

h(x) =Mm⊎Mn inl(w )

©­«u4 :


z : B

f (x) =A⊎B inr(z)

ª®¬ →


w : Mn

h(x) =Mm⊎Mn inr(w )





A : type con
t : B

inr(t ) : A ⊎ B
⊎I

f −1 : A ⊎ B → Mk

f −1(inr(t )) : Mk
→E

C (f −1(inr(t ))) :

©­«u3 :


z : A

f (f −1(inr(t ))) =A⊎B inl(z)

ª®¬
→


w : Mm

h(f −1(inr(t ))) =Mm⊎Mn inl(w )

©­«u4 :


z : B

f (f −1(inr(t ))) =A⊎B inr(z)

ª®¬
→


w : Mn

h(f −1(inr(t ))) =Mm⊎Mn inr(w )





ΠE

π2C (f −1(inr(t ))) :©­«u4 :


z : B

f (f −1(inr(t ))) =A⊎B inr(z)

ª®¬
→


w : Mn

h(f −1(inr(t ))) =Mm⊎Mn inr(w )



×EL

p15(t24(inr(t )), π2C (f −1(inr(t ))))

: ©­«u4 :


z : B

inr(t ) =A⊎B inr(z)

ª®¬ →


w : Mn

h(f −1(inr(t ))) =Mm⊎Mn inr(w )


=Sub

t : B

....
A ⊎ B : type

A : type con
t : B

inr(t ) : A ⊎ B
⊎IR

reflA⊎B(inr(t )) :
inr(t ) =A⊎B inr(t )

= I

⟨t , reflA⊎B(inr(t ))⟩

:


z : B

inr(t ) =A⊎B inr(z)


ΣI

p15(t24(inr(t )), π2C (f −1(inr(t )))))(⟨t , reflA⊎B(inr(t ))⟩

:


w : Mn

h(f −1(inr(t ))) =Mm⊎Mn inr(w )


ΠE

LetX stand forp15(t24(inr(t )), π2C (f −1(inr(t )))))(⟨t , reflA⊎B(inr(t ))⟩, theproof

term constructed by the derivation above. The term X has type
w ′ : Mn

h(f −1(inr(t ))) =Mm⊎Mn inr(w ′)

 . Aswehaveassumedu : f (h−1(inl(w ))) =A⊎B

inr(t ), we can have a proof of


w ′ : Mn

h(f −1(f (h−1(inl(w ))))) =Mm⊎Mn inr(w ′)

 . As
f −1 and h−1 are inverse of f and h, respectively, we will get a proof of

w ′ : Mn

inl(w ) =Mm⊎Mn inr(w ′)

 . We show the derivation below.
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....
Mm ⊎Mn

: type

....
h(h−1(inl(w )))
: Mm ⊎Mn

....
inl(w )
: Mm ⊎Mn

....

λx .


w ′ : Mn

x =Mm⊎Mn inr(w ′)


: Mm ⊎Mn → type

t24

: (x : Mm ⊎Mn)
→ h(h−1(x)) =Mm⊎Mn x

(Th24) ....
inl(w ) : Mm ⊎Mn

t24(inl(w )) : h(h−1(inl(w ))) = inl(w )
ΠE

....
Mk

: type
....

f −1(f (h−1(inl(w ))))
: Mk ....

h−1(inl(w ))
: Mk

....

λx .


w : Mn

h(x) =Mm⊎Mn inr(w )


: Mk → type

t24 :
(x : Mk )
→ f −1(f (x)) =Mk x

(Th24)

h−1 :

Mm ⊎Mn

→ Mk

w : Mm

....
Mn : type

inl(w )
: Mm ⊎Mn

⊎IL

h−1(inl(w ))
: Mk

→E

t24(h−1(inl(w ))) :
f −1(f (h−1(inl(w ))))

=Mk h−1(inl(w ))

ΠE

....
A ⊎ B

: type

....
inr(t )
: A ⊎ B

....
f (h−1(inl(w )))

: A ⊎ B

....

λx .


w ′ : Mn

h(f −1(x))

=Mm⊎Mn inr(w ′)


: A ⊎ B → type

....
A ⊎ B

: type
u

: f (h−1(inl(w ))) =A⊎B inr(t )

p13(u) :
inr(t )

=A⊎B f (h−1(inl(w )))

=Sym .... DB ′

X :


w ′ : Mn

h(f −1(inr(t )))

=Mm⊎Mn inr(w ′)


p15(p13(u),X )

:


w ′ : Mn

h(f −1(f (h−1(inl(w ))))) =Mm⊎Mn inr(w ′)


=Sub

p15(t24(h−1(inl(w ))),p15(p13(u),X ))

:


w ′ : Mn

h(h−1(inl(w ))) =Mm⊎Mn inr(w ′)


=Sub

p15(t24(inl(w )),p15(t24(h−1(inl(w ))),p15(p13(u),X ))) :


w ′ : Mn

inl(w ) =Mm⊎Mn inr(w ′)


=Sub

Nowwehavep15(t24(inl(w )),p15(t24(h−1(inl(w ))),p15(p13(u),X )))of type
w ′ : Mn

inl(w ) =Mm⊎Mn inr(w ′)

 . We write it Y . The following derivation shows

that we can get a proof of


a : A

inl(a) =A⊎B inr(t )

 , as π2Y : inl(w ) =Mm⊎Mn

inr(π1Y ) leads to a contradiction with Theorem 25.

Y :


w ′ : Mn

inl(w ) =Mm⊎Mn inr(w ′)


π2Y : inl(w ) =Mm⊎Mn inr(π1Y )

....
Mm : type

....
Mn : type w : Mm

....
π1Y : Mn

p25(w , π1Y ) : ¬(inl(π1Y ) =Mm⊎Mn inr(π1Y ))
(Th25)

p25(w , π1Y )(π2Y ) : ⊥ →E

....
a : A

inl(a) =A⊎B inr(t )

 : type q : ⊥ 5


a : A

inl(a) =A⊎B inr(t )

 : type
wk

λq .


a : A

inl(a) =A⊎B inr(t )

 : ⊥ → type

→ I , 5

casep25(w ,π1Y )(π2Y )() :


a : A

inl(a) =A⊎B inr(t )


⊥E

Wehaveconstructedaproofof (w : Mm) →


a : A

inl(a) =A⊎B f (h−1(inl(w )))

 ,
which we write g ′. This yields λw .π1g ′(w ) : Mm → A, wherem ≤ k .

(2)Wenextprove thatbijection (λw .π1g ′(w ))holds, namely, (i) injection (λw .π1g ′(w ))

and (ii) surjection (λw .π1g ′(w )) are true.

(i) injection (λw .π1g ′(w )) We prove y =Mk y ′ under the assumption y :

Mm , y ′ : Mm , and e : π1g ′(y ) =A π1g ′(y ′). By the following derivation, we
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obtain p14(p13(p15(e , π2g ′(y ))), π2g ′(y ′)) : f (h−1(inl(y ))) =A⊎B f (h−1(inl(y ))).

....
A ⊎ B : type

....
f (h−1(inl(y ))) : A ⊎ B

....
inl(π1g ′(y ′)) : A ⊎ B

....
f (h−1(inl(y ′))) : A ⊎ B

A : type
....

π1g ′(y ) : A
....

π1g ′(y ′) : A

....
λx .inl(x) =A⊎B f (h−1(inl(y )))

: A → type
e : π1g ′(y ) =A π1g ′(y ′)

y : Mm g ′ : (w : Mm) →


a : A

inl(a) =A⊎B f (h−1(inl(w )))


g ′(y ) :


a : A

inl(a) =A⊎B f (h−1(inl(y )))


ΠE

π2g ′(y ) :
inl(π1g ′(y )) =A⊎B f (h−1(inl(y )))

ΣER

p15(e , π2g ′(y ))
: inl(π1g ′(y ′)) =A⊎B f (h−1(inl(y )))

=Sub

p13(p15(e , π2g ′(y )))
: f (h−1(inl(y ))) =A⊎B inl(π1g ′(y ′))

=Sym

y ′ : Mm g ′ : (w : Mm) →


a : A

inl(a) =A⊎B f (h−1(inl(w )))


g ′(y ′) :


a : A

inl(π1g ′(y ′)) =A⊎B f (h−1(inl(y ′)))


ΠE

π2g ′(y ′) :
inl(π1g ′(y ′)) =A⊎B f (h−1(inl(y ′)))

ΣER

p14(p13(p15(e , π2g ′(y ))), π2g ′(y ′)) : f (h−1(inl(y ))) =A⊎B f (h−1(inl(y ))) =Trans

Now, injection (f ) holds according to the assumption. As bijection (h)

holds, injection
(
h−1) holdsbyTheorem24. ByLemma20, injection (λx .inl(x))

alsoholds. Hence, byLemma22, it follows that injection
(
λx .f (h−1(inl(x)))

)
.

Therefore, y =Mm y ′.

(ii) surjection (λw .π1g ′(w ))We prove


w : Mm

a =A π1g ′(w )

 by assuming a : A.

a : A

t24 : (x : A ⊎ B) → f (f −1(x)) =A⊎B x
T h24

....
inl(a) : A ⊎ B

t24(inl(a)) : f (f −1(inl(a))) =A⊎B inl(a)
ΠE

⟨a , t24(inl(a))⟩

:


z : A

f (f −1(inl(a))) =A⊎B inl(z)


ΣI

f −1 : A ⊎ B → Mk

a : A B : type
inl(a) : A ⊎ B

⊎I

f −1(inl(a))
→E

C : (x : Mk ) →



©­«u3 :


z : A

f (x) =A⊎B inl(z)

ª®¬ →


w : Mm

h(x) =Mm⊎Mn inl(w )

©­«u4 :


z : B

f (x) =A⊎B inr(z)

ª®¬ →


w : Mn

h(x) =Mm⊎Mn inr(w )




C (f −1(inl(a))) :



©­«u3 :


z : A

f (f −1(inl(a))) =A⊎B inl(z)

ª®¬ →


w : Mm

h(f −1(inl(a))) =Mm⊎Mn inl(w )

©­«u4 :


z : B

f (f −1(inl(a))) =A⊎B inr(z)

ª®¬ →


w : Mn

h(f −1(inl(a))) =Mm⊎Mn inr(w )





ΠE

π1C (f −1(inl(a))) : ©­«u3 :


z : A

f (f −1(inl(a))) =A⊎B inl(z)

ª®¬ →


w : Mm

h(f −1(inl(a))) =Mm⊎Mn inl(w )


×ER

(π1C (f −1(inl(a))))(⟨a , t24(inl(a))⟩) :


w : Mm

h(f −1(inl(a))) =Mm⊎Mn inl(w )


ΠE

Let Z stand for the constructed term,

(π1C (f −1(inl(a))))(⟨a , t24(inl(a))⟩) :


w : Mm

h(f −1(inl(a))) =Mm⊎Mn inl(w )

 .
From this, We have

π1Z : Mm (5.135)

π2Z : h(f −1(inl(a))) =Mm⊎Mn inl(π1Z ). (5.136)

Nowweprove inl(a) =A⊎B f (h−1(inl(π1Z )))and f (h−1(inl(π1Z ))) =A⊎B inl(π1g ′(π1Z )).
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First we prove inl(a) =A⊎B f (h−1(inl(π1Z ))). By = I ,

reflA⊎B(f (h−1(h(f −1(inl(a)))))) : f (h−1(h(f −1(inl(a))))) =A⊎B f (h−1(h(f −1(inl(a)))))

By =Subwith (5.136),

p15(π2Z , reflA⊎B(f (h−1(h(f −1(inl(a)))))))

: f (h−1(h(f −1(inl(a))))) =A⊎B f (h−1(inl(π1Z ))) (5.137)

As we have t24 : (x : Mk ) → h−1(h(x)) =Mk x (Theorem 24),

t24(f −1(inl(a))) : h−1(h(f −1(inl(a)))) =Mk f −1(inl(a))

holds for f −1(inl(a)). Hence, by =Subwith (5.137),

p15(t24(f −1(inl(a))),p15(π2Z , reflA⊎B(f (h−1(h(f −1(inl(a))))))))

: f (f −1(inl(a))) =A⊎B f (h−1(inl(π1Z ))) (5.138)

Similarly, as we have t24 : (x : A ⊎ B) → f (f −1(x)) =A⊎B x (Theorem 24),

t24(inl(a)) : f (f −1(inl(a))) =A⊎B inl(a)

holds for inl(a). Hnce, by =Subwith (5.138),

p15(t24(inl(a)),p15(t24(f −1(inl(a))),p15(π2Z , reflA⊎B(f (h−1(h(f −1(inl(a)))))))))

: inl(a) =A⊎B f (h−1(inl(π1Z ))).

(5.139)

Next, we prove f (h−1(inl(π1Z ))) =A⊎B inl(π1g ′(π1Z )). By applying ΠE

with (5.135) and g ′ : (w : Mm) →


a : A

inl(a) =A⊎B f (h−1(inl(w )))

 ,
g ′(π1Z ) :


a : A

inl(a) =A⊎B f (h−1(inl(π1Z )))

 .
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By ΣEL ,

π2g ′(π1Z ) : inl(π1g ′(π1Z )) =A⊎B f (h−1(inl(π1Z )))

By =Sym,

p13(π2g ′(π1Z )) : f (h−1(inl(π1Z ))) =A⊎B inl(π1g ′(π1Z )) (5.140)

By =Transwith (5.139) and (5.140),

p14(p15(t24(inl(a)),p15(t24(f −1(inl(a))),p15(π2Z , reflA⊎B(f (h−1(h(f −1(inl(a))))))))),

p13(π2g ′(π1Z )))

: inl(a) =A⊎B inl(π1g ′(π1Z )).

(5.141)

LetW stand for theproof termof (5.141). According toLemma20,wehave

l20 :
(
A,B : type

)
→ (y , y ′ : A) → inl(y ) =A⊎B inl(y ′) → y =A y ′. (5.142)

By the lemma and (5.141), we obtain

l20(A)(B)(a)(π1g ′(π1Z ))(W ) : a =A π1g ′(π1Z ) (5.143)

Thus, by applying ΣE with (5.135) and (5.143), we finally get

⟨π1Z , l20(A)(B)(a)(π1g ′(π1Z ))(W )⟩ :


w : Mm

a =A π1g ′(w )


End of proof.

We can rephrase Theorem 10 as follows.

Γ, A : type, B : type, a : Finite (A ⊎ B) ⊢ Finite (A) true

168



5.4. Right monotonicity

5.4 Rightmonotonicity

We show that, among typeQ∃ quantifiers in Table 5.1, Q∃
most andQ∃

at Le ast

are right upwardmonotone.

Theorem 11: Right upwardMonotonicity (Q∃
most andQ∃

at Le ast )

Γ, a : Finiteπ1
( (

x : entity
)
× A(x)

)
, p :



n : Nat

n ≥ N
h : Mn →


x : entity

u : A(x)

B(x)




bijectionπ1(h)






,

t :
(
x : entity

)
→ (u : A(x)) → B(x) → B′(x) ⊢



m : Nat

m ≥ N
g : Mm →


x : entity

u : A(x)

B′(x)




bijectionπ1(g )






true

holds, whereN is a natural number and

Γ ⊢ A : entity → type

Γ, x : entity,u : A(x) ⊢ B : entity → type

Γ, x : entity,u : A(x) ⊢ B′ : entity → type

Proof. The proof will be devided into two steps.

In the first step, we construct a number that corresponds to m in the

righthandside. Thenumberm isobtainedbyprovingFiniteπ1
( (

x : entity
)
× (u : A(x)) × B′(x)

)
from a : Finiteπ1

( (
x : entity

)
× A(x)

)
. We then show that m ≥ N holds in

the second step.

For the preparation, we apply ΣE to a and p several times and obtain
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the following proof terms. For abbreviation, we use k , r , f , and b f .

k ≡ π1a : Nat

f ≡ π1π2a : Mk →
(
x : entity

)
× A(x)

b f ≡ π2π2 : bijectionπ1(f )

(5.144)

n ≡ π1p : Nat

r ≡ π1π2p : n ≥ N

h ≡ π1π2π2p : Mn →
(
x : entity

)
× (u : A(x)) × B(x)

bh ≡ π2π1π2p1 : bijectionπ1(h)

(5.145)

(1) From f and b f , we can obtain the following along the process we have

shown in Figure 5.1.

m : Nat (5.146)

g : Mm →


x : entity

u : A(x)

B′(x)




(5.147)

bg : bijectionπ1(g ) (5.148)

In the step ⟨2⟩, the following have to hold in order to apply Theorem4.

(
x : entity

)
→ A(x) →


v : A(x)

u : A(x)

B(x)



⊎


v : A(x)

¬


u : A(x)

B(x)




(5.149)

(
x : entity

)
→


v : A(x)

u : A(x)

B(x)



⊎


v : A(x)

¬


u : A(x)

B(x)



→ A(x) (5.150)

(5.150) obviously holds. (5.149) is derived as follows, whered is a proof

that (u : A(x)) × B(x) is a decidable predicate.

170



5.4. Right monotonicity

d :(
x : entity

)
→


u : A(x)

B(x)

 ⊎ ¬


u : A(x)

B(x)


x : entity 3

d(x) :


u : A(x)

B(x)

 ⊎ ¬


u : A(x)

B(x)


ΠE

v : A(x) 2 z :


u : A(x)

B(x)


1

⟨v , z⟩ :


v : A(x)

u : A(x)

B(x)



ΣI

inl(⟨v , z⟩) :


v : A(x)

u : A(x)

B(x)



⊎


v : A(x)

¬


u : A(x)

B(x)



⊎I

v : A(x) 2 z : ¬


u : A(x)

B(x)


1

⟨v , z⟩ : ¬


v : A(x)

u : A(x)

B(x)



ΣI

inr(⟨v , z⟩) :


v : A(x)

u : A(x)

B(x)



⊎


v : A(x)

¬


u : A(x)

B(x)



⊎I

case d(x) of (λz .inl(⟨v , z⟩), λz .inr(⟨v , z⟩)) :


v : A(x)

u : A(x)

B(x)



⊎


v : A(x)

¬


u : A(x)

B(x)




⊎E , 1

λv .case d(x) of (λz .inl(⟨v , z⟩), λz .inr(⟨v , z⟩)) : A(x) →


v : A(x)

u : A(x)

B(x)



⊎


v : A(x)

¬


u : A(x)

B(x)



ΠI , 2

λx .λv .case d(x) of (λz .inl(⟨v , z⟩), λz .inr(⟨v , z⟩)) :
(
x : entity

)
→ A(x) →


v : A(x)

u : A(x)

B(x)



⊎


v : A(x)

¬


u : A(x)

B(x)



ΠI , 3

(2) Next, we show that m ≥ N holds. We prove m ≥ n, where n is the

number that satisfy n ≥ N given in the premise p. It suffices to show that

there exists an injection fromMn toMm .5

First, we have h : Mn →
(
x : entity

)
× (u : A(x)) × B(x). We can also

construct

λz .(π1z , (π1π2z , t (π1z )(π1π2z )(π2π2z ))) :


x : entity

u : A(x)

B(x)



→


x : entity

u : A(x)

B′(x)




with the second premise t :
(
x : entity

)
→ (u : A(x)) → B(x) → B′(x). We

write the term q .

ByapplyingΣEL tobg : bijectionπ1(g ),weobtain π2bg : surjectionπ1(g ),

where surjectionπ1(g ) is
©­­­­«

z :


x : entity

u : A(x)

B′(x)



ª®®®®¬

→


y : Mm

π1z =entity π1g (y )

 by
5We have provided the semantic representations based on the assumption that an

injection corresponds to the small/large relation of numbers, which was also treated as

given in Sundholm’s original formulation. We assume that we can obtain the following

theorem for free: For any natural number n and n ′, if there is an injection from Mn to

Mn′ , then n ≤ n ′.
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definition. We write this term sg .

By combining h, q , and sg , we can construct the following function.

π1 ◦ sg ◦ q ◦ h : Mn → Mm .

Next, we show that π1 ◦ sg ◦ q ◦ h : Mn → Mm is an injection, i.e.,

(y : Mn) → (y ′ : Mn) → π1 ◦ sg ◦ q ◦ h(y ) =Mm π1 ◦ sg ◦ q ◦ h(y ′) → y =Mn y ′.

By assuming y : Mn , y ′ : Mn , and v : π1 ◦ sg ◦ q ◦h(y ) =Mm π1 ◦ sg ◦ q ◦h(y ′),

we prove y =Mn y ′.

By sequentially applying ΠE with sg , q , h, and y , we obtain

sg (q(h(y ))) :


w : Mm

π1q(h(y )) =entity π1g (w )

 ,
fromwhich, by ΣEL , we get

π2sg (q(h(y ))) : π1q(h(y )) =entity π1g (π1(sg (q(h(y ))))). (5.151)

Similarly, from sg , q , h, and y ′, we obtain

π2sg (q(h(y ′))) : π1q(h(y ′)) =entity π1g (π1(sg (q(h(y ′))))),

fromwhich, by =Sym, we have

p13(π2sg (q(h(y ′)))) : π1g (π1(sg (q(h(y ′))))) =entity π1q(h(y ′)). (5.152)

By applying =Subwith assumptionv : π1 ◦ sg ◦q ◦h(y ) =Mm π1 ◦ sg ◦q ◦h(y ′)

and (5.151), we get

p15(v , π2sg (q(h(y )))) : π1q(h(y )) =entity π1g (π1(sg (q(h(y ′))))). (5.153)

By applying =Transwith (5.152) and (5.153), we get

p14(p15(v , π2sg (q(h(y )))),p13(π2sg (q(h(y ′))))) (5.154)

: π1q(h(y )) =entity π1q(h(y ′))
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5.4. Right monotonicity

As q is λz .(π1z , (π1π2z , p2(π1z )(π2π2z ))), λx .π1q(x) ≡β λx .π1(x). Therefore,

p14(p15(v , π2sg (q(h(y )))),p13(π2sg (q(h(y ′))))) (5.155)

: π1(h(y )) =entity π1(h(y ′))

Now, as there exists proof ih of injectionπ1(h), weobtain the followingwith

y : Mn and y ′ : Mn .

ih(y )(y ′) : π1(h(y )) =entity π1(h(y ′)) → y =Mn y ′ (5.156)

Thus, by applying ΠE with (5.155) and (5.156), we finally get

ih(y )(y ′)(p14(p15(v , π2sg (q(h(y )))),p13(π2sg (q(h(y ′)))))) (5.157)

: y =Mn y ′

Therefore, we conclude that there exists an injectionMn → Mm .

End of proof.

Here is a remarkonstep ⟨2⟩, whereweappliedTheorem4. In theabove

proof, we transformed A(x) to (v : A(x)) × (u : A(x)) × B(x) ⊎ (v : A(x)) ×

¬ (u : A(x)) × B(x), which are mutually deducible. One might think that

A(x) to (u : A(x)) × B(x) ⊎ (u : A(x)) × ¬B(x) also works. Although A(x) and

(u : A(x)) ×B(x) ⊎ (u : A(x)) × ¬B(x) are alsomutually deducible, this is not

the case because (u : A(x)) × B(x) and (u : A(x)) × ¬B(x) are not contradic-

tory when u is appearing in B as a free variable: for a : (u : A(x)) × B(x)

and a′ : (u : A(x)) × ¬B(x), we only get π2a : B[π1a/u] and π2a′ : ¬B[π1a ′/u],

which are apparently different propositions. In other words, when there

is an anaphoric dependency between A and B , theremay exist an entity x

that satisfies (u : A(x)) × B(x) on one hand and satisfies (u : A(x)) × ¬B(x)

on the other hand. Thus, we cannot apply Theorem 5 to split the entities

into two groups, {x | (u : A(x)) × B(x)} and {x | (u : A(x)) × ¬B(x)}.
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We are familiar with such a situation in the interpretation of donkey

sentences. We repeat an example below.

(5.3) Most farmers who own a donkey beat it.

Recall that, since farmers can have multiple donkeys, there are two ways

of counting that has been taken into account in the literature. One is to

consider farmers that beat every donkey they own (universal reading, or

strong reading ). The other is to consider farmers that beat some donkey

they own (existential reading, or weak reading ). In our proof above, we

split entities into twogroups,where thefirst group, {x | (v : A(x)) × (u : A(x)) × B(x)},

consists of entities considered in the existential reading.

Right downward monotonicity of Q∃
at M ost can be proved in an analo-

gous way: when n ≤ N , one can prove m ≤ N from m ≤ n, which is sim-

ilarly proved by using the assumption
(
x : entity

)
→ (u : A(x)) → B′(x) →

B(x).

5.5 Left monotonicity

It is, in fact, not possible to give proofs of left monotonicity following a

similar strategy. In this section, we describe the problem.

We repeat themodel-theoretic definition of left upwardmonotonicity

below.

QuantifierQ is Left upwardmonotone (↑MON) if and only if, for allM ,

B ⊆ M , and A ⊆ A′ ⊆ M ,QM (A,B) impliesQM (A′,B).

Ifwewrite this definition as a theoremofdependent type theoryusing the

same idea, we get the following.
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5.5. Left monotonicity

A quantifierQ is left upwardmonotone if the judgement

Γ, p : Q(A,B), q :
(
x : entity

)
→ (v : A(x)) → A′(x) ⊢

Q(A′,B) true

holds, where

Γ ⊢ A : entity → type

Γ, x : entity, u : A(x) ⊢ B : entity → type

Γ, x : entity, u ′ : A′(x) ⊢ B : entity → type

Γ ⊢ Q(A,B) : type

The inclusion relation between A and A′ is again represented as a propo-

sition about entities. Here, unlike right upward monotonicity, we do not

have the elements to the left of A.

This formulation, however, works only when B on the left-hand side

does not depend on the proof of A. That is, we can account for (5.4) but

neither (5.5), (5.6), nor (5.7).

(5.4) Some youngman who owns a donkey is happy.

⇒ Somemanwho owns a donkey is happy.

(5.5) Some youngman who owns a1 donkey loves it1.

⇒ Somemanwho owns a2 donkey loves it2.

(5.6) Someman who owns a1 female donkey loves it1.

⇒ Somemanwho owns a1 donkey loves it1.

(5.7) Someman who owns a1 garden sprinkles it1.

⇏ Someman who owns a1 house sprinkles it1.

Tomake the illustrationsimpler, letusconsider theclassical somewhich

is represented by Σ-type. Since the problem we encounter here comes
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from the nature of dependent types, we can still observe the same prob-

lem in such a simplified case.

The entailment exemplified in (5.4) corresponds to the following in-

ference, which is straightforwardly provable. In this case, the formulation

we had above captures the left upwardmonotone inference.

Γ, p :



x : entity

u :



z :

man(x)

young(x)


y : entity
donkey(y )

own(x , y )





happy(x)





,

q :
(
x : entity

)
→

©­­­­­­­­­­«
u :



z :

man(x)

young(x)


y : entity
donkey(y )

own(x , y )






ª®®®®®®®®®®¬
→



z :man(x)
y : entity
donkey(y )

own(x , y )






⊢



x : entity
u :



z :man(x)
y : entity
donkey(y )

own(x , y )





happy(x)




true

However, it isnot thecase in (5.5),whichcontains thedonkeyanaphora.

The following inference corresponding to (5.5) does not hold in general.
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Γ, p :



x : entity

u :



z :

man(x)

young(x)


y : entity
donkey(y )

own(x , y )





love(x , π1π2u)





,

q :
(
x : entity

)
→

©­­­­­­­­­­«
u :



z :

man(x)

young(x)


y : entity
donkey(y )

own(x , y )






ª®®®®®®®®®®¬
→



z :man(x)
y : entity
donkey(y )

own(x , y )






⊢



x : entity
u ′ :



z :man(x)
y : entity
donkey(y )

own(x , y )





love(x , π1π2u ′)




true

This is because the consequence of the assumption q introduces a new

existentially-quantified entity, which is a donkey, for the given proof of

young man who owns a donkey. It is not easy to prove that the newly in-

troduced donkey also satisfies the predicate love.

In case of (5.5), since it is provable that young man is a man without

any additional assumption, we can prove the entailment without using

the assumption q . If we can ignore using the assumption q , it becomes

easy to prove the left upward monotone inference in (5.5). The similar

applies to (5.6).

This observation suggests that interpreting the inclusion A ⊆ A′ as(
x : entity

)
→ (u : A(x)) → A′(x) is not sufficient to account for left mono-
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tone inference involving donkey anaphora. We need to take into account

the inner structure of A and A′, which are possibly referred in the nuclear

scope B .

This point has been discussed in Kanazawa (1994). The study consid-

ers thedifference indynamiceffectsbetweenmanwhoownsagarden and

man who owns a house in the framework of DPL. In the analysis, the is-

sue was how to block the entailment such as (5.7) among the positive ex-

amples involving donkey anaphora. Here, however, it is the opposite: the

naïve formalizationblocks theentailment like (5.5), (5.6), and (5.7) involv-

ing donkey anaphora in principle, as the assumption introduces different

proof terms. Thus, it is necessary to account for the case such as (5.5) and

(5.6), where the entailment is valid. The analysis of left monotonicity in

DTS and the comparison with DPL are left for our future work.

5.6 Anaphora and inference

We have proved conservativity and right monotonicity of quantifiers as

theorems in dependent type theory. The theorems also take into account

the cases where an anaphoric dependency is involved between restrictor

and scope. By using those theorems, we can show that the following en-

tailment holds in a proof-theoretic manner.

(5.8) P1 Most farmers who own a1 donkey love it1.

P2 Every farmer who loves a donkey are kind.

H Most farmers who own a donkey are kind.

We sketch how to prove the entailment relation.
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Step 1. Obtaining semantic representations. We first obtain semantic

representations of P1, P2, and H by semantic composition.

(P1)



n : Nat

n ≥ majorityOf

©­­­­­­­­­­­­­«
π1π1

©­­­­­­­­­­­­­«
@2 ::



a : Finiteπ1

©­­­­­­­­­­«



x : entity

farmer(x)
y : entity

u : donkey(y )

own(x , y )








ª®®®®®®®®®®¬
π1(a) ≥ 1



ª®®®®®®®®®®®®®¬

ª®®®®®®®®®®®®®¬

h : Mn →



x : entity
w :



farmer(x)
y : entity

u : donkey(y )

own(x , y )





love(x ,@1 :: entity)




bijectionπ1(h)







(P2)

©­­­­­­­­­­«
z :



x : entity

farmer(x)
y : entity

u : donkey(y )

love(x , y )








ª®®®®®®®®®®¬
→ kind(π1z )
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(H)



m : Nat

m ≥ majorityOf

©­­­­­­­­­­­­­«
π1π1

©­­­­­­­­­­­­­«
@3 ::



a : Finiteπ1

©­­­­­­­­­­«



x : entity

farmer(x)
y : entity

u : donkey(y )

own(x , y )








ª®®®®®®®®®®¬
π1(a) ≥ 1



ª®®®®®®®®®®®®®¬

ª®®®®®®®®®®®®®¬

g : Mm →



x : entity
w :



farmer(x)
y : entity

u : donkey(y )

own(x , y )





kind(x)




bijectionπ1(g )






For the quantifier every in (P2), we adopt the universal quantifier in de-

pendent type theory, Π-type, for simplicity. P1 and H is underspecified

semantic representation involving @-terms.

Step2. Typechecking,Proof search, and@-elimination. Next, anaphora

resolution takes place. In order for the entailment relation in (5.8) to hold,

we need to assume that P1 and H consider the same domain of farmers

who own a donkey. This is an admissible assumption in entailment re-

lations in general, as we interpret the hypothesis under the condition of

premises. Thus, @2 in (P1) and @3 in (H ) is resolved by the same proof

term, say a+ in the global context. Let us abbreviate π1π1a+ : Nat to a′. @1

is replaced with π1π2w (see Section 4.3).

Step 3. Conservativity inference of most. After the anaphora resolu-

tion, we obtain the following fully-specified semantic representation of

(P1).
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(P1)



n : Nat

n ≥ majorityOf (a′)

h : Mn →



x : entity
w :



farmer(x)
y : entity

u : donkey(y )

own(x , y )





love(x , π1π2w )




bijectionπ1(h)






By Theorem 2 of conservativity inference, we obtain the following for-

mula, where we highlight the additional conjunct.

(5.9)



n : Nat

n ≥ majorityOf (a′)

h : Mn →



x : entity

v :



farmer(x)
y : entity

u : donkey(y )

own(x , y )





w :



farmer(x)
y : entity

u : donkey(y )

own(x , y )





love(x , π1π2w )






bijectionπ1(h)






This roughly corresponds toMost farmers who own a donkey are farmers

whoowna1 donkey and love it1. Thus, the inference step canbe expressed

as follows in natural language.

(5.10) CONSERVATIVITY INFERENCE
P1 Most farmers who own a1 donkey love it1.

Most farmers who own a donkey are farmers who own

a1 donkey and love it1.
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Step 4. General inference of conjunction. From (5.9), we can obtain

the following formula.

(5.11)



n : Nat

n ≥ majorityOf (a′)

h : Mn →



x : entity

v :



farmer(x)
y : entity

u : donkey(y )

own(x , y )






farmer(x)
y : entity

u : donkey(y )

love(x , y )









bijectionπ1(h)






The predicate own is eliminated from the highlighted part. The proof

term of (5.11) can be constructed from a proof of (5.9) straightforwardly

because it only eliminates the conjunct.6

The formula (5.11) can be interpreted asMost farmerswho owna don-

key are farmers who love a donkey. Thus, the inference step is expressed

as follows.

(5.12) GENERAL INFERENCE
Most farmers who own a donkey are farmers who own

a1 donkey and love it1.

Most farmers who own a donkey are farmers who love

a donkey.

Step 5. Monotonicity inference ofmost. With (5.11) and (5.6), by The-

orem 11 we obtain the following formula.

6 The proof is very similar to the right-to-left direction of Theorem 2.
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(5.13)



m : Nat

m ≥ majorityOf (a′)

g : Mm →



x : entity
w :



farmer(x)
y : entity

u : donkey(y )

own(x , y )





kind(x)




bijectionπ1(g )






It corresponding to the fully-specified semantic representation ofH, after

eliminating @-term in the formula (5.6).

This final step corresponds to the following natural language infer-

ence.

(5.14) MONOTONICITY INFERENCE
Most farmers who own a donkey are farmers who love

a donkey.

P2 Every farmer who loves a donkey are kind.

H Most farmer who own a donkey are kind.

In this way, we can account for a natural language inference involving the

interaction of quantifiers and anaphora.

Onedrawbackofouranalysis is thatwehaveassumedthenon-standard

elimination rule of subset type that has not yet been fully examined. We

could have avoided using this rule if we had used injection instead of bi-

jection in the definition. It is straightforward to prove that Sundholm’s

original definition of most is right upward monotone. However, as we

have mentioned earlier, it becomes difficult to generalize the definition

to downward entailing quantifiers. The exact cardinal number can also

be used for the anaphora resolution of the subsequent discourse, espe-

cially in complement anaphora.
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Onemay think that another possibility is to get rid of the bijection rel-

ativized to entity and investigate the other solutions to the proportion

problem. For instance, as Ranta (1994) mentioned, we can use subset

types in the semantic representation of most. The subset type counter-

part of the semantic representation is given as follows.

(5.15)



k : Nat

k ≥ majorityOf ©­«π1π1 ©­«@ ::


a : Finiteπ1
({

x : entity | A
})

π1(a) ≥ 1

ª®¬ª®¬
f : Mk →

x : entity |


u : A

B




bijection (f )






The alternative is to introduce the notion of a mere proposition as is

proposed by Luo (2020) and represent the indefinite in the restrictor by

theweak version of existential quantifier, ∃. With a notion ofmere propo-

sition, one can adopt the principle of proof irrelevance stating that any

two proofs of the same logical proposition should be the same. Using the

logical operator ∃ can thus prevent the multiple-donkey problem. Ac-

cording to their proposal, the donkey sentence in existential reading is

represented as follows.

(5.16) Most z : [Σx : Farmer∃y : Donkey.own(x , y )].

∃y ′ : [Σy : Donkey.own(π1z , y )].beat(π1z , π1y ′)

Here, ∃ in the first line ensures the correct counting, while Σ in the second
line provides an antecedent to the donkey pronoun.

Analyses in this direction can avoid using Theorem 3, as bijectionπ1
becomesunnecessary. Theycannot, however, immediately get ridofThe-

orem 5. We used the theorem to show
(
x : entity

)
× (u : A) ×B′’s finiteness

from
(
x : entity

)
×A, not from

(
x : entity

)
× (u : A) ×B . The reasonwe pre-

ferred this direction is related to the difficulties of constructing bijection,
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which requires one to care about the newly involved elements.

Moreover, while these analyses can ignore the indefinite of restrictor

when counting, they also block an anaphoric link from subsequent sen-

tences, which is crucially needed in plural anaphora. In (5.15), one can

obtain f (z ) of type
{

x : entity | (u : A) × B
}
by applying some z : Mk to f ,

but an entity appearing in the specification is not accessible. In (5.16),

the donkey introduced by a Σ-type is only accessible from the scope of

the variable y ′, which is merely logical operator.

Here, the tension between the two aspects of quantificational expres-

sions, i.e., logical and linguistic characteristics, is highlighted again. If we

focus on the role of "counting" in quantifier, indefinite information be-

comes something that wants to be hidden. On the other hand, this infor-

mation is essential for the anaphora of natural language, which requires

a countingmethod that canmaintain it.

185





Chapter 6

Concluding Summary

This thesis aimed toprovide an analysis of quantifiers in natural language

in the framework of DTS. We have tried to account for the interaction of

quantifier meaning and dynamic linguistic phenomena, which has been

discussed inmodel-theoretic semantics, fromtheviewpointofproof-theoretic

semantics based on dependent type theory.

We adopted the explicit approach based on Sundholm (1989)’s previ-

ous study to give a semantic representation of the quantifier most. The

operation of counting, which plays a central role in quantifiers’meaning,

was defined as a function. By representing the quantified objects using

a Σ-type, the semantic representation retained the quantifier’s internally

dynamic nature. On the other hand, to avoid the proportion problem

caused by pair quantification, we adopt injections and bijections differ-

ent from the standard one as Sundholm’s proposal. One of the major up-

dates from the previous proposal is that the quantifier’s meaning is de-

fined by bijection. It enables maximizing the cardinal number and in-

troducing the desired antecedent for the plural pronoun. Furthermore,

it allows generalization to other quantifiers such as at most n and exactly
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n. We also proposed a semantic representation that accounts for the am-

biguity between existential and universal readings in donkey sentences.

The two readings are derived from the ambiguity of proof construction

for the donkey pronoun.

Furthermore, these quantifiers’ semantic representation became the

source of the dependent interpretation observed in plural anaphora and

quantificational subordination. Thepluralpronoun itselfwasdefinedsim-

ply as a pronoun whose antecedent is a plural object, i.e., more than one

entity. Then, the function introduced by the quantifier can be the an-

tecedent of the plural pronounby the proof search procedure ofDTS. The

function introduced by the quantifier represents a dependency relation

between antecedent objects in terms of the structure of dependent types.

This function contributes to the anaphora resolution of the singular pro-

noun, which can account for its dependent interpretation.

In Chapter 5, we showed that the quantifiers we defined satisfy the in-

ferential properties. From a proof-theoretic perspective, we formulated

conservativity and rightmonotonicity as theorems independent type the-

ory. As the theorems also consider anaphoric dependency, they can ac-

count for natural language inference involving anaphora.

The property of right monotonicity was proved in two steps. In the

first step, we showed the existence of cardinal numbers. In the second

step, we proved the right upwardmonotonicity for quantifiers whose car-

dinal number is defined as greater than or equal to some natural num-

ber N . Similarly, the right downward monotone property is proved for

quantifiers whose cardinal number is less than or equal toN . For the left

monotonicity, the samedefinitionas conservativity and rightmonotonic-

ity is not sufficient to account for anaphoricdependency in thequantified
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sentence. Instead of defining the left argument’s inclusion relation as a

logical entailment, a possible direction is to consider the type’s nature in

dependent type theory. The full analysis is left for future work.

One contribution of this study is that it extended the empirical cov-

erage of DTS by analyzing quantifiers in the framework. However, it also

shows that this framework provides a basis for a unified analysis of quan-

tifiers’ basic meaning, interaction with dynamic linguistic phenomena,

and inferential properties, suggesting that DTS offers a powerful mecha-

nismforanalyzing thenatural languagemeaning. Furthermore, this study

provided new evidence that DTS, and possibly other proof-theoretic se-

mantics based on dependent type theory, can give an alternative view on

various linguistic phenomena discussed inmodel-theoretic semantics.

One of the future directions is tomake the semantic representation of

the quantifier given here even richer. For example, the meaning of the

quantifiermost adopted here was a classical one, defined by themajority

of restrictor cardinal numbers. This static definition could be improved

to a context-dependent definition or a proportion-based definition. It

is also possible to give an analysis that takes domain restriction into ac-

count. Furthermore, the analysis of quantifiers other than type ⟨1, 1⟩ and

the extension of the analysis to plural are future tasks.

One of the future works concerning DTS is a detailed study on the na-

ture of proof search. DTS’s proof search is a powerful mechanism that

contributes significantly to the analysis of intra-sentential and discourse

anaphora. It has also been observed that there are cases where inference

is necessary for anaphora resolution and presupposition binding. On the

other hand, to prevent excessive inferences and account for unaccessible

cases, we need a more systematic analysis of how the proof search can
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be restricted. Furthermore, investigating the relationship of inference in

anaphora resolution procedure and inference in entailment and general

inference is left for future work.
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Appendix A: Formal system.

Definition 16 (Alphabet for λΠΣ). An alphabet for λΠΣ is a ⟨V ar , C on⟩,

whereV ar is a set of variables, and C on is a set of constants. Dependent

type semantics employs an alphabet as follows:

V ar
def≡ {x , y , z , u , v , ...}

C on
def
≡ {entity, book, arrive, ... john, mar y , ...}

Definition 17 (Preterms). The collection of preterms is recursively de-

fined as follows (where x ∈ V ar and c ∈ C on, i = 0, 1, 2, ...).

Λ := x | c | @i | type | kind | Λ :: Λ | (x : Λ) → Λ | λx .Λ | ΛΛ

| (x : Λ) × Λ | ⟨Λ,Λ⟩ | π1(Λ) | π2(Λ) | {Λ, ...,Λ}| caseΛ(Λ, ...,Λ)

| ⊥ | ⊤ | ⟨⟩ | Λ ⊎ Λ | inl(Λ) | inr(Λ)| caseΛ of (Λ,Λ)

| Λ =Λ Λ | reflΛ(Λ) | idpeel(Λ,Λ)| Nat| 0| suc(Λ)| natrec(Λ,Λ,Λ)

Definition 18 (Signature). A signature σ is defined recursively as follows.

σ := () | σ, c : A

where () is an empty signature, c ∈ C on, A ∈ Λ s.t. ⊢σ A : type.
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Definition 19 (Context). A context is defined recursively as follows.

Γ := () | Γ, x : A

where () is an empty context, x ∈ V ar , A ∈ Λ s.t. Γ ⊢σ A : type.

Definition 20 (Constant symbol rule). For any (c : A) ∈ σ,

c : A
con

Definition 21 (Type rules).

type : kind
typeF

Definition 22 (Π-type). For any i ∈ N,

(s1, s2) ∈ {(type, type), (type, kind), (kind, type), (kind, kind)},

and s ∈ {type, kind}

A : s1

x : A i
....

B : s2
(x : A) → B : s2

ΠF , i A : s

x : A i
....

M : B
λx .M : (x : A) → B

ΠI , i

M : (x : A) → B N : A
M N : B[N /x] ΠE

A →β A′

(x : A) → B →β (x : A′) → B

B →β B′

(x : A) → B →β (x : A) → B′

M →β M ′

λx .M →β λx .M ′

M →β M ′

M N →β M ′N

N →β N ′

M N →β M N ′

(λx .M )N →β M [N /x]

Definition 23 (Implication).

A → B
def
≡ (x : A) → B where x < f v (B)
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Derived rule 24. For any i ∈ N,

A : s

x : A i
....

M : B
λx .M : A → B

→ I , i where x < f v (B)
M : A → B N : A

M N : B →E

Definition 25 (Σ-type). For any i ∈ N

and (s′1, s′2) ∈ {(type, type), (type, kind), (kind, kind)},

A : s′1

x : A i
....

B : s′2
(x : A) × B : s′2

ΣF , i
M : A N : B[M /x]
⟨M ,N ⟩ : (x : A) × B

ΣI

M : (x : A) × B
π1(M ) : A

ΣEL
M : (x : A) × B

π2(M ) : B[π1(M )/x] ΣER

A →β A′

(x : A) × B →β (x : A′) × B

B →β B′

(x : A) × B →β (x : A) × B′

M →β M ′

⟨M ,N ⟩ →β ⟨M ′,N ⟩
N →β N ′

⟨M ,N ⟩ →β ⟨M ,N ′⟩
M →β M ′

π1M →β π1M ′

πi (⟨M1,M2⟩) →β Mi where i ∈ {1, 2}

Definition 26 (Conjunction).

(A × B)
def
≡ (x : A) × B where x < f v (B)

Derived rule 27.

M : A N : B
⟨M ,N ⟩ : (A × B) ×I

M : (A × B)
π1(M ) : A

×EL
M : (A × B)
π2(M ) : B

×ER

Definition 28 (Enumeration type). For any n ∈ N, each i such that 1 ≤ i ≤

n, and s ∈ {type, kind}

{a1, ..., an} : type
{}F

ai : {a1, ..., an}
{}I
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M : {a1, ..., an} C : {a1, ..., an} → s N1 : C (a1) ... Nn : C (an)
caseM (N1, ...,Nn) : C (M ) {}E

caseai (N1, ...,Ni , ...,Nn) →β Ni where ai : {a1, ..., ai , ...an}

Bottom type and Top type is defined as follows:

⊥ def≡ {}

⊤ def≡ {⟨⟩}

Definition 29 (Bottom type). For s ∈ {type, kind},

⊥ : type ⊥F
M : ⊥ C : ⊥ → s

caseM () : C (M ) ⊥E

Definition 30 (Negation).

¬A
def≡ A → ⊥

Definition 31 (Top type). For s ∈ {type, kind},

⊤ : type ⊤F ⟨⟩ : ⊤ ⊤I

M : ⊤ C : ⊤ → s N : C (⟨⟩)
caseM (N ) : C (M ) ⊤E

Definition32 (Disjointunionof two types). Forany i ∈ Nand s ∈ {type, kind},
A : s B : s

A ⊎ B : s ⊎F

M : A B : s
inl(M ) : A ⊎ B

⊎IL
A : s N : B

inr(N ) : A ⊎ B
⊎IR

L : A ⊎ B C : A ⊎ B → s

x : A i
....

M : C (inl(x))

x : B i
....

N : C (inr(x))
case L of (λx .M , λx .N ) : C (L) ⊎E , i

case inl(a) of (λx .M , λx .N )↠β M (a)

case inr(b) of (λx .M , λx .N )↠β N (b)

194



Definition 33 (Intentional equality). For s ∈ {type, kind},

A : s M : A N : A
M =A N : s =F

A : s M : A
reflA(M ) : M =A M

= I

E : M1 =A M2 C : (x : A) → (y : A) → (x =A y ) → s R : (x : A) → C xx(reflA(x))
idpeel(E ,R) : C M1M2E

=E

idpeel(reflA(M ),R) →β R(M )

Definition 34 (Natural numbers). For s ∈ {type, kind},

Nat : type NatF 0 : Nat NatI0
n : Nat

suc(n) : Nat NatIs

n : Nat C : Nat→ s e : C (0) f : (k : Nat) → C (k ) → C (suc(k ))
natrec(n, e , f ) : C (n) NatE

natrec(0, e , f ) →β e

natrec(suc(n), e , f ) →β f (n)(natrec(n, e , f ))

Definition 35 (Addition).

m + n
def
≡ natrec(m,n, λxλy .suc(y ))

m : Nat n : Nat
m + n : Nat +F

Definition 36 (≥).

m ≥ n
def
≡


k : Nat

m =Nat n + k


n ≤ m

def
≡


k : Nat

m =Nat n + k


Definition 37 (Multiplication).

m · n
def
≡ natrec(m, 0, λxλy .(y + n))

m : Nat n : Nat
m · n : Nat ·F
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Definition 38 (@-rule). For any i ∈ N,

A : type A true
(@i :: A) : A

@

Definition 39 (α-conversion). For any x , y ∈ V ar and A,B ,M ∈ Λ,

(x : A) → B ≡ (y : A) → B[y/x] where y < f v (B)

(x : A) × B ≡ (y : A) × B[y/x] where y < f v (B)

λx .M ≡ λy .M [y/x] where y < f v (M )

Definition 40 (More-than-zero-steps reduction↠β).

M ↠β M
L →β M M ↠β N

L ↠β N

Derived rule 41.
L ↠β M M ↠β N

L ↠β N

Definition 42 (Subject Reduction).

Γ ⊢ M : A, M →β M ′ =⇒ Γ ⊢ M ′ : A

Definition 43 (≡β).

M ≡β M
L →β M M ≡β N

L ≡β N
M →β L M ≡β N

L ≡β N

Derived rule 44.

L ↠β M M ≡β N
L ≡β N

M ↠β L M ≡β N
L ≡β N

Derived rule 45.

M ≡β N
N ≡β M

L ≡β M M ≡β N
L ≡β N
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Definition 46 (Conversion Rule).

M : A A ≡β B
M : B

conv

Definition 47 (Weakening).

M : A N : B
M : A wk

Definition 48 (Notation).

(x : A) × B
def≡


x : A

B


(A × B) def≡


A

B


(x0, x1, ..., xn : A) → B

def
≡ (x0 : A) → (x1 : A) → ... → (xn : A) → B

idA
def≡ λx .x where x : A
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Appendix B: Theorems.

Theorem 12

A : type B : type C : type M : A ⊎ B

p12(M ) : (A ⊎C ) ⊎ B

Theorem 13: Symmetry law for =

A : s Q : M =A N
p13(Q ) : N =A M

=Sym

Theorem 14: Transitivity law for =

A : s L : A M : A N : A Q : L =A M R : M =A N
p14(Q ;R) : L =A N

=Trans

Theorem 15: Substitution by =

A : s M : A N : A P : A → s Q : M =A N R : P M
p15(Q ;R) : P N

=Sub

Theorem 16

A : s M : A N : A M ≡β N

reflA(M ) : M =A N

A : s, M : A, N : A, ⊢ M =A N true =⇒ M ≡β N

Theorem 17

0 + n ≡β n

suc(m) + n ≡β suc(m + n)

Theorem 18

m : Nat n : Nat
p18(m;n) : m + n =Nat n +m
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Theorem 19

n : Nat m : Nat M : suc(n) ≤ m
p19(M ) : n ≤ m

Proof. We prove that we have p19(M ).
p19(M )

def≡ ⟨suc(π1(M )),p14(π2(M );p14(q;p18(suc(π1(M ));n)))⟩

q
def
≡ p14(reflNat(suc(n) + π1(M )); r)

r
def
≡ p15(p18(n; π1(M )); reflNat(suc(n + π1(M ))))

M :


k : Nat

m =Nat suc(n) + k


π1(M ) : Nat ΣEL

suc(π1(M )) : Nat NatIs

.... D1

p14(π2(M );p14(q;p18(suc(π1(M ));n))) :
m =Nat n + suc(π1(M ))

⟨suc(π1(M )),p14(π2(M );p14(q;p18(suc(π1(M ));n)))⟩ :


n′ : Nat

m =Nat n + n′


ΣI

D1:

Nat : type NatF
m : Nat

....
suc(n) + π1(M ) : Nat

....
n + suc(π1(M )) : Nat

M :


k : Nat

m =Nat suc(n) + k


π2(M ) : m =Nat suc(n) + π1(M ) ΣER

.... D2

p14(q;p18(suc(π1(M ));n)) :
suc(n) + π1(M ) =Nat n + suc(π1(M ))

p14(π2(M );p14(q;p18(suc(π1(M ));n))) : m =Nat n + suc(π1(M )) =Trans

D2:

Nat : type NatF
....

suc(n) + π1(M ) : Nat

....
suc(π1(M )) + n : Nat

....
n + suc(π1(M )) : Nat

.... D3
q : suc(n) + π1(M ) =Nat suc(π1(M )) + n

....
suc(π1(M )) : Nat n : Nat

p18(suc(π1(M ));n) :
suc(π1(M )) + n =Nat n + suc(π1(M ))

(Th18)

p14(q;p18(suc(π1(M ));n)) : suc(n) + π1(M ) =Nat n + suc(π1(M )) =Trans

D3:

Nat : type NatF
....

suc(n) + π1(M ) : Nat

....
suc(n + π1(M ))

....
suc(π1(M ) + n)

Nat : type NatF
....

suc(n) + π1(M ) : Nat

reflNat(suc(n) + π1(M )) :
suc(n) + π1(M ) =Nat suc(n) + π1(M )

= I

....
suc(n) + π1(M ) =Nat suc(n) + π1(M )

≡β suc(n) + π1(M ) =Nat suc(n + π1(M ))

reflNat(suc(n) + π1(M )) :
suc(n) + π1(M ) =Nat suc(n + π1(M ))

conv .... D4
r : suc(n + π1(M )) =Nat suc(π1(M ) + n)

p14(reflNat(suc(n) + π1(M )); r) : suc(n) + π1(M ) =Nat suc(π1(M ) + n) =Trans

....
suc(n) + π1(M ) =Nat suc(π1(M ) + n)

≡β suc(n) + π1(M ) =Nat suc(π1(M )) + n

p14(reflNat(suc(n) + π1(M )); r) : suc(n) + π1(M ) =Nat suc(π1(M )) + n
conv

D4:

Nat : type NatF
....

n + π1(M ) : Nat

....
π1(M ) + n : Nat

.... T1
λx .suc(n + π1(M )) =Nat suc(x) :

Nat → type

n : Nat

....
π1(M ) : Nat

p18(n; π1(M )) :
n + π1(M ) =Nat π1(M ) + n

(Th18)
Nat : type

....
suc(n + π1(M )) : Nat

reflNat(suc(n + π1(M ))) :
suc(n + π1(M )) =Nat suc(n + π1(M ))

= I

p15(p18(n; π1(M )); reflNat(suc(n + π1(M )))) : suc(n + π1(M )) =Nat suc(π1(M ) + n) =Sub
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T1:
....

λx .suc(n + π1(M )) =Nat suc(x) : Nat → type

□

Lemma 20: λz .inl(z) is an injection, that is, the following holds.(
A,B : type

)
→ (y , y ′ : A) → inl(y ) =A⊎B inl(y ′) → y =A y ′

Proof. Weprove y =A y ′byassumingA,B : type, y , y ′ : A, andu : inl(y ) =A⊎B

inl(y ′). The following derivation holds.

y : A B : type
inl(y ) : A ⊎ B

⊎I
A : type

a : A 1 a : A 1

a : A wk
b : B

1
y : A

y : A wk

case inl(y ) of (λa .a , λb .y ) : A
⊎E , 1

Here,

case inl(y ) of (λa .a , λb .y ) ≡β y

holds, fromwhich we have

reflA(case inl(y ) of (λa .a , λb .y )) : case inl(y ) of (λa .a , λb .y ) =A y (6.1)

by Theorem 16. By applying =Subwith the assumptionsu : inl(y ) = inl(y ′),

p15(u , reflA(case inl(y ) of (λa .a , λb .y ))) : case inl(y ′) of (λa .a , λb .y ) =A y .

By =Sym,

p13(p15(u , reflA(case inl(y ) of (λa .a , λb .y ))))

: y =A case inl(y ′) of (λa .a , λb .y ). (6.2)
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On the other hand, we also have

y ′ : A B : type
inl(y ′) : A ⊎ B

⊎I
A : type

a : A 1 a : A 1

a : A wk
b : B

1
y : A

y : A wk

case inl(y ′) of (λa .a , λb .y ) : A
⊎E , 1

,

which yields to

reflA(case inl(y ′) of (λa .a , λb .y )) : case inl(y ′) of (λa .a , λb .y ) =A y ′ (6.3)

in the samewayas theabove. Thus, byapplying=Transwith (6.2) and (6.3),

we get
p14(p13(p15(u , reflA(case inl(y ) of (λa .a , λb .y )))),

reflA(case inl(y ′) of (λa .a , λb .y )))

: y =A y ′

□

Lemma 21: λz .inr(z) is an injection, that is, the following holds.(
A,B : type

)
→ (y , y ′ : B) → inr(y ) =A⊎B inr(y ′) → y =B y ′

Proof. The proof is given in the samemanner as Lemma 20. □

Lemma 22: For any injection f1, f2, the composition f2 ◦ f1 is an

injection, that is, the following holds.(
A,B ,C : type

)
→ ©­«u1 :


f1 : A → B

injection (f1)

ª®¬ → ©­«u2 :


f2 : B → C

injection (f2)

ª®¬ → injection (π1(u2) ◦ π1(u1))

Proof.

u1 :


f1 : A → B

injection (f1)


π1u1 : A → B

ΣEL y : A

π1u1(y ) : B
ΠE

u1 : ... y ′ : A....
π1u1(y ′) : B

u2 :


f2 : B → C

injection (f2)


π2u2 : (y : B) → (y ′ : B) → π1u2(y ) =C π1u2(y ′) → y =B y ′ ΣER

(π2u2)(π1u1(y ))(π1u1(y ′)) : (π1u2)((π1u1)(y )) =C (π1u2)((π1u1)(y ′)) → (π1u1)(y ) =B (π1u1)(y ′) ΠE ∗

u3 : (π1u2 ◦ π1u1)(y )

= (π1u2 ◦ π1u1)(y ′)

t1 : (π1u2 ◦ π1u1)(y )

= (π1u2)((π1u1)(y ))

t2 : (π1u2 ◦ π1u1)(y ′)

= (π1u2)((π1u1)(y ′))
u3 : (π1u2)((π1u1)(y )) = (π1u2)((π1u1)(y ′)) conv ∗

(π2u2)(π1u1(y ))(π1u1(y ′))(u3) : (π1u1)(y ) =B (π1u1)(y ′) →E
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Thus,

A : type 1 B : type 1 C : type 1

y : A 2 y ′ : A
2

u1 : ... 1
π2u1 : (y : A) → (y ′ : A) → π1u1(y ) =B π1u1(y ′) → y =A y ′ ΣER

(π1u1)(y )(y ′) : (π1u1)(y ) =B (π1u1)(y ′) → y =A y ′ ΠE ∗

u1 1 u2 1 y 2 y ′ 2 u3 3....
(π2u2)(π1u1(y ))(π1u1(y ′))(u3) : (π1u1)(y ) =B (π1u1)(y ′)

((π1u1)(y )(y ′))((π2u2)(π1u1(y ))(π1u1(y ′))(u3)) : y =A y ′ →E

λu3.((π1u1)(y )(y ′))((π2u2)(π1u1(y ))(π1u1(y ′))(u3)) : (π1(u2) ◦ π1(u1))(y ) =C (π1(u2) ◦ π1(u1))(y ′) → y =A y ′ → I , 3

λy .λy ′.λu3.((π1u1)(y )(y ′))((π2u2)(π1u1(y ))(π1u1(y ′))(u3)) : (y : A) → (y ′ : A) → (π1(u2) ◦ π1(u1))(y ) =C (π1(u2) ◦ π1(u1))(y ′) → y =A y ′ ΠI , 2∗

λAλBλC λu1λu2.λy .λy ′.λu3.((π1u1)(y )(y ′))((π2u2)(π1u1(y ))(π1u1(y ′))(u3))

:
(
A,B ,C : type

)
→ ©­«u1 :


f1 : A → B

injection (f1)

ª®¬ → ©­«u2 :


f2 : B → C

injection (f2)

ª®¬ → injection (π1(u2) ◦ π1(u1))

ΠI , 1∗

By the above derivation, we have
λAλBλC λu1λu2.λy .λy ′.λu3.((π1u1)(y )(y ′))((π2u2)(π1u1(y ))(π1u1(y ′))(u3))

:
(
A,B ,C : type

)
→ ©­«u1 :


f1 : A → B

injection (f1)

ª®¬ → ©­«u2 :


f2 : B → C

injection (f2)

ª®¬ → injection (π1(u2) ◦ π1(u1))

□

Lemma 23 (injection (λx .inl(inr(x)))): λx .inl(inr(x)) is an injection,

that is, the following holds.(
A,B ,C : type

)
→ (y , y ′ : B) → inl(inr(y )) =(A⊎B)⊎C inl(inr(y ′)) → y =B y ′

Proof. It immediately follows fromLemma20, Lemma21, andLemma22.

□

Theorem 24

Assume that there exists f : A → B such that injection (f ) and

surjection (f ) are true,whereA andB are arbitrary elements of type.

That is, the following proof term i and s exist.

i : (y : A) → (y ′ : A) → f (y ) =B f (y ′) → y =A y ′

s : (z : B) →


y : A

z =B f (y )


Then, for π1s : B → A:

(1) injection (π1s ) and surjection (π1s ) are true

(2) λx .f (π1s (x)) : B → B and λx .(π1s (f (x))) : A → A are identity

functions
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Proof. (1) We prove that injection (π1s ) and surjection (π1s ) are true.

injection (π1s )

B : type z : B 3
....

f (π1s (z )) : B z ′ : B
2

s : (z : B) →


y : A

z = f (y )

 z : B 3

s (z )

:


y : A

z =B f (y )


ΠE

π2(s (z ))
: z =B f (π1s (z ))

ΣEL

A : type

....
π1s (z ′) : A

....
π1s (z ) : A

....
λy ′.z ′ =B f (y ′)
: A → type

A : type u

: π1s (z ) =A π1s (z ′)

1

p13(u)
: π1s (z ′) =A π1s (z )

=Sym

s : (z : B) →


y : A

z = f (y )

 z ′ : B
2

s (z ′)

:


y ′ : A

z ′ =B f (y ′)


ΠE

π2(s (z ′))
: z ′ =B f (π1s (z ′))

ΣEL

p15(p13(u), π2(s (z ′))) : z ′ =B f (π1s (z )) =Sub

p13(p15(p13(u), π2(s (z ′)))) : f (π1s (z )) =B z ′ =Sym

p14(π2(s (z )),p13(p15(p13(u), π2(s (z ′))))) : z =B z ′ =Trans

λu .p14(π2(s (z )),p13(p15(p13(u), π2(s (z ′))))) : π1s (z ) =A π1s (z ′) → z =B z ′ ΠI , 1

λz ′.λu .p14(π2(s (z )),p13(p15(p13(u), π2(s (z ′))))) : (z ′ : B) → π1s (z ) =A π1s (z ′) → z =B z ′ ΠI , 2

λz .λz ′.λu .p14(π2(s (z )),p13(p15(p13(u), π2(s (z ′))))) : (z : B) → (z ′ : B) → π1s (z ) =A π1s (z ′) → z =B z ′ ΠI , 3

surjection (π1s )

i : (y : A)

→ (y ′ : A)

→ f (y ) =B f (y ′)

→ y =A y ′

y : A

s : (z : B) →


y : A

z = f (y )


f : A → B y : A

f (y ) : B
→E

s (f (y )) :


y ′ : A

f (y ) =B f (y ′)


ΠE

π1(s (f (y ))) : A
ΣEL

s : (z : B) →


y : A

z = f (y )


f : A → B y : A

f (y ) : B
→E

s (f (y )) :


y ′ : A

f (y ) =B f (y ′)


ΠE

π2(s (f (y ))) : f (y ) =B f (π1(s (f (y ))))
ΣER

i (y )(π1(s (f (y ))))(π2(s (f (y )))) : y =A π1(s (f (y ))) ΠE ∗

Thus, a proof termof surjection (π1s ) canbe obtainedby the following

delivation.

f : A → B y : A 1

f (y ) : B
→E

i : ... s : ... f : ... y : A 1
....

i (y )(π1(s (f (y ))))(π2(s (f (y )))) : y =A π1(s (f (y )))

⟨f (y ), i (y )(π1(s (f (y ))))(π2(s (f (y ))))⟩ :


z : B

y =A π1(s (z ))


ΣI

λy .⟨f (y ), i (y )(π1(s (f (y ))))(π2(s (f (y ))))⟩ : (y : A) →


z : B

y =A π1(s (z ))


ΠI , 1

(2) We prove that λx .f (π1s (x)) : B → B and λx .(π1s (f (x))) : A → A are

identity functions, namely, (x : B) → x =B f (π1s (x)) and (x : A) → x =A

π1s (f (x)).

(x : B) → x =B f (π1s (x))
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s : (z : B) →


y : A

z =B f (y )

 x : B 1

s (x) :


y : A

x =B f (y )


ΠE

π2(s (x)) : x =B f (π1s (x)) ΣEL

λx .π2(s (x)) : (x : B) → x =B f (π1s (x))

(x : A) → x =A π1s (f (x))

i : (y : A) → (y ′ : A) → f (y ) =B f (y ′) → y =A y ′ x : A 1

s : (z : B) →


y : A

z =B f (y )


f : A → B x : A 1

f (x) : B
ΠE

s (f (x)) :


y : A

f (x) =B f (y )


ΠE

π1s (f (x)) : A
ΣER

i (x)(π1s (f (x))) : f (x) =B f (π1s (f (x))) → x =A π1s (f (x)) ΠE ∗

....

s (f (x)) :


y : A

f (x) =B f (y )


π2s (f (x)) : f (x) =B f (π1s (f (x))) ΣEL

i (x)(π1s (f (x)))(π2s (f (x))) : x =A π1s (f (x)) ΠE

λx .i (x)(π1s (f (x)))(π2s (f (x))) : (x : A) → x =A π1s (f (x)) ΠI , 1 □

Theorem 25: Identity in Canonical form

A : type B : type z : A z ′ : B

¬(inl(z) =A⊎B inr(z ′)) true

Proof. Let isLeft
def
≡ λc .case x of (λy .⊤, λy .⊥). We have

isLeft(inl(z)) ≡ ⊤

isLeft(inr(z ′)) ≡ ⊥.

Nowwehave the followingderivation ((λx .λy .λe .isLeft(x) → isLeft(y ))xx(reflA⊎B(x)) ≡

isLeft(x) → isLeft(x)).

z : A z ′ : B....
inl(z) = inr(z ′) : type

e : inl(z) = inr(z ′) 1

x : A ⊎ B....
isLeft(x) : type

y : A ⊎ B....
isLeft(y ) : type

isLeft(x) → isLeft(y ) : type → F

λe .isLeft(x) → isLeft(y ) : x = y → type ΠI

λy .λe .isLeft(x) → isLeft(y ) : (y : A ⊎ B) → x = y → type ΠI

λx .λy .λe .isLeft(x) → isLeft(y ) : (x : A ⊎ B) → (y : A ⊎ B) → x = y → type ΠI

x : A ⊎ B 3
....

isLeft(x) : type
p : isLeft(x) 2 p : isLeft(x) 2

p : isLeft(x) wk

λp .p : isLeft(x) → isLeft(x) → I , 2

λx .λp .p : (x : A ⊎ B) → isLeft(x) → isLeft(x) ΠI , 3

idpeel(e , λx .λp .p) : isLeft(inl(z)) → isLeft(inr(z ′)) =E
⟨⟩ : ⊤ ⊤I

⟨⟩ : ⊤
typeF

idpeel(e , λx .λp .p)() : ⊥
→E

λe .idpeel(e , λx .λp .p)() : (inl(z) = inr(z ′)) → ⊥
ΠI , 1

□

204



Lemma 26:

Let h′ def
≡

λy .case y of (λx .case h(x) of (λz .inl(inl(z)), λz .inr(z)), λx .inl(inr(x)))

: Msuc(l) → Msuc(m) ⊎Mn .

Then,

l : Nat m : Nat n : Nat a : Ml b : Ml h : Ml → Mm ⊎Mn

h′(inl(a)) =Msuc(m)⊎Mn h′(inl(b)) → h(a) =Mm⊎Mn h(b) true

Proof.

h′(inl(a)) ≡β case h(a) of (λz .inl(inl(z)), λz .inr(z)) (6.4)

h′(inl(b)) ≡β case h(b) of (λz .inl(inl(z)), λz .inr(z)) (6.5)

.... D
X X X :

case h(a) of (λz .inl(inl(z)), λz .inr(z))

=Msuc(m)⊎Mn case h(b) of (λz .inl(inl(z)), λz .inr(z))

→ h(a) =Mm⊎Mn h(b)

h′(inl(a))
≡β case h(a) of (λz .inl(inl(z)), λz .inr(z))

h′(inl(b))
≡β case h(b) of (λz .inl(inl(z)), λz .inr(z))

....
h′(inl(a)) =Msuc(m)⊎Mn h′(inl(b)) → h(a) =Mm⊎Mn h(b)

≡β case h(a) of (λz .inl(inl(z)), λz .inr(z))

=Msuc(m)⊎Mn case h(b) of (λz .inl(inl(z)), λz .inr(z))

→ h(a) =Mm⊎Mn h(b)
X X X : h′(inl(a)) =Msuc(m)⊎Mn h′(inl(b)) → h(a) =Mm⊎Mn h(b) conv

D:

h : ... a : Ml

h(a) :
Mm ⊎Mn

→E

h : ... b : Ml

h(b) :
Mm ⊎Mn

→E

a′ : Mm
3

b′ : Mm
1

.... D1

xxx :

case inl(a′) of (..., ...)

= case inl(b′) of (..., ...)

→ inl(a′) =Mm⊎Mn inl(b′)

a′ : Mm
3

b′ : Mn
1

.... D2

y y y :

case inl(a′) of (..., ...)

= case inr(b′) of (..., ...)

→ inl(a′) =Mm⊎Mn inr(b′)

lll :

case inl(a′) of (λz .inl(inl(z)), λz .inr(z))

=Msuc(m)⊎Mn case h(b) of (λz .inl(inl(z)), λz .inr(z))

→ inl(a′) =Mm⊎Mn h(b)

⊎E , 1

h : ... b : Ml

h(b) :
Mm ⊎Mn

→E

a′ : Mn
3

b′ : Mm
2

.... D3

xxx :

case inr(a′) of (..., ...)

= case inl(b′) of (..., ...)

→ inr(a′) =Mm⊎Mn inl(b′)

a′ : Mn
3

b′ : Mn
2

.... D4

y y y :

case inr(a′) of (..., ...)

= case inr(b′) of (..., ...)

→ inr(a′) =Mm⊎Mn inr(b′)

r r r :

case inr(a′) of (λz .inl(inl(z)), λz .inr(z))

=Msuc(m)⊎Mn case h(b) of (λz .inl(inl(z)), λz .inr(z))

→ inr(a′) =Mm⊎Mn h(b)

⊎E , 2

X X X :

case h(a) of (λz .inl(inl(z)), λz .inr(z)) =Msuc(m)⊎Mn case h(b) of (λz .inl(inl(z)), λz .inr(z))

→ h(a) =Mm⊎Mn h(b)

⊎E , 3
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D1:

Mm : type a′ : Mm b′ : Mm

....
λx .inl(a′) =Mm⊎Mn inl(x) :

Mm → type

u : · · · 1 a′ : Mm b′ : Mm.... D′
1

l20(Msuc(m))(Mn)(inl(a′))(inl(b′))(u) :

inl(a′) =Msuc(m) inl(b′)

l20 :(
A,B : type

)
→ (y , y ′ : A)

→ inl(y ) =A⊎B inl(y ′)

→ y =A y ′

(Lm20)

a′ : Mm b′ : Mm

....
Mm : type ⊤ : type ⊤F

l20(Mm)(⊤)(a′)(b′) :

inl(a′) =Msuc(m) inl(b′)

→ a′ =Mm b′

ΠE ∗

(
l20(Mm)(⊤)(a′)(b′)

) (
l20(Msuc(m))(Mn)(inl(a′))(inl(b′))(u)

)
:

a′ =Mm b′

→E

....
Mm ⊎Mn : type

a′ : Mm

inl(a′) : Mm ⊎Mn
⊎I

reflMm⊎Mn (inl(a′)) :

inl(a′) =Mm⊎Mn inl(a′)

= I

X X X : inl(a′) =Mm⊎Mn inl(b′) =Sub

λu .X X X :

case inl(a′) of (λz .inl(inl(z)), λz .inr(z)) =Msuc(m)⊎Mn case inl(b′) of (λz .inl(inl(z)), λz .inr(z))

→ inl(a′) =Mm⊎Mn inl(b′)

→ I , 1

D′
1:

u : case inl(a′) of (λz .inl(inl(z)), λz .inr(z))

=Msuc(m)⊎Mn

case inl(b′) of (λz .inl(inl(z)), λz .inr(z))

case inl(a′) of (λz .inl(inl(z)), λz .inr(z))

≡β inl(inl(a′))

case inl(b′) of (λz .inl(inl(z)), λz .inr(z))

≡β inl(inl(b′))
u : inl(inl(a′)) =Msuc(m)⊎Mn inl(inl(b′)) conv ∗

l20 :(
A,B : type

)
→ (y , y ′ : A)

→ inl(y ) =A⊎B inl(y ′)

→ y =A y ′

(Lm20)

a′ : Mm

inl(a′) : Msuc(m)
⊎IL

b′ : Mm

inl(b′) : Msuc(m)
⊎IL

Msuc(m) : type Mn : type

l20(Msuc(m))(Mn)(inl(a′))(inl(b′)) :

inl(inl(a′)) =Msuc(m)⊎Mn inl(inl(b′))

→ inl(a′) =Msuc(m) inl(b′)

ΠE ∗

l20(Msuc(m))(Mn)(inl(a′))(inl(b′))(u) : inl(a′) =Msuc(m) inl(b′) →E

D2:

u : case inl(a′) of (λz .inl(inl(z)), λz .inr(z))

=Msuc(m)⊎Mn

case inr(b′) of (λz .inl(inl(z)), λz .inr(z))

1

....
case inl(a′) of (λz .inl(inl(z)), λz .inr(z))

≡β inl(inl(a′))

....
case inr(b′) of (λz .inl(inl(z)), λz .inr(z))

≡β inr(b′)
u : inl(inl(a′)) =Msuc(m)⊎Mn inr(b′) conv ∗

....
Msuc(m) : type

....
Mn : type

a′ : Mm

inl(a′) : Msuc(m)
⊎I

b′ : Mn

t25 :

¬
(
inl(inl(a′)) =Msuc(m)⊎Mn inr(b′)

)
(Th25)

t25(u) : ⊥
→E

....
λq .inl(a′) =Mm⊎Mn inr(b′) :

⊥ → type
caset25(u)() : inl(a′) =Mm⊎Mn inr(b′) →E

λu .caset25(u)() :

case inl(a′) of (λz .inl(inl(z)), λz .inr(z)) =Msuc(m)⊎Mn case inr(b′) of (λz .inl(inl(z)), λz .inr(z))

→ inl(a′) =Mm⊎Mn inr(b′)

→ I , 1

D3:

u : case inr(a′) of (λz .inl(inl(z)), λz .inr(z))

=Msuc(m)⊎Mn

case inl(b′) of (λz .inl(inl(z)), λz .inr(z))

1

....
case inr(a′) of (λz .inl(inl(z)), λz .inr(z))

≡β inr(a′)

....
case inl(b′) of (λz .inl(inl(z)), λz .inr(z))

≡β inl(inl(b′))
u : inr(a′) =Msuc(m)⊎Mn inl(inl(b′)) conv ∗

u∗ : inl(inl(b′)) =Msuc(m)⊎Mn inr(a′) =Sym

....
Msuc(m) : type

....
Mn : type

b′ : Mm

inl(b′) : Msuc(m)
⊎I

a′ : Mn

t25 :

¬
(
inl(inl(b′)) =Msuc(m)⊎Mn inr(a′)

)
(Th25)

t25(u∗) : ⊥
→E

....
λq .inl(a′) =Mm⊎Mn inr(b′) :

⊥ → type
caset25(u∗)() : inr(a′) =Mm⊎Mn inl(b′) →E

λu .caset25(u∗)() :

case inr(a′) of (λz .inl(inl(z)), λz .inr(z)) =Msuc(m)⊎Mn case inl(b′) of (λz .inl(inl(z)), λz .inr(z))

→ inr(a′) =Mm⊎Mn inl(b′)

→ I , 1
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D4:

Mn : type a′ : Mn b′ : Mn

....
λx .inr(a′) =Mm⊎Mn inr(x) :

Mn → type

u : · · · 1 a′ : Mn b′ : Mn.... D′
4

l21(Mn)(Msuc(m))(a′)(b′)(u) :

a′ =Mn b′

....
Mm ⊎Mn : type

a′ : Mn

inr(a′) : Mm ⊎Mn
⊎I

reflMm⊎Mn (inr(a′)) : inr(a′) =Mm⊎Mn inr(a′) = I

X X X : inr(a′) =Mm⊎Mn inr(b′) =Sub

λu .X X X :

case inr(a′) of (λz .inl(inl(z)), λz .inr(z)) =Msuc(m)⊎Mn case inr(b′) of (λz .inl(inl(z)), λz .inr(z))

→ inr(a′) =Mm⊎Mn inr(b′)

→ I , 1

D′
4:

u : case inr(a′) of (λz .inl(inl(z)), λz .inr(z))

=Msuc(m)⊎Mn

case inr(b′) of (λz .inl(inl(z)), λz .inr(z))

case inr(a′) of (λz .inl(inl(z)), λz .inr(z))

≡β inr(a′)

case inr(b′) of (λz .inl(inl(z)), λz .inr(z))

≡β inr(b′)
u : inr(a′) =Msuc(m)⊎Mn inr(b′) conv ∗

l21 :(
A,B : type

)
→ (y , y ′ : A)

→ inr(y ) =B⊎A inr(y ′)

→ y =A y ′

(Lm21)

a′ : Mn b′ : Mn

....
Mn : type

....
Msuc(m) : type

l21(Mn)(Msuc(m))(a′)(b′) :

inr(a′) =Msuc(m)⊎Mn inr(b′)

→ a′ =Mn b′

ΠE ∗

l21(Mn)(Msuc(m))(a′)(b′)(u) : a′ =Mn b′ →E

□

Lemma 27: Let
i ≡ λk .λk ′.λu .natrec(π1(u), ⟨idMk ′ , IidMk ′

⟩, λn′.λq .⟨λx .inl((πq)(x)), Iλx .inl((πq)(x))⟩)

: (k ,k ′ : Nat) → (u : k ′ ≤ k ) →


f : Mk ′ → Mk

injection (i )


.

The following holds.
(k , l ,n : Nat) → (p1 : k = suc(l) + n) → (y : Ml ) →

(π1(i(k )(suc(l))(⟨n, p1⟩)))(inl(y )) =Mk (π1(i(k )(l )(p19(⟨n, p1⟩))))(y ) true

Proof. ByTheorem19,p19(⟨n, p1⟩) ≡β suc(π1(⟨n, p1⟩)) ≡β suc(n). LetC X
Y

def
≡

natrec(X , ⟨idMY , IidMY
⟩, λn′.λq .⟨λx .inl((πq)(x)), Iλx .inl((πq)(x))⟩). We have:

i(k )(suc(l))(⟨n, p1⟩) ≡β C n
suc(l)

i(k )(l )(p19(⟨n, p1⟩)) ≡β C suc(n)
l .

The proof is by induction on n.
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(1) For the case n = 0, we prove:

(k , l : Nat) → (p1 : k = suc(l) + 0) → (y : Ml ) →

(π1(i(k )(suc(l))(⟨0, p1⟩)))(inl(y )) =Mk (π1(i(k )(l )(p19(⟨0, p1⟩))))(y )

(6.6)

Assume k , l : Nat, p1 : k = suc(l) + 0, and y : Ml .

(π1(i(k )(suc(l))(⟨0, p1⟩)))(inl(y ))

≡β (π1C 0
suc(l))(inl(y ))

≡β (π1⟨idMsuc(l) , IidMsuc(l)
⟩)(inl(y ))

≡β idMsuc(l)(inl(y ))

≡β inl(y )

(π1(i(k )(l )(p19(⟨0, p1⟩))))(y )

≡β (π1C suc(0)
l )(y )

≡β (π1⟨λx .inl((π1C 0
l )(x)), Iλx .inl((π1u)(x))⟩)(y )

≡β (π1⟨λx .inl((π1⟨idMl , IidMl
⟩)(x)), Iλx .inl((πu)(x))⟩)(y )

≡β (λx .inl((π1⟨idMl , IidMk
⟩)(x)))(y )

≡β inl(idMl (y ))

≡β inl(y )

Hence,wehave (π1(i(k )(suc(l))(⟨0, p1⟩)))(inl(y )) =Mk (π1(i(k )(l )(p19(⟨0, p1⟩))))(y )

and (6.6) holds.

(2) Assume that the formula holds for n = m (IH).

IH : (k , l : Nat) → (p1 : k = suc(l) +m) → (y : Ml ) →

(π1(i(k )(suc(l))(⟨m, p1⟩)))(inl(y )) =Mk (π1(i(k )(l )(p19(⟨m, p1⟩))))(y )
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Wewill prove the formula for suc(m):

(k , l : Nat) → (p1 : k = suc(l) + suc(m)) → (y : Ml ) →

(π1(i(k )(suc(l))(⟨suc(m), p1⟩)))(inl(y )) =Mk (π1(i(k )(l )(p19(⟨suc(m), p1⟩))))(y )

(6.7)

Assume k , l : Nat, p1 : k = suc(l) + suc(m) and y : Ml . From IH,

IH(suc(l) +m)(l )(reflNat(suc(l) +m))(y ) :

(π1(i(suc(l) +m)(suc(l))(⟨m, reflNat(suc(l) +m)⟩)))(inl(y )) =Mk (π1(i(suc(l) +m)(l )(p19(⟨m, reflNat(suc(l) +m)⟩))))(y )

holds, namely,

(π1C m
suc(l))(inl(y )) =Msuc(l)+m (π1C suc(m)

l )(y )

has a proof. Now,

(π1(i(k )(suc(l))(⟨suc(m), p1⟩)))(inl(y ))

≡β (π1C suc(m)
suc(l) )(inl(y ))

≡β (π1⟨λx .inl((π1C m
suc(l))(x)), Iλx .inl((π1q)(x))⟩)(inl(y ))

≡β (λx .inl((π1C m
suc(l))(x)))(inl(y ))

≡β inl((π1C m
suc(l))(inl(y )))

≡β inl((π1C suc(m)
l )(y ))

(π1(i(k )(l )(p19(⟨suc(m), p1⟩))))(y )

≡β (π1C suc(suc(m))
l )(y )

≡β (π1⟨λx .inl((π1C suc(m)
l )(x)), Iλx .inl((π1q)(x))⟩)(y )

≡β (λx .inl((π1C suc(m)
l )(x)))(y )

≡β inl((π1C suc(m)
l )(y ))
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Hence (π1(i(k )(suc(l))(⟨suc(m), p1⟩)))(inl(y )) =Mk (π1(i(k )(l )(p19(⟨suc(m), p1⟩))))(y )

and (6.7) holds.

From (1) and (2), we conclude that
(k , l ,n : Nat) → (p1 : k = suc(l) + n) → (y : Ml ) →

(π1(i(k )(suc(l))(⟨n, p1⟩)))(inl(y )) =Mk (π1(i(k )(l )(p19(⟨n, p1⟩))))(y ) true
□

Theorem 28

M : {x : A | B(x)} N : {x : A | B(x)} iB ′(oB(M )) ={x :A |B ′(x)} iB ′(oB(N ))
M ={x :A |B(x)} N

Proof. From iB ′(oB(M )) : {x : A | B′(x)}, we obtain

oB ′(iB ′(oB(M ))) : A (6.8)

by {|}E . We also obtain

?(M ) : B(oB(M )) (6.9)

fromM by {|}E?, which is equivalent to

?(M ) : B(oB ′(iB ′(oB(M )))) (6.10)

as oB ′(iB ′(oB(M ))) ≡β oB(M ) holds. Hence, from (6.8) and (6.10), we get

iB(oB ′(iB ′(oB(M )))) : {x : A | B(x)} , (6.11)

which gives

refl : iB(oB ′(iB ′(oB(M )))) ={x :A |B(x)} iB(oB ′(iB ′(oB(M )))). (6.12)

Now, iB ′(oB(M )) ={x :A |B ′(x)} iB ′(oB(N )) holds by the assumption. Hence

we get

refl : iB(oB ′(iB ′(oB(M )))) ={x :A |B(x)} iB(oB ′(iB ′(oB(N )))) (6.13)
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by substitution. As iB(oB ′(iB ′(oB(M )))) ≡β M and iB(oB ′(iB ′(oB(N )))) ≡β N

hold, we getM ={x :A |B(x)} N .

End of proof.
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Appendix C: Lexical entries.

Expression CCG Category Semantic Representation

anom (S/(S\N P ))/N λnλv . (x : e) × (u : nx) × v x

somenom (S/(S\N P ))/N λnλv . (x : e) × (u : nx) × v x

everynom (S/(S\N P ))/N λnλv . (u : (x : e) × nx) → v (π1u)

mostnom (S/(S\N P ))/N λnλv .Most(n,v )

thenom (S/(S\N P ))/N λn.λv .v (π1(@i ::
(
x : entity

)
× nx))

aacc ((S\N P )\((S\N P )/N P ))/N λnλvλx . (y : e) × (u : ny ) × v y x

if S/S/S λpλq . (u : p) → q

who (N \N )/(S\N P ) λvλnλx . (nx × v x)

man N λx .man(x)

boy N λx .boy(x)

present N λx .present(x)

farmer N λx .farmer(x)

donkey N λx .donkey(x)

sister RN λy λx .sisterOf(x , y )

enter S\N P λx .enter(x)

beat (S\N P )/N P λy λx .beat(x , y )

own (S\N P )/N P λy λx .own(x , y )

receive (S\N P )/N P λy λx .receive(x , y )

open (S\N P )/N P λy λx .open(x , y )

he, she, it N P @i :: e

his, her N P/RN λr .π1(@i :: (x : e) × r (x ,@j :: e))

young N /N λnλx .
(
nx × young(x)

)
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CCG Category Semantic Type

(S/(S\N P ))/N (e → t) → (e → t) → t

((S\N P )\((S\N P )/N P ))/N (e → t) → (e → type) → e → t

S/S/S t → t → t

(N \N )/(S\N P ) (e → t) → (et ot) → e → t

N P e

N e → t

S\N P e → t

(S\N P )/N P e → e → t

RN e → e → t

N P/RN (e → e → t) → e
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