Natural Language Quantification
and Dependent Types

OCHANOMIZU UNIVERSITY

Graduate School of Humanities and Sciences

Ribeka Tanaka

MARCH, 2021

Acknowledgements

I want to express my special appreciation and sincere thanks to my ad-
visor Daisuke Bekki. I first learned logic and linguistics in his class. He
showed me a lot of interesting issues through clear explanations, which
led me to this research area. I would not have written this thesis with-
out his continuous support and encouragement. I would like to express
my special thanks to Koji Mineshima, who spent much time with me dis-
cussing my work as a collaborator. He always introduced me to helpful
literature. I am also grateful to Kenichi Asai, who is my co-advisor. Dis-

cussions with him have always brought me back to the basics.

I thank Yusuke Kubota, who gave me a lot of advice and encourage-
ment. He gave me opportunities to present my work at workshops held at
Ohio State University in 2015 and 2016, which were valuable experiences
for me. I thank Nicholas Asher, who allowed me to visit his research group
in 2014. I spent one month in IRIT, Toulouse, discussing dependent types

with him and his collaborators. It helped me deepen my understanding.

I have presented different parts of this thesis in a variety of confer-
ences and workshops and received valuable comments. The material in
Chapter 4 and Chapter 5 and some of the material in Chapter 3 was pre-
sented in the following conferences and workshops: Student Session at

26th European Summer School in Logic, Language and Information (ESS-

LLI2014), the Kyoto Summer School in Logic, Language and Information
(KSSLLI) in 2014, the workshop on “Dynamic Semantics: Modern Type
Theoretic and Category Theoretic Approaches” held at Ohio State Uni-
versity in 2015, NYU semantics group, the course on "An Introduction to
Dependent Type Semantics" at 28th European Summer School in Logic,
Language, and Information (ESSLLI2016), “New Landscapes in Theoreti-
cal Computational Linguistics” held at Ohio State University in 2016, the
13th International Workshop on Logic and Engineering of Natural Lan-

guage Semantics (LENLS13).

I thank Chris Barker, Alastair Butler, Lucas Champollion, Robin Cooper,
Robert Levine, Zhaohui Luo, Scott Martin, Larry Moss, Anna Szabolcsi,
and Shunsuke Yatabe for their helpful comments and suggestions. The
preliminary version of the study in Chapter 4 was joint work with Yuki
Nakano, who helped me understand the basics of dependent types at the
very beginning. Some material in Chapter 3 and Chapter 4 is partially sup-
ported by the funding from the Japan Society for the Promotion of Sci-

ence, Grant-in-Aid for JSPS Research Fellow.

[thank Youyou Cong for her support throughout my research life in the
doctoral course. Encouraging each other with her made me feel relaxed. I
also thank Tatsuya Hayashi, Hitomi Hirayama, Shiori Ikawa, Shinya Okano
and Yu Tomita. We often had a study group together and discussed many

topics on logic and linguistics.

I thank Sadao Kurohashi, who offered me a research position at his
laboratory. I also thank members of Kurohashi Lab for their support. Be-
cause of their understanding, I was able to continue working on this the-
sis. I thank Yurina Itoh, Kimi Kaneko, Eriko Kinoshita, Kana Manome,

Pascual Martinez-G6émez, Ayako Nakamura, Miho Satoh, Maika Utsugi,

i

Yukiko Yana, Hitomi Yanaka, and Masashi Yoshikawa. I spent most of my
time with them in Bekki Lab. I enjoyed discussions with them. I thank
Masaatsu Kasukawa, Keiko Kigoshi, Shinji Miura, and Emiko Naito for
their support, kindness, and encouragement.

Finally, I wish to express my thanks to my family for their continuous

encouragement.

1ii

Contents

Acknowledgements i
1 Introduction 1
2 Dependent Type Semantics 7
2.1 Dependenttypetheory 8
2.1.1 Typesdependingonterms 8

2.1.2 Formalsystem 9

2.2 Dependent types and natural language 12
2.2.1 Donkeysentence 12

2.2.2 Toward compositional analysis 15

2.3 DTS:anoverview 16
2.4 Semantic representationinDTS 17

2.5 Analysisofanaphora 21
2.5.1 ZX-typeanaphora 21

2.5.2 TIl-typeanaphora 30

2.6 Analysis of presupposition 35
2.6.1 Definitedescription. 36

2.6.2 Possessives. oo 40

2.7 Anaphoraresolution and inference 42

\%

CONTENTS

2.8 Entailmentandmeaning

Quantifier in Natural Language

3.1 Quantification and determiners
3.2 Intra-sentential anaphora
3.3 Inter-sententialanaphora
3.4 Inferential property

3.5 Previousapproaches

Quantifier and Anaphora

4.1 Constructive generalized quantifier
4.1.1 Cardinality
4.1.2 Notionof morethanhalf
4.1.3 DefinitionofMost
4.1.4 Proportionproblem.
4.1.5 Countingentities

4.2 Analysisof mostinDTS

4.3 Donkeysentence,

4.4 Otherquantifiers

4.5 Pluralanaphora
4.5.1 Plural anaphora and dependent interpretation . . .
4.5.2 Dependencyrelation

453 Pluralpronoun

Quantifier and Inference

5.1 Entailment of quantified sentences
5.1.1 Inferential properties

5.2 Conservativity L e

5.3 Proofs of right monotonicity

Vi

51
51
55
58
61
64

67
67
67
71
73
74
78
81
85
89
99
100
101
105

CONTENTS

5.3.1 Overviewoftheproofs 116

5.3.2 Theorem: convertibility of bijection and bijection, 119

5.3.3 Theorem: subset types with equivalent specification 124

5.3.4 Theorem: subset types with disjoint specification . 126

5.3.5 Lemma: segmentationofatype 132

5.3.6 Theorem: Finitenessofapart 161

5.4 Rightmonotonicity 169
5.5 Leftmonotonicity 174
5.6 Anaphoraandinference 178

6 Concluding Summary 187
Appendices 191
Appendix A: Formal system. 191
AppendixB: Theorems. 198
Appendix C: Lexicalentries. 212
Bibliography 215

vii

Chapter 1

Introduction

This thesis provides an analysis of quantifiers in natural language based
on a semantic framework called dependent type semantics (henceforth,

DTS) (Bekki, 2014; Bekki and Mineshima, 2017).

Quantifiers have been studied extensively in both logic and linguistics.
It is well-known that the standard first-order logic has two quantifiers, V
and 3: a universal quantifier V is used to express about everything and an
existential quantifier 3 is used to express about something. To account for
other quantification, e.g., most, at least 5, exactly 3, and so on, the notion
of generalized quantifiers (GQs) was developed (Mostowski, 1957; Lind-
strom, 1966). It generalizes the standard universal and existential quanti-
fiers into relations between sets of objects, which enables to account for
various other quantifiers, including binary quantifiers that express the re-
lation between two sets.

This model-theoretic conception of GQs has been introduced to stud-
ies of model-theoretic semantics of natural language. Natural language
quantifiers such as every, some, and most can be regarded as binary quan-

tifiers from the GQ perspective (Barwise and Cooper, 1981). This account

1

INTRODUCTION

seems to give the adequate meaning of quantifiers: the relationship they
represent for the denotation of given noun phrases and the verb phrases.
Also, the inferential properties of those quantifiers, such as monotonicity,
seems to be naturally derived from those set relations.

However, itis not that straightforward because natural language quan-
tifiers behave in a complicated way, interacting with context-dependent
dynamiclinguistic phenomena such as anaphora and presupposition. For
example, anaphora in a sentence poses a challenge to the basic idea that
a quantifier represents a relationship between two sets. The following ex-
ample shows the so-called donkey sentence (Geach, 1962) that contains

the quantifiers most!.
(1.1) Most farmers who own a! donkey beat it;.

Here, a semantic dependency exists between the two sets related by the
quantifier most : the second set, which is a collection of objects x that
satisfy x beat it, is interpreted dependently on the first set. Therefore, to
give proper meaning to a quantifier, it is necessary to consider anaphoric
dependency simultaneously. This observation suggests that even the es-
sential operation of quantification, i.e., counting, becomes non-trivial in
the presence of intra-sentential anaphora. Also, quantifiers exhibit infer-
ential properties such as monotonicity according to the relationship be-
tween the two sets they relate to. This inferential property also manifests
itself as an entailment relation between natural language sentences con-
taining quantifiers. Therefore, inferential properties of quantifiers must
also be treated simultaneously with intra-sentential anaphora. Besides,

we need to consider also quantifiers’ anaphoric potential for subsequent

In examples in this thesis, an anaphor is subscripted by an index, while its an-

tecedent is superscripted by the same index.

2

sentences.

It has been one of the significant issues in natural language seman-
tic studies to capture the meaning of quantifiers that accounts for nat-
ural language dynamism. For example, dynamic semantic frameworks
such as Dynamic Predicate Logic (DPL) (Groenendijk and Stokhof, 1991;
Kanazawa, 1994) and Discourse Representation Theory (DRT) (Kamp and
Reyle, 1993; Kamp et al., 2011) have provided their account on quantifica-
tion and intra-sentential anaphora. Analyses have also been proposed for
quantifiers’ anaphoric potential in discourse (Krifka, 1996; van den Berg,
1996b).

DTS, the semantic framework we study in this thesis, is a proof-theoretic
natural language semantics based on dependent type theory (Martin-Lof,
1984). It has been recently developed as an alternative to model-theoretic
dynamic semantics such as DRT and DPL.

DTS has shown unique characteristics as a semantic framework for
natural language in at least two points. The first point is how it provides
a solution to the compositionality problem of discourse anaphora. The
problem occurs in the donkey sentences and E-type anaphora case (Evans,

1980), which are exemplified below.

(1.2) Every farmer who owns al donkey beats it;.

(1.3) Al man entered. He; whistled.

It has been known to be a puzzle to provide their semantic representa-
tions parallel to their syntactic structure. However, as Sundholm (1986)
pointed out, the type structures of dependent type theory are rich enough
to allow such semantic representations. DTS elaborates this idea further
and provides a fully compositional account of anaphora resolution and

presupposition binding process.

INTRODUCTION

The second point is that DTS accounts for anaphora resolution and
presupposition binding involving inference. For the analysis of presuppo-
sition, DTS follows the “presupposition as anaphora” paradigm proposed
by van der Sandt and Geurts (1991) and van der Sandt (1992) and gives a
uniform account of anaphora resolution and presupposition binding. Al-
though van der Sandt’s analysis on DRT framework is considered to have
best empirical coverage (see Beaver, 1997, page. 983), using world knowl-
edgein presupposition bindingis beyond the scope of the proposal (Krah-
mer and Piwek, 1999). The typical instance of such cases is the so-called

bridging inference (Clark, 1975).
(1.4) John! bought a car. He; checked the motor.

Here, the definite description the motor is associated with a car in the first
sentence by a general world knowledge that every car has a motor. In DTS,
anaphoraresolution and presupposition binding involve proof search un-
der the given context along the paradigm of “anaphora resolution as proof
construction” (Krahmer and Piwek, 1999). Thus, it can naturally account
for presupposition binding involving inference using world knowledge.

Although DTS looks promising as a new framework of natural language
semantics, an analysis of quantifiers other than universal and existential
ones within the framework has not been well established so far. There
is a study of quantifiers based on dependent type theory by Sundholm
(1989). The study provides a set-theoretic definition of quantifiers in the
framework of dependent type theory, which provides a basis for analyz-
ing quantifiers’ meaning in a constructive setting. However, the interac-
tion of quantifiers with dynamic phenomena in natural language has not
been fully discussed.

Since DTS is a proof-theoretic semantics, it is not trivial how to ac-

4

count for the dynamic meaning of quantifiers in the framework even if
there are studies in model-theoretic dynamic semantics. Quantifiers have
been studied in the proof-theoretic approach to natural language seman-
ticsin general. Those studies, however, have mainly focused on the proof-
theoretic account of inferential properties of quantifiers, where anaphora
isnot taken into account. Based on the previous work by Sundholm (1989),
we adopt an approach where counting operations are defined explicitly in
the dependent type theory framework. We then show that the semantic
representation of quantifiers given in this way can provide a context for

anaphora and presupposition in the proof-theoretic setting of DTS.
The structure of this thesis is as follows.

In Chapter 2, we introduce DTS, the semantic framework we adopt in
this study. We first explain dependent type theory, which is the basis of
the framework. There are two dependent types, Z-type and I1-type, that
correspond to the existential and universal quantifiers. We will explain
that these types give semantic representations of existential and univer-
sal sentences in natural language. We will then introduce the analysis of
anaphora resolution in DTS. We categorize natural language anaphora
into two groups. Oneis anaphora that X-types contribute to (X -type anaphora).
The other is anaphora that I1-types contribute to (I1-type anaphora). We
will explain the basics of the anaphora resolution process in DTS for each
of them. Moreover, we will explain the same mechanism applies to the

analysis of presupposition.

Chapter 3 gives an overview of studies of natural language quantifiers,
particularly phenomena associated with determiners. It summarizes the
issues discussed in theliterature, including intra-sentential and inter-sentential

anaphora and inferential properties associated with the quantifiers.

5

INTRODUCTION

In Chapter 4, we propose an analysis of quantifiers in DTS. We first in-
troduce a way to handle cardinal numbers in dependent type theory, fol-
lowing the study by Sundholm (1989). Among various quantifiers, we pay
special attention to most and take it as our working example. From the
GQ theory point of view, meanings of binary quantifiers such as most are
given as relations between two sets. We will show how such a view is for-
malized in our setting while maintaining its internally-dynamic nature.
We generalize our definition also to other quantifiers, including numer-
als and some, no, and every. We also discuss our account of the so-called
existential reading (weak reading) and universal reading (strong reading)
of donkey sentences. Finally, we discuss the anaphoric potential of the
semantic representation given here. We give a semantic representation
of the plural pronoun and examine the interaction between the quanti-
fier, the plural pronoun, and the singular pronoun. We will show that the
meaning of quantifiers is directly supplied as the context in discourse.

Chapter 5is concerned with the inferential property of quantifiers. From
a proof-theoretic and dynamic perspective, we define inferential proper-
ties such as conservativity and monotonicity in terms of dependent type
theory. We then prove the theorems that the semantic representations of
quantifiers given in this thesis satisfy conservativity and right monotonic-
ity. We also discuss the remaining issues on left monotonicity. As the the-
orems consider anaphoric dependency in a sentence, they can account
for natural language inference involving anaphora.

Finally, Chapter 6 summarizes the contribution of this study and some

remaining issues.

Chapter 2

Dependent Type Semantics

In this chapter, we introduce the framework of Dependent Type Semantics
(henceforth, DTS) (Bekki, 2014; Bekki and Mineshima, 2017), a semantic

framework we will adopt in this study.

Before introducing a framework of DTS, Section 2.1 provides a brief
overview of dependent type theory (Martin-Lof, 1984; Nordstrom et al.,
1990), a theoretical background of the framework. In Section 2.2, we ex-

plain how the theory has been applied to natural language semantics.

We introduce DTS in Section 2.3 and provide an overview of the frame-
work. The following sections, Section 2.4 to Section 2.8, are devoted to
explain the natural language analysis in DTS, including the analysis of

anaphora and presupposition.

DEPENDENT TYPE SEMANTICS

2.1 Dependent type theory

2.1.1 Types depending on terms

Dependent type theory (Martin-Lof, 1984; Nordstrém et al., 1990) is orig-
inally developed as a formal systems for constructive mathematics (see,
e.g., Martin-Lof, 1982; Aczel, 1978, 1982, 1986). It extends simple type the-
ory with the notion of types depending on terms, that is, types indexed by
objects in another type.! For instance, one can define a type list(n) of lists
of length n, where n is an object of type Nat (natural number).

Dependent types enable more precise definitions of types. Suppose
we want to define a function that takes a natural number i and returns an
i x i identity matrix. Without dependent types, the type of the function is
specified as Nat — Mat with the type Mat of matrices. However, this type
is not so precise in that it may include functions that return matrices of
any size. With dependent types, we can define the type Mat(n, m) of n x m
matrices for n : Nat and m : Nat. Therefore, the function can have type
(i : Nat) — Mat(i, i), which specifies that the resultant object is i x i matrix
for the given i : Nat.

One advantage of dependent types is that it allows specifying a prop-
erty of an object in its type. Let us consider the operation of matrices
multiplication as an example. Without dependent types, the operation
has a function type of Mat — Mat — Mat. However, the matrices mul-

tiplication is not always available: the operation is not executable when

! The formalism presented in this thesis is based on Martin-Lof type theory (Martin-
Lof, 1984). In this thesis, we use the term dependent type theory to refer to any type
theory with dependent types, including AP (Barendregt, 1992), Calculus of Construction
(CoC) (Coquand and Huet, 1988), and Unified Type Theory (UTT) (Luo, 2012b).

8

2.1. Dependent type theory

the number of columns of the first argument differs from the second ar-
gument’s number of rows. With dependent types, we can block such a
multiplication beforehand. The type of matrices multiplication is given

as follows.
(i : Nat) — (j : Nat) — (k : Nat) — Mat(i, j) —» Mat(j, k) — Mat(i, k)

Here, the type itself specifies that the number of columns of the first ar-
gument and the number of rows of the second argument are the same
(variable j). Therefore, the multiplication that does not satisfy the size re-

quirement can be detected in the type checking stage.

2.1.2 Formal system

There are two type constructors, X and I1, in dependent type theory.

The type constructor X is a generalized form of the product type. An
object of type (Zx : A) B(x) is a pair (m, n) such that mis of type A and n is of
type B(m). Z-types are associated with projection functions x; and x, that
are computed with the rules n;(m, n) = m and n2(m, n) = n, respectively.
Conjunction A A B is a degenerate form of (Xx : A) B, where x does not
occur free in B.

The type constructor IT is a generalized form of the function type. An
object of type (ITx : A) B(x) is a function f such that for any object a of type
A, fa is an object of type B(a). Implication A — B is a degenerate form of
(ITx : A) B, where x does not occur free in B.

Throughout this thesis, we will make use of the DTS-notation for IT-

types and X-types as shown in Figure 2.1.% The inference rules for IT-types

2 We use the two different notations of -types depending on the situation.

9

DEPENDENT TYPE SEMANTICS

II-types 2-types
Standard notation (ITx : A)B (Zx:A)B
. x:A
Notation in DTS (x:A)— B or(x:A)xB
B(x)
A
When x ¢ fv(B) A— B or (A X B)
B

Figure 2.1: Notation for II-types and X-types in DTS. Here, fv(B) means

the set of free variables in B.

and X-types are shown in Figure 2.2. Here we write B[M /x] for the substi-
tution of a term M for free occurrences of the variable x in the term B, with
the possible capture-avoiding renaming of bound variables. The full ver-
sion of the inference rules we will use in this thesis is shown in Appendix
A. For more details, the readers can refer to Martin-Lof (1984), Nordstrom
etal. (1990), and Ranta (1994).°

The form “a : A” that expresses “a is a term of type A” is called a judge-
ment. Under the so-called Curry-Howard correspondence (the propositions-
as-types principle), atype and a term can be regarded as a proposition and
a proof, respectively. Thus, the judgement a : A can also be read as “a is a
proof of proposition A”. A term is called a proof term in this respect, as it
serves as proof of a proposition. In this setting, the truth of a proposition

Ais defined as the existence of a proof term of type A.

3 Here is a note on some differences between Martin-Lof (1984)’s original system and
systems that the specific version of DTS we adopt here is based on. Firstly, DTS employs
two sorts: type and kind. Secondly, we use an intensional version of the equality (Nord-
strom et al., 1990). Thirdly, we have 3-conversion rules in place of judgemental equal-

ity (Bekki and Satoh, 2015).

10

2.1. Dependent type theory

Formation rules:
For any (s, s2) € {(type, type), (type, kind), (kind, type), (kind, kind)},
and (s}, s;,) € {(type, type), (type, kind), (kind, kind)},

xiA) xi A

A:Sl B:.SZ HFJ A:Sll B:S/z EFJ
(x:A)—>B:sy ' (x:A)xXB:s, '

Introduction rules: For any s € {type, kind},

x;AJ

A:s M:B m, M:A N :B[M/x]
AxM:(x:A)—B '~ (MN):(x:A)XB

Elimination rules
M:(x:A)—>B N:A

MN : B[N/x]
M:(x:A)XB M:(x:A)XB
m(M): A m2(M) = B[mi(M)/x]

2E

Figure 2.2: Inference rules: formation rules (I1F, £F), introduction rules

(I1, 1), and elimination rules (I1E, LE).

We use the following form to state that the judgement a : Aisderivable

under the sequence of assumptionsI'.
'ra:A

We use the following judgement of the form A true to mean that the type

A is inhabited, that is, there exists a term «a that satisfies I + a : A.

I'+Atrue

11

DEPENDENT TYPE SEMANTICS

By the Curry-Howard correspondence, the type constructor X behaves
as an existential quantifier and IT as a universal quantifier. Thus a proof
term of an existential proposition is a pair, and a proof term of a universal
proposition is a function. These types and proof terms play an important

rolein representing natural language sentences in dependent type theory.

2.2 Dependent types and natural language

2.2.1 Donkey sentence

Dependent type theory has been applied to natural language semantics,
particularly to dynamic semantics and lexical semantics (Sundholm, 1986;
Ranta, 1994; Luo, 2012b; Cooper, 2012; Bekki, 2014; Bekki and Mineshima,
2017; Chatzikyriakidis and Luo, 2017; Grudzinska and Zawadowski, 2017).
Sundholm (1986) first pointed out that the rich type structure can nat-
urally handle dependencies lying in natural language, especially the de-
pendencies between an anaphoric expression and its reference.
Capturing anaphoric dependencies has been one of the biggest issues
in studies of dynamic semantic frameworks of natural language. Let us

consider the following sentence, known as a donkey sentence (Geach, 1962).
(2.1) Every farmer who owns a! donkey beats it;.

If we focus on one natural reading where the pronoun it refers back to an
indefinite a donkey, the sentence means that for every farmer who owns
a donkey, the farmer beats his donkey.

This sentence is known to be problematic in the sense that a standard

compositional analysis does not give the truth-conditionally correct se-

12

2.2. Dependent types and natural language

mantic representation (the compositionality problem)*. One might think
that the sentence can be represented as the following predicate logic for-

mula.
(2.2) Vx(farmer(x) A Jy(donkey(y) A own(x, y)) — beat(x, y))

The structure of the formula looks well-corresponding to the original nat-
ural language sentence. However, this does not capture the intended in-
terpretation of the donkey sentence because the variable y in the object
position of the predicate beat is outside the scope of existential quantifi-
cation over the variable y. The problem can be stated in a more general
way. In the original sentence, since it states there is an object (i.e., a don-
key), the object can be referred to from the rest of the sentence. However,
there is no way to refer to the object in the predicate logic formula once
the existential quantifier’s scope is closed.’

This gap between natural language sentences and predicate logic for-
mulas became the motivation behinds the dynamic predicate logic (DPL) (Groe-
nendijk and Stokhof, 1991). In DPL, the meaning of a sentence corre-
sponds to an action performed on a context. Since existential quantifi-
cation is treated as an operation to alter the context, the scope of existen-
tial quantifier does not affect the accessibility. In this way, DPL provides a

compositional analysis of anaphora in (2.1).

4Bekki and Mineshima (2017) discussed the compositionality problem of discourse
anaphora, including the donkey sentence and E-type anaphora.

5 Note that providing the truth-conditionally correct representation of the donkey
sentence in the predicate logic itself is not a problem. We can represent its meaning as
follows: —3x(farmer(x) A 3y(donkey(y) A own(x, y) A —beat(x, y))).

Note also that the puzzle presented here comes from the assumptions that (1) the in-
terpretation of the sentences is given one-by-one from left to right and (2) the pronoun

is a variable-like semantic object.

13

DEPENDENT TYPE SEMANTICS

However, dependent type theory can provide an alternative solution:
it provides a way to access the donkey from outside the existential scope.
As Sundholm (1986) presents, the corresponding formula in dependent

type theory is as follows.

x : farmer
(2.3) u: y : donkey — beat(m u, mymou)

own(x, y)

The formula (2.3) as a whole is a universal sentence, which is represented
as a I[1-type. The restrictor farmer who owns a donkey is analyzed as a
Z-type. Since the variable u has the -type (x : farmer) x (y : donkey) x
own(x, y), the variable would be a tuple (f, (d, 0)), where f is a term of type
farmer, d is a term of type donkey, and o is a proof-term of the proposi-
tion own(f, d). Recall that m; and n, are projection functions that take a
pair and return the first and the second element, respectively. Thus the
terms mu and mymou appearing in the argument position of beat pick up
from u the term f of type farmer and the term d of type donkey, respec-
tively. Here, the situation is the same as before in the sense that beat is
outside the scope of y. However, via the proof term u associated with the

X-type, the subsequent discourse can access the antecedent.

An advantage of dependent type theory over the previous dynamic
theories is that such an externally dynamic character of quantification
can be captured without any stipulation: Z-types and I1-types, which are
natural generalizations of existential and universal quantifiers in predi-
cate logic, are equipped with the mechanism to handle dynamic aspects

of discourse interpretations.

14

2.2. Dependent types and natural language

2.2.2 Toward compositional analysis

Since Sundholm (1986) discovered that dependent type theory could pro-
vide an alternative treatment to donkey anaphora, studies of natural lan-
guage semantics have been developed based on the approach.

One of the notable works was done by Ranta (1994), who developed
Type Theoretical Grammar (TTG) and showed the potential of dependent
types with broad coverage of empirical data. The study also raised funda-
mental discussions about a proof-theoretic view of anaphora, including
the relation of proof-terms with the notion of reference in dynamic se-
mantics. [t shows that dependent type theory can provide a type-theoretic
alternative to model-theoretic frameworks such as Dynamic Semantics (Heim,
1983), Dynamic Predicate Logic (Groenendijk and Stokhof, 1991), and Dis-
course Representation Theory (van der Sandt, 1992; Kamp and Reyle, 1993;
Kamp etal., 2011).

While Ranta’s work mainly focuses on mapping from a given formula
to the corresponding natural language sentence, one of the essential ques-
tions to be answered is how to get the semantic representation (2.3) from
sentence (2.1) in a systematic way.

From the viewpoint of the standard compositional semantics, the prob-
lem can be divided into two tasks. The first is to map the sentence (2.1)
into an underspecified representation, namely, a semantic representation
that contains an underspecified element corresponding to the pronoun
in question. The second task is to resolve the underspecified element. In
our example (2.3), the underspecified element has been resolved to ;o u.
The semantics satisfying the requirement of compositionality must pro-
vide an explicit procedure to do these two tasks.

DTS (Bekki, 2014; Bekki and Mineshima, 2017) provides such a proce-

15

DEPENDENT TYPE SEMANTICS

dure. We will explain these in more detail from the following sections.

2.3 DTS: an overview

DTS (Dependent Type Semantics) (Bekki, 2014; Bekki and Mineshima, 2017)
is a proof-theoretic natural language semantics based on dependent type
theory (Martin-Lo6f, 1984), which has been developed as an alternative
framework to traditional model-theoretic dynamic semantics. One of the
distinctive features of DTS, compared with other frameworks based on
dependent type theory, is that it is augmented with underspecified terms
called @-terms. DTS utilizes @-terms to provide a unified analysis of en-
tailment, anaphora, and presupposition from an inferential and compu-
tational perspective. DTS is designed as a semantic component of mod-
ern categorial grammars to give a fully compositional account of infer-

ences involving anaphora.

Figure 2.3 shows the flow of language analysis in DTS. First, each sen-
tence in discourse is translated into its semantic representation by se-
mantic composition. The semantic representation in DTS involves an un-
derspecified representation called an @-ferm. The underlying system is
whatwe call underspecified dependent type theory (UDTT), dependent type
theory augmented with an underspecified term. We obtain the semantic
representation of the whole discourse by combining sentence representa-
tions with progressive conjunction. The process of resolving underspec-
ification is formulated as type checking, proof search, and @-elimination.
We finally obtain a fully-specified semantic representation in dependent

type theory to conduct standard inference in dependent type theory.

16

2.4. Semantic representation in DTS

A sentence ... A sentence

l U

Parsing (Semantic composition) ... Parsing (Semantic composition)

l {

An underspecified semantic representation in UDTT ... Anunderspecified semantic representation in UDTT

l i

Progressive conjunction

U

An underspecified discourse representation in UDTT

U

Type checking + Proof search + @-elimination in UDTT

U

A semantic representation in dependent type theory

U

‘ Inference in dependent type theory‘

Figure 2.3: The model of language analysis in DTS.
2.4 Semantic representation in DTS

We first explain how semantic representations of basic sentences are de-

rived in the framework. Consider the following two sentences.

(2.4) A man entered.

(2.5) Every man entered.

DTS provides a compositional mapping from natural language sen-
tences to their semantic representations. In order to give an explicit com-
positional mapping, we adopt Combinatory Categorial Grammar (CCG,
Steedman 2000) as a syntactic framework.® Table 2.1 shows some of the

lexical entries.” Here we use entity : type for the type of entities.

6 Note that, as is emphasized in Bekki (2014), DTS can be combined with other cat-
egorial grammars; see Kubota and Levine (2015) for a concrete proposal that combines
DTS with a type-logical grammar.

" The subscript nom is for determiners in the nominative position. For the purpose

17

DEPENDENT TYPE SEMANTICS

Expression CCG category Semantic Representation

Anom (S/(S\NP))/N AnAv.(x : entity) X (u : nx) X vx
everynom (S/(S\NP))/N AnAv.(u : (x : entity) X nx) — v(7iu)

man N Ax.man(x)
entered S\NP Ax.enter(x)

own (S\NP)/NP AyAdx.own(x, y)
who (N\N)/(S\NP) AvaAnAx.(nx X vx)
he, it NP @; :: entity

Table 2.1: Some lexical entries.

The semantic representations of (2.4) and (2.5) are derived as in (2.6)

and (2.7), respectively.®?

of concreteness, we use a type-raised form of semantic representations for determiners.

The entry for determiners in the object position can be given as follows:
Agec; ((S\NP)\((S\NP)/NP))/N; Andvax.(y : €) X (u : ny) X vyx

Although there are other possible syntactic analyses of determiners in object posi-
tion (cf. Bekki, 2014), this entry would ensure a concise derivation tree for semantic com-
position.

8We ignore tense in this thesis for simplicity.

9In the CCG derivation trees, we use two standard combinatory rules, forward (>) and
backward (<) function application rules:

X/Y:m Y:n Y:n X\Y:m
X :mn > X :mn

For instance, the combinatory rule (>) means that an expression having a syntactic cat-
egory X /Y and a meaning m, combined with an expression having a syntactic category
Y and a meaning n, yields an expression having a category X and a meaning mn. Each

meaning is represented as a lambda term. See (Steedman, 2000) for more details.

18

2.4. Semantic representation in DTS

(2.6)
A

(S/(S\NP))/N __man
x : entity N
AnAdv. [u:nx } Ax.man(x)
X

v

S/(S\NP) entered
x : entity S\NP
Av. [u : man(x) l Ax.enter(x)

vx

S
X : entity
l u : man(x) l

enter(x)

(2.7)
Every

man
N

(S/(S\NP))/N
x : entity

n(x)

AU.(u :

/lnxlv.(u :

) — v(mu) Ax.man(x)

entered
S\NP

S/(S\NP)

x : entity

) — v(miu) Ax.enter(x)
man(x)

x : entity
u:
man(x)

Here is a note on the treatment of common nouns. There are two pos-

S

) — entered(miu)

sible approaches to representing basic sentences like A man entered in

19

DEPENDENT TYPE SEMANTICS

dependent type theory. One is the approach proposed in Ranta (1994)
and Luo (2012a,b), according to which common nouns like man are in-
terpreted as fypes so that the sentence is represented as (2.8) in our nota-

tion.

X : man
(2.8)
enter(x)

As an alternative approach, a common noun is interpreted as a predi-
cate in DTS. Common nouns in the argument position and the predicate
position are both analyzed as predicates of type entity — type.

x : entity
(2.9) A man enters. man(x)
enter(x)

(2.10) Johnisaman. man(john)

As this approach is in line with the traditional analysis of common nouns,
we canintegrate standard assumptions in formal semantics into our frame-
work. See Bekki and Mineshima (2017); Chatzikyriakidis and Luo (2017)

for more discussions on the treatment of common nouns. 1°

10 Retoré (2013) suggests the possibility that common nouns can be interpreted both
as types and as predicates; for instance, using the type entity, the common noun an-
imal interpreted as a type animal could be related to a predicate animal” of type
entity — type, via some suitably defined mapping (-)* from one to another. The ques-
tion of whether a type system for natural language semantics needs to be enriched with
the structures of common nouns would ultimately depend on the treatment of lexical-
semantic phenomena it attempts to capture, such as coercion and selectional restric-
tion — phenomena that have been widely discussed in the recent literature on type-
theoretical semantics (Asher and Pogodalla, 2011; Asher and Luo, 2012; Bekki and Asher,
2013; Retoré, 2013; Kinoshita et al., 2016, 2018). Investigating this matter further is be-
yond the scope of this thesis.

20

2.5. Analysis of anaphora

2.5 Analysis of anaphora

In this section, we explain the anaphora resolution process in DTS.

As is well known in the literature, existential sentences and univer-
sal sentences have different anaphoric potentials. From the dependent-
type perspective, we classify the class of anaphoric phenomena into two

groups: X-type anaphora and I1-type anaphora.

2.,5.1 X-type anaphora

An existential quantifier is said to be externally dynamic (Groenendijk and
Stokhof, 1991) in the sense that the entity introduced by an existential
quantifier is accessible to the subsequent sentences. This property can be
captured by representing existential quantifiers using X-types. We call the
type of anaphora in which an object introduced by an existential quanti-
fier is referred to from the subsequent discourse X-type anaphora.
Asanillustration, consider the case of singular E-type anaphora (2.11),

a typical case of X-type anaphora.

(2.11) a. Al man entered.

b. He; whistled.

We will focus on the reading where he refers back to a man, which we in-
dicate by a subscript and a superscript.
In DTS, the sentences (2.11a) and (2.11b) are given the semantic rep-

resentations (2.12a) and (2.12b), respectively.

x : entity
(2.12) a. man(x)

enter(x)

21

DEPENDENT TYPE SEMANTICS

A:type A true
@ A A

Figure 2.4: Inference rule of @.
b. whistle(@; :: entity)

The term @, :: entityin (2.12b) is called an underspecified term in DTS.
The @-term plays the role of a gap to be filled by the antecedent of the
pronoun in question. The form @; :: A is called type annotation, where
A specifies the type of the underspecified term. Figure 2.4 shows the in-
ference rule of the underspecified term, @-rule. We call the system which
adds @-rule to inference rules of dependent type theory underspecified
dependent type theory (UDTT).

Underspecified terms are introduced by lexical entries of anaphoric

expressions: in the current case, it is introduced by the pronoun he.!!
he,om; NP; @; :: e

Here, the subscript number is used to distinguish between @-terms intro-
duced by different lexical items. Note that it is not the index indicating its
antecedent in the example (2.11).

When two sentences, whose semantic representations are M and N,
compose a discourse, the semantic representation of the whole discourse
is given in terms of a X-type by the progressive conjunction (Ranta, 1994).

def | UM

M;N = where u ¢ fv(N)
N

11 For simplicity, we omit the gender information and treat the pronoun he as an ex-

pression referring to an entity.

22

2.5. Analysis of anaphora

Thus, the semantic representation of the mini-discourse (2.11) is given

as follows, by conjoining (2.12a) and (2.12b).

x : entity
u: man(x)
(2.13)
enter(x)
whistle(@; :: entity)

The intended resolution under the current reading is shown below.

x : entity
u: man(x)
(2.14)
enter(x)
whistle(r 1)

The argument of the predicate whistle, i.e., the place of @-term in (2.13),
is to be filled by the term 7y u. Note that the semantic representation (2.14)
is equivalent to (x : entity) x (man(x) x enter(x) x whistle(x)), which says
that there is an entity that satisfies the three conditions, man(x), enter(x)

and whistle(x).

Now the question is how to derive (2.14) from (2.13). In DTS, anaphora
resolutionis defined as an operation to replace underspecified terms with
concrete proof terms. The process consists of type checking, proof search,
and @-elimination. Type checking is triggered by the felicity condition
of a sentence or a discourse, i.e., the requirement that the semantic rep-
resentation of a sentence or a discourse is a fype under the given con-
text. Thus, for the mini-discourse to be felicitous, the following judge-

ment must hold:

23

DEPENDENT TYPE SEMANTICS

X : entity
u: man(x)
(2.15) K+ : type
enter(x)
whistle(@; :: entity)

The context K'is called a global context. The global context K includes the
basic ontological commitment (e.g., entity : type) and the arities of pred-
icates (e.g., man : entity — type). It also contains ontological knowledge
encoded asjudgements, e.g., john : entityand f : (u : (x : entity) x cat(x)) —
animal(r;u). Type checking follows inference rules in UDTT, namely, in-
ference rules of dependent type theory and @-rule. The derivation tree

for type checking of (2.15) is as follows.

(2.16)
- con 2
enter : entity — type X : entity
< con — 2 3 TE
man : entity — type X : entity y : man(x) enter(x) : type
- TE ; wk
man(x) : type enter(x) : type 1

ZF,3 X : entity
———— con man(x)

entity : type : type man(x)
enter(x)

IF,2

enter(x)

entity : type con entitjr true

X : entity whistle : entity — type con (@, :: entity) : entity -
man(x) : type whistle(@, :: entity) : type E
enter(x)

XF, 1
X : entity

u: [man(x)

enter(x)

whistle(@; :: entity)

The notable step is the one where the @-rule is applied. At the rightmost
branch, we must show that (i) entity is a type, which follows from the
global context, and (ii) there exists a term of entity under the given con-

text. The goal to be proved for (ii) is sorted out as follows.

24

2.5. Analysis of anaphora

x : entity
(2.17) K, u:| | man(x) + entity frue

enter(x)

Note that we can use global context K as well as proofterm u : (x : entity)x
(man(x) x enter(x)) to prove the judgement. The latter is the assumption
that is discharged by the Z-formation rule afterward at the bottom. Infer-
ence rules with discharging, e.g., X-formation and IT-formation, in gen-
eral provide such a local context.'? In this way, the preceding discourse’s
semantic representation contributes to the local context for anaphorares-

olution.

The judgement (2.17) launches proof search. In this case, we can prove
that mu : entity exists. Thus, we have the following derivation of UDTT,

where the derivation in the rightmost branch is completed.

12 Bekki and Mineshima (2017) defined the underspecified term as a function from a
local context to the annotated type: itis defined to explicitly pass the local context to the
subsequent component. In the DTS version that we adopt here, we define @-term as a
term of the annotated type and consider that the local context is given as the assump-
tions during the type-checking. This formalism has been adopted in several studies, e.g.,

Tanaka et al. (2017a); Kinoshita et al. (2018); Yana et al. (2019).

25

DEPENDENT TYPE SEMANTICS

(2.18)
1

X : entity

u: man(x)

— enter(x)

e —— con : IE
. cop EMUL : type mu : entity
x : entity whistle : entity — type @ :: entity : entity E
man(x) : type whistle(@; :: entity) : type
enter(x)

XF,1
X : entity

u: l man(x)

enter(x)
whistle(@, :: entity)
We next substitute @; with the obtained proof term and eliminate ev-
ery occurrence of @, in the derivation. This processis called @-elimination.

By substituting ; u for @,, we finally obtain the fully-specified derivation.

(2.19) .
x : entity
u: man(x)
. enter(x)

x : entity whistle : entity — type miu : entity I E
man(x) : type whistle(ru) : type E
enter(x)

TF, 1
X : entity
u: man(x)
: type
enter(x)
whistle(r;u)

In this way, we can obtain the fully-specified semantic representation in

(2.14) which substitute 7;u for @-term.!3

13 DTS can account for various factors that select plausible antecedents among enti-

ties appearing in the discourse. For instance, the notion of accessibility is obtained for

26

2.5. Analysis of anaphora

The final semantic representation in (2.14) shows how X-types capture
the externally-dynamic aspects of existential sentences. The proof term u
introduced by the Z-type, which corresponds to the first sentence (2.11a),
is a structured object (i.e., a tuple). The point is again that even if the vari-
able x itselfis no longer accessible from the argument position of whistle,

one can access the term by taking the first projection of u.

Anaphora resolution in the donkey sentence (2.1), repeated here as

(2.20), is also an instance of X-type anaphora.

(2.20) Every farmer who owns al donkey beats it;.

The noun phrase is composed as follows.

free from the structure of dependent types X and IT (cf. Bekki, 2014). Agreement on pro-
nouns, such as gender, person, and number agreement, can also be accounted for by
annotating the underspecified term with more fine-grained types, as in the case of pre-

supposition (Bekki and Mineshima, 2017; Tanaka et al., 2017b).

27

DEPENDENT TYPE SEMANTICS

(2.21)
aacc
((S\NP)\((S\NP)/NP))/N donkey
y.e N
AnAvax. u:ny Ax.donkey(x)
vyx
owns (S\NP)\(S\NP)/NP
(S\NP)/NP y : entity
Aydx.own(x,y) AvAx. | | u: donkey(y)
vyx
who <
- S\NP
(N\N)/(S\NP) .
y . entity
nx
AvAnix. Ax.| | u : donkey(y)
vx
own(x, y)
N\N
farmer
nx
N .
: entit
Ax.farmer(x) Andx. Y v
u : donkey(y)
own(x, y)
N
farmer(x)
y : entity

Ax.
u : donkey(y)

own(x, y)

The semantic representation of the whole sentence is then derived as fol-

lows.

28

>

2.5. Analysis of anaphora

(2.22)
farmers who own a donkey
every N
(S/(S\NP))/N farmer(x)
AnAdv. (u : [x - entity) — v(mu) Ax. y - entity
nx donkey(y)
own(x, y) beats it
S/(S\NP) (S\NP)/NP NP
x : entity AyaAx.beat(x,y) @, :: entity
farmer(x) S\NP
Av.|u: y © entity — v(mu) Ax.beat(x, @, :: entity)
donkey(y)
own(x, y)
S
X : entity |
farmer(x)
u y : entity — beat(m u, @, :: entity)
donkey(y)
own(x, y)

In the type-checking process, we will find that the following judge-

ment should hold for @; in order for the whole semantic representation

being well-typed.

x : entity

2.23) K u:

We can obtain mymemou : entity from the tuple u. Thus, we finally obtain

the following fully-specified representation, where the second argument

— farmer(x)
y : entity
donkey(y)

own(x, y)

F entity true

of beat is filled with the variable corresponding to the donkey.

>

DEPENDENT TYPE SEMANTICS

X : entity
farmer(x)
(2.24) u: y : entity — beat(mu, mymomou)

donkey(y)

own(x, y)

2.5.2 II-type anaphora

As we have seen so far, a X-type is externally dynamic in that it introduces
a pair as an antecedent. By contrast, I1-types capture the externally static
property of universal quantifiers exemplified in (2.25): as the universal
sentence represented by a I1-type is a function, neither the proof in the
antecedent nor the consequent is directly accessible to the subsequent

discourse.
(2.25) *Everybody bought a! car. It; is a Porsche.

One difference from the standard treatment in dynamic semantics is
thata universal sentence can introduce a discourse referent. Ranta (1994)

describes exactly such a case with the following example.'
(2.26) Ifyou give every child a present, some child will open it.

In (2.26), the antecedent clause is analyzed as a I1-type, so it introduces a
function as a discourse referent. This functional discourse referent can
be used to give the interpretation of the pronoun it in the consequent
clause. We call this type of anaphora I1-type anaphora, where a functional
discourse referent is used in the subsequent discourse and contributes to

resolving anaphoric expressions.

14This example is taken from Ranta (1994, p. 97), attributed to Lauri Karttunen in Hin-

tikka and Carlson (1979).

30

2.5. Analysis of anaphora

A typical instance of II-type anaphora is the so-called quantificational

subordination, which is exhibited by (2.27) and (2.28).

(2.27) a. Ifeveryboy receives a! present, some boy will open it;.

b. Every boy will receive a? present. Some boy will open it,.

(2.28) a. Harvey courts a' girl at every convention. She; is very pretty.

b. Harvey courts a' girl at every convention. She; always comes

to the banquet with him. The, girl is usually also very pretty.

Let us focus on a reading of (2.27a), where every boy takes wide scope
over a present (henceforth, V-3 reading). In its most natural reading, the
pronoun it in the consequent clause refers to the present that the boy in
question received. In other words, the pronoun receives an interpretation
which depends on some boy. A similar reading applies to (2.27b): the pro-
noun it in the second sentence refers to the present that the boy received.

A similar observation can be made about (2.28), which was originally
discussed by Karttunen (1976). Although the example is more compli-
cated than the previous one, a similar structure seems to be involved. In
(2.28a), if we force ourselves to keep the V-3 reading, there is no way to
establish an anaphoric link between a girl and the singular pronoun she,
and hence the discourse becomes infelicitous. Thus, (2.28a) can only mean
that there is one specific girl such that Harvey courts her at every conven-
tion and she is very pretty. In contrast, in (2.28b), the anaphoric link be-
tween a girl and she is licensed even under the V-3 reading. Although
the first sentence is the same as that of (2.28a), the singular pronoun she
canrefer to a girl at each convention because the quantificational adverbs
such as always and usually in the subsequent discourse provide links to

every convention.

31

DEPENDENT TYPE SEMANTICS

This observation suggests that the dependency relation between ob-
jects is also an essential resource for anaphora resolution. Because a de-
pendent interpretation is crucially involved in plural anaphora phenom-
ena, constructing a formal mechanism to account for dependencies is
one of the central issues in the literature. The standard approach is to
model dependencies as sets of assignments (van den Berg, 1996a,b; Nouwen,
2003; Brasoveanu, 2008). Another approach is to model it using an ex-
tended notion of assignment functions called parametrized sum individ-
uals (Krifka, 1996). However, since integrating functional relations directly
into the underlying semantics is not straightforward, both approaches re-
quire substantial changes to the central notion of context to account for
dependentinterpretations. By contrast, DTS can account for dependency
relations in terms of I1-types, which are independently motivated objects
readily provided in the formal system.

Letusillustrate howIT-types encode the dependency relations in ques-
tion and contribute to anaphora resolution. Consider (2.27b). Again, as
a universal quantifier corresponds to a I1-type, the first sentence can be

represented as follows.

y : entity
x : entity
2.29) |u: — | | present(y)

boy(x)
y receive(m u, y)

The term m;u picks up the entity being a boy. The type represents the
proposition that, for every boy, there exists a present such that the boy re-
ceived it. This representation corresponds to the V-3 reading of the first
sentence. Thus, a term of this type is a function that receives a pair con-
sisting of an entity and a proof that itis a boy, and then returns a tuple that

consists of an entity, a proof that it is a present, and a proof that the boy

32

2.5. Analysis of anaphora

and the present are in the receiving relation.

The second sentence is represented by the X-type, where the pronoun
itis defined as an underspecified term of type entity. Thus, by combining
the semantic representation of the two sentences in terms of progressive

conjunction, (2.27b) is represented as the following =-type.

y : entity
x : entity -
u: - present(y)
boy(x)
receive(mu, y)
(2.30) - T
x’ : entity
boy(x’)
open(x’, @, :: entity)

Now, the proofterm f of the first sentence, which corresponds to a depen-
dency relation between boys and presents, exists as an antecedent of the
underspecified term. In the current case, type-checking yields the follow-

ing inference for @;.

(2.31)

‘K,f:(u:

There are three proof terms in the local context of the @-term. The term

x : entity

, X' : entity, b : boy(x’) + entity true

y : entity
) — | | present(y)

boy(x)

receive(mu, y)

f is a proof term of the first sentence. The term x’ is an entity and b is a

proof that x’ is a boy. The proof construction goes as follows:

33

DEPENDENT TYPE SEMANTICS

(2.32)
x' : entity b : boy(x’)

: enti
x : entity f v , x' : entity
filu: boy(x) — | | present(y) (x', b) : boy(x)
oy(x oy(x
y receive(mu, y) y
I1E
y : entity
f(x',b)): | | present(y)

receive(x’, y)
m1(f({x’, b))) : entity

XE

Here we first construct a pair (x’, b), which corresponds to some boy. By
applying this to f, we obtain f({x’, b)) corresponding to the boy’s present.
Thus, by taking its first projection, we obtain a term n; f({x’, b)) of type
entity. Therefore, by replacing the @-term with the obtained term, we

obtain the fully-specified semantic representation.

y : entity
x : entity
folu: — | | present(y)
boy(x) .
receive(mu,
(2.33) (ra.y)
x' : entity
boy(x’)

open(x’, 71 f({x’, b)))

We can see that the second argument of open depends on the term x’,

namely, an entity corresponding to the subject of the second sentence. In
this way, we can account for the dependent interpretation of the pronoun
itin (2.27b).

One can think that proof terms have something in common with dis-
course referents in Discourse Representation Theory (Kamp and Reyle,
1993; Kamp et al., 2011) in that both objects are introduced by sentences

and referred to afterward to resolve anaphora. As we have already seen,

34

2.6. Analysis of presupposition

however, there are at least two crucial differences. Firstly, as Ranta (1994)
discussed, while discourse referents are limited to individuals without any
inner structure, proof terms can have any type. Secondly, together with
the DTS’s anaphora resolution mechanism, proof terms can contribute
to logical inference, yielding a new proof term serving as an antecedent.
In other words, the antecedent of pronominal anaphora is constructed
through proof search. This proof-theoretic account of anaphora resolu-
tion also applies to presupposition resolution, as shown in the next sec-

tion. 1

2.6 Analysis of presupposition

DTS gives a uniform account of anaphora resolution and presupposition
resolution in a proof-theoretic setting, following the “presupposition as
anaphora” paradigm proposed by van der Sandt and Geurts (1991); van der
Sandt (1992). In the analysis of presupposition in DTS, presupposition
triggers are represented in terms of underspecified terms, @-terms. Un-
derspecified terms can have more complex types when they represent
presupposition triggers: the annotated types can be propositions of any

kind.

Letus explain some examples in the following sections. In Section 2.6.1,
we show one of the most basic cases: definite description. In Section 2.6.2,
we explain the possessive case, a more complicated case where an under-

specified term is embedded in another underspecified term.

15 See also Yana et al. (2019) for a detailed comparison of DTS and DRT.

35

DEPENDENT TYPE SEMANTICS

2.6.1 Definite description

Our first example is the existential presupposition triggered by a definite

description. Consider the sentence (2.34) with the definite subject NP.

(2.34) The man whistled.

The semantic representation of (2.34) is given as follows.

) x : entity
(2.35) whistle| | @, ::
man(x)

The underspecified term is introduced by the presupposition trigger the.

The lexical entry for the can be specified as follows.

X : entity
(2.36) the; (S/(S\NP))/N; An.Av.v|m |@; ::
nx

The annotated type represents the proposition there is a man, which is the
existential presupposition triggered by the definite description the man.'®
Thus, the semantic representation in (2.35) is obtained by the following

CCG derivation.

16 Here we take it that the uniqueness presupposition is not part of the conventional
meaning of a definite description but can be derived on pragmatic considerations along
the lines of Heim (1982). Although the proof-search procedure to find an underspecified
term’s antecedent would become much more complicated, it is technically possible to

take the uniqueness implication as part of presupposition.

36

2.6. Analysis of presupposition

(2.37)
The
man
(S/(S\NP))/N N
x : entity
AnAv.v|m | @ :: Ax. man(x)
nx
> whistled
S/(S\NP)
S\NP
x : entity
Av.v|m | @y Ax. whistle(x)
man(x)
S

. x : entity
whistle| r; | @; ::
man(x)

Again, as in the case of anaphora resolution, the resolution of an under-
specified term in a semantic representation amounts to checking that the
semantic representation is well-typed in a given context. Thus, the reso-

lution process is launched by the following judgement.

X : entity
(2.38) K + whistle| ;| @, :: : type

man(x)
Assuming that whistle : entity — type is in the global context %, one has

to prove the following in order for the semantic representation in question

to be well-typed.

x : entity
(239 K+ true
man(x)
In other words, if one assumes that (2.34) is a felicitous utterance, the
proposition that there is a man must be true. This requirement corre-
sponds to the existential presupposition of (2.34). Thus, at the final stage
of presupposition resolution, a proof search is carried out to prove (2.39),

and the underspecified term @, is replaced by the constructed term. Such

37

DEPENDENT TYPE SEMANTICS

a proof construction is possible when, for instance, the man appears in

contexts as shown in (2.40a, b).

(2.40) a. A man entered. The man whistled.

b. Ifaman entered, the man will whistle.

Inboth cases, the man can be understood as referring to a man previously
mentioned. In general, if S’ entails the presuppositions of S, constructions
such as §” and S and If S’ then S do not inherit the presuppositions of S. In
such a case, it is said that the presupposition is filtered.'”

In DTS, examples such as (2.40a, b) can be handled in the following
way. The semantic representation for the first sentence of (2.40a) is al-
ready given in (2.6). Thus, by progressive conjunction with (2.35), we ob-

tain the following semantic representation of the whole discourse.

x : entity
v: man(x)
(2.41) enter(x)
:enti
whistle| ;| @, :: * vy
man(x)

According to the type checking, we can see that what is required for the

representation (2.41) to be well-typed is to prove the following judgement.

x : entity
x : entity
(242) K, v: man(x) F true
man(x)
enter(x)

In this case, a proof of the proposition that there is a man can be obtained

from the context, namely, from the semantic representation of the first

17When such afiltration does not occur, the entire sentence can have a presupposition

resolved by the information in the background knowledge (the global context).

38

2.6. Analysis of presupposition

sentence: one can find (m;v, m;mov) that can replace the @-term. By re-
placing the @; in the representation (2.41) with the constructed term, we
can eventually obtain the following semantic representation for (2.40a),

which captures the intended reading.

x : entity
v man(x)
(2.43)
enter(x)
whistle(m,v)

Another well-known characteristic property of a presupposition s that
it projects out of embedded contexts such as negation and the antecedent
of a conditional. Thus, not only the positive sentence (2.34) but also the
negated sentence (2.44a) and the antecedent of a conditional (2.44b) im-

ply that there is a man.

(2.44) a. The man didn't whistle. NEGATION

b. If the man whistle, Susan will be surprised. = CONDITIONAL

In DTS, (2.44a, b) can be given the following semantic representations.

x : entity -
(2.45) a. —-whistle|m;| @, ::

man(x)

— surprise (susan)

. x : entity
b. whistle| ;| @, ::

man(x)
For the semantic representations (2.45a) and (2.45b) to be well-typed, it
is required to find a proof term for the proposition that there is a man.
Thus, to prove that (2.45b) has type type, one has to prove that the an-
tecedent is of type type. Since the antecedent in (2.45b) corresponds to
the proposition that the man whistled, this yields the derivation that con-

tains the type checking process of (2.38) as a sub-derivation. Accordingly,

39

DEPENDENT TYPE SEMANTICS

it is correctly predicted that (2.44b) has the same existential presupposi-
tion as the simple sentence in (2.34). Note that in dependent type theory,
the negation —A is defined using the implication A — L, which in turn
is a degenerate form of a I1-type. Thus, the same explanation applies to
the case of negation in (2.44a) as well. In this way, we can explain basic

projection patterns of presuppositions within the framework of DTS.!8

2.6.2 Possessives

Next, let us explain an analysis of the presupposition associated with pos-
sessive NPs. Consider the sentence (2.46), whose semantic representa-

tion is given in (2.47).

(2.46) His sister left.
x : entity
(2.47) leave|rm; | @, ::
sisterOf(x, @, :: entity)
Here, underspecified terms that correspond to distinct proof terms are
indexed with different natural numbers. In (2.47), @, is embedded in the
annotated type of @,. The derivations of initial underspecified semantic
representations can be formalized in a fully compositional way. The lex-

ical entry for sister and his can be specified as follows, where we use the

CCG category RN for relational nouns.

sister; RN; 1y Ax.sisterOf(x, y)

. x : entity
his; NP/RN; AR.m, | @; ::
R(x, @; :: entity)

18 Bekki and Satoh (2015) provide a definition of a decidable fragment of dependent
type theory with an underspecified term and formulate its type-checking algorithm.

They also provide an implementation of the algorithm.

40

2.6. Analysis of presupposition

Note that we assume that in initial underspecified semantic representa-
tions, each occurrence of @ is assigned a mutually distinct index. The em-
bedded @; corresponds to the anaphoric property of the pronoun, while

@; corresponds to the possessive presupposition.

To prove that the semantic representation in (2.47) is a type under the

global context K, the following judgement (2.48) should hold for @;.

) ;

By applying the @-rule to (2.48), we are required to prove that the follow-

x : entity X : entity

(2.48) K+ (@1 .

sisterOf(x, @, :: entity) sisterOf(x, @, :: entity)

ing type is well-typed.

x : entity
(2.49) K+

sisterOf(x, @, :: entity)

This requirement leads us to the next judgement (2.50) for the embedded

underspecified term @,. We first need to resolve @, in (2.50);
(2.50) K, x:entity - @, :: entity : entity

This triggers proof search to find a term of entity for @,.

Suppose that the proof search finds a contextually salient man, John.
By substituting john : entity in K for @,, we are next going to prove the

following judgement for @;.

X : entity
(2.51) K+ true
sisterOfi(x, john)

Then, in this case, the presupposition of the sentence (2.46) is predicted

to be John has a sister.

41

DEPENDENT TYPE SEMANTICS

2.7 Anaphoraresolution and inference

We have shown that DTS uniformly treats anaphora and presupposition
resolution as a proof search for resolving an underspecified term. This is
a powerful mechanism that can apply to anaphora and presupposition
resolution that involves general inference.

By the example of quantificational subordination in Section 2.5.2, re-
peated here as (2.52), we have shown that one can obtain the antecedent

term by applying function with its argument.
(2.52) Every boy will receive a' present. Some boy will open it;.

In (2.52), the subject of the antecedent and the consequent share the same
noun phrase boy. The reference to a dependency relation is possible more
generally, when a semantic link between the restrictor of the universal

quantifier and the subject of a subsequent sentence can be established.

(2.53) a. Everyboy will receive a' present. Every young boy will open
ity.

b. Every boy will receive a! present. John will open it;.

In (2.53a), young boy is a subset of boy. The consequent can be under-
stood to mean that every young boy will open the present he received (cf.
van den Berg, 1996b). There is no explicit link in the case of (2.53b), but if
we have the background information that John is a boy, i.e., the informa-
tion that links John to boy, the sentence can mean that John will open the
present he received. On the other hand, the dependent interpretation of
the pronoun in question is not possible if it is difficult to establish a link

between the two NPs. The following examples demonstrate this contrast.
(2.54) a. Everyman will receive al present. Some wife will open it;.

42

2.7. Anaphora resolution and inference

b. Every man will receive a! present. *Some woman will open

it;.

In (2.54a), since it is relatively easy to find a relation between man and
wife, the second sentence can be understood to mean that some man’s
wife will open the present he received. This contrasts with (2.54b), where
adependentreading is not possible unless a strong relation between man
and woman is provided by the context.

Let us sketch how DTS can account for such cases. In (2.53a), both the
first and the second sentences can be represented in terms of I1-types.

Thus, we can give the following semantic representation to the discourse.

. y : entity

x . entity
Huc: - present(y)

boy(x)

receive(mu, y)
(2.55)
X : entity
t: boy(x) — open(rit, @; :: entity)
young(x)

The assumptions we can use in proof search of @, are terms f and r. We
need a proof of (x : entity) xboy(x) in order to access to the consequent of
f. As we can obtain such a proof (¢, mym2t) from ¢, we eventually obtain
aterm my f((mr1t, mymot)), which corresponds to the present dependent on

each young boy, 7 ¢. Similarly, (2.53b) is represented as follows.

x : enti
f: (u : i present(y)

y : entity
H
boy(x)

(2.56)
receive(mu, y)

i open(john, @, :: entity)

To find a semantic link between John and boy, one needs the background

43

DEPENDENT TYPE SEMANTICS

knowledge that John is a boy. If the global context K supplies the knowl-

edge k; : boy(john), one can construct the following term.

_ x : entity
(2.57) (john, k;) :
boy(x)
Again, this term can serve as an argument to the function f.

When the relation between the universal quantifier’s restrictor and the
subsequent discourse’s subject is not clear, then the procedure only fails
to find a proof term. For instance, in the case of (2.54b), repeated here as
(2.58a), there exists neither an explicit link nor an implicit link between

men and women.

(2.58) a. Every man will receive al present. *Some woman will open
it;.

X : entity
fifu: present(y)

y : entity
%
man(x)

receive(m u, y)
z : entity

woman(z)

open(z, @, :: entity)
Again, one needs to apply an argument to the function f to construct a
proof of the present received by some man. Thus, unless some relation
that bridges men and women is available in the global context, there is no
way to obtain the required proof term from the available proof terms.
Another case that exhibits the effectiveness of inference is the so-called

bridging inference (Clark, 1975).
(2.59) John bought a car. He checked the motor.
Here, although the second sentence contains the definite description the

44

2.7. Anaphora resolution and inference

motor, there is no overt antecedent to resolve the presupposition. As hear-
ers have a general background knowledge that every car has a motor, how-
ever, there are no difficulties in interpreting this sentence: they can easily
infer that there is a motor from the information that there is a car.

Compared to the analyses in standard dynamic semantics such as DRT
(van der Sandt, 1992; Geurts, 1999; Kamp et al., 2011), it is straightforward
for DTS to handle the bridging inference. DTS provides an analysis that
exactly follows the intuition described above. By using both the implicit
information in the background knowledge and explicit information in the
given sentences, one can construct the proof term about the existence of
amotor. See Bekki and Mineshima (2017) for more details about the anal-
ysis of bridging inference in DTS.

The idea that the reference of an anaphoric expression can be con-
structed via inference originates from Krahmer and Piwek (1999). It should
be noted here, however, that a naive implementation of this idea leads to
a problem similar to formal link between a pronoun and an antecedent
in the context of E-type approaches to pronouns (Heim, 1990); that is, the

theory over-generates in the case of (2.61).

(2.60) A man has a wife. She is sitting next to him.

(2.61) * Aman is married. She is sitting next to him.

In contrast to (2.60), the pronoun she in (2.61) cannot anaphorically re-
fer to the man’s wife, because there is no NP antecedent. If there is the
knowledge that every married man has a wife, however, the referent cor-
responding to the man’s wife can be constructed via inference.

Since it is beyond the scope of this thesis to discuss this issue further,
for present purposes, we will assume that any inference is possible for

given implicit and explicitinformation, though some cases of proof search

45

DEPENDENT TYPE SEMANTICS

might be very costly and not preferred.

2.8 Entailment and meaning

Once a semantic representation is fully-specified by eliminating every oc-
currence of @-term, namely, the sentence’s interpretation has been fixed,
the logical consequence of the given semantic representation becomes
clear. We can verify the appropriateness of a semantic representation in
DTS by seeing the entailment patterns it allows.

In model-theoretic semantics, the correctness of semantic representa-
tion of a sentence predicted by a theory is checked in terms of their truth
condition: when R’ is a semantic representation of natural language sen-
tence R, then the truth condition of R’ must agree with the truth condition
of R. On the other hand, in our proof-theoretic setting, the correctness of
semantic representation of a sentence is checked in terms of entailment
relations: if sentence R entails R,, we should be able to prove that R, is
derivable from R} in dependent type theory.

For instance, the following entailment relations hold between natural

language sentences.

(2.62) A! man entered. He; whistled. = A man entered.
(2.63) A! man entered. He; whistled. = A man whistled.

(2.64) Every boy received a present. John is a boy. = John received a

present.

Note that (2.62) holds no matter what object the pronoun #he refers to,
while (2.63) holds only under the reading where he refers to a man in the

first sentence.

46

2.8. Entailment and meaning

DTS can provide a semantic representation for the sentence on each
side. If those semantic presentations correctly capture the meaning of
original sentences, then the formula of the premise must entail the for-
mula of the conclusion. Thus, the following judgement (2.65)-(2.67) must

hold for (2.62)-(2.64), respectively.

x : entity
X : entity
u: man(x)
(2.65) K, p: F man(x) true
enter(x)
enter(x)
whistle(r 1)
x : entity
x : entity
u: man(x)
(2.66) K, p: F man(x) true
enter(x)
whistle(x)
whistle(r 1)
y : entity
x : entity)
(2.67) K, p1:|lu: — | | present(y) , p2 : boy(john)
boy(x)
receive(mu, y)

y : entity

F present(y) frue

receive(john, y)

The proof of (2.65) is trivial: by taking its first projection, one can ob-
tain the proof. (2.66) are proved in (2.68).

47

DEPENDENT TYPE SEMANTICS

(2.68)
x : entity
u: man(x)
p:
enter(x)
whistle(mu)
x : entity LE
X : entity
u:| | man(x) -
p: mp: man(x . .
enter(x) (x) x : entity
enter(x .
whistle(rr;) .) SE “: | | man(x)
. LE man(r; p) enter(x)
X : entity Tomp -
enter(r p) whistle(r 1)
mp | | man(x) - XE -
mimemyp - man(myp) nop - whistle(m p)
enter(x) p) xI
: SE man(m p
mmp : entity (mymomyp, mop) :
whistle(r; p)
I
x : entity
(mimip, (mimomip, m2p)) : | | man(x)
whistle(x)

In both cases, the proofs are obtained from the premise p by extracting

proofs from its part and reconstructing them. (2.67) is proved as follows.

(2.69)
john : entity p, : boy(john)
y : entity 2l
X : entity . X : entity
pr:fu: - present(y) (john, p2) :
boy(x) boy(x)
receive(mu, y)
Iz
y : entity
p1({john, p2)) : | | present(y)

receive(rr;({john, p2)), y)

Here we can understand that john : entity is in the global context, because
boy(john) is well-typed when John is a boy is a felicitous utterance. Thus,
as m({john, p2)) is reduced to john, we obtain the proof of the conclusion

of (2.67).

48

2.8. Entailment and meaning

In this way, we can show that our present analysis accounts for the em-
pirical data shown in (2.62), (2.63), and (2.64). For more information on

the inference-as-tests paradigm in DTS, see Bekki and Mineshima (2017).

DTS has been applied to various linguistic phenomena, providing a proof-
theoretic account of natural language semantics: modal subordination (Tanaka
etal., 2015), conventional implicatures (Bekki and McCready, 2015), hon-
orification (Watanabe et al., 2014), factive presupposition (Tanaka et al.,
2017b), selectional restriction (Kinoshita et al., 2017), coercion (Kinoshita
et al., 2018), paycheck anaphora (Tanaka et al., 2018), interpretive paral-
lelism (Kubota and Levine, 2015; Kubotaetal.,2019), and questions (Watan-
abe et al., 2019). This thesis aims to give an analysis of natural language
quantifiers in DTS and investigate how it can account for the linguistic

and logical aspects of quantifiers.

49

Chapter 3

Quantifier in Natural Language

In the previous chapter, we have shown that I1-types and X-types corre-
spond to universal and existential quantifiers. The meaning of every and
some were given in terms of IT and X. The question is how other natural
language quantifiers such as most are represented in the framework.
Before providing our analysis in the next chapter, this chapter sum-
marizes natural language quantifiers’ behavior and how the existing ap-

proaches account for them.

3.1 Quantification and determiners

Quantifiers have been studied extensively in both logic and linguistics.!
For instance, first order logic has a universal quantifier V and an existen-
tial quantifier 3 quantifying over objects in the domain (universe): Vx.¢(x)
means foreache in the domain, ¢(e) holds and 3x.¢(x) means thereis some

e in the domain such that ¢(e) holds. These logical expressions can be ap-

Peters and Westerstahl (2006) provides an extensive survey of the studies in logic and

linguistics. See also Szabolcsi (2010) for a helpful survey in linguistics.

51

QUANTIFIER IN NATURAL LANGUAGE

plied to represent the statements every A is B and some A is B in the fol-

lowing form.

(3.1) Vx.(A(x) — B(x))
(3.2) 3x.(A(x) A B(x))

Generalized quantifier theory (Mostowski, 1957; Lindstrom, 1966) gen-
eralizes the notion of quantifier and treats universal and existential quan-
tifiers in a unified way as part of a number of other quantifiers. General-
ized quantifiers (GQs) are defined as describing a property of subsets of
the domain. Universal quantifiers and existential quantifiers are reinter-
preted as expressions describing the properties of a subset. Now, ¢(x) is
regarded as a subset of the domain that satisfies ¢. V is then interpreted
as the subset is equal to the domain. Similarly, 3 is describing that the
subset is non-empty. Quantifiers such as V¥ and 3, which take one subset
and describe its property, are said to be of type (1). Statements every A is B
and some A is B are expressed as follows with quantifiers Qeyery and Qsome

taking two sets.

(8:3) Qevery(A,B) & ACB

(3.4) Qsome(A,B) © ANB % @

A quantifier taking two subsets and describing their relation is said to be
of type (1, 1).

In natural language, a determiner is naturally taken as a type (1, 1)
quantifier, as it denotes the binary relations between two sets correspond-
ing to a noun and a verb phrase (Barwise and Cooper, 1981). Since a de-
terminer and noun first form a constituent and become a noun phrase,
the noun phrase is considered to be a type (1) quantifier.

In this thesis, we concentrate on determiners as the representative case

52

3.1. Quantification and determiners

of quantifiers in natural language. In the sentence of the form [Der NV P
where Det is a quantifier, the noun N which constitutes a type (1) quan-
tifier together with the quantifier Det is called restrictor. The verb phrase
v P iscalled (nuclear) scope.2

We will pay particular attention to the quantifier most. It is a typical
proportional quantifier that cannot be expressed by a first-order quanti-
fier. It is impossible to express the statement Most A are B in the form of
Mux(A#B), where M is the first-order quantifier that means Most things are
¢ (Barwise and Cooper, 1981; Szabolcsi, 2010). It is an instance of quanti-
fiers that exhibit quantifying over the restrictor is essential to natural lan-
guage quantifiers.

The quantifier most is often treated as truth-conditionally equivalent
to more than half. Thus, the statement Most A are Bis expressed as follows

with several variation.

A
3.5 a. |AmB|>|2—|

b. |ANB|>|A- B

Hackl (2009) argues that even the (3.5a, b) are truth-conditionally equiv-
alent, (3.5b) better expresses the meaning of most from the viewpoint of
their verification procedures. Hunter et al. (2008) discussed more fine

variations on (3.5b). In the next chapter, we will consider both of these

2 The quantification of natural language appears also in other linguistic expressions.
For instance, quantificational adverbs such as always and usually correlates with all and
most (Lewis, 1975). As quantificational adverbs involve quantification over tuples rather
than individuals, they are classified as polyadic quantifiers rather than quantifiers repre-
senting the relationship between subsets of the domain (Peters and Westerstéhl, 2006).
Kamp et al. (2011) analyzes the quantificational adverb mostly by extending their anal-

ysis of the determiner most.

53

QUANTIFIER IN NATURAL LANGUAGE

Quantifiers Relations between sets
[every]l(A)(B) ACB

[some](A)(B) ANB#0

[no]l(A)(B) ANB=0

[most]|(A)(B) |ANB| > %

|JANB| > |A - B]
[atleast n](A)B) |ANB|>n
[at most n]|(A)(B) |[ANB|<n
[exactly n](A)B) |ANB|=n

Table 3.1: Quantifiers and their definition as a relation between sets.

definition and discuss their difference in our setting.?

Table 3.1 shows quantifiers we consider in this thesis and their basic
meanings represented by the relations between sets.

Some quantifiers are known to have a presupposition that its restric-
toris non-empty. Such quantifiers are called strong determiners, while the
others are called weak determiners. The distinction between weak and
strong determiners originates from Milsark (1977). The quantifiers that
can appear in a there be sentence are judged as weak, and those who can-

not are strong.*

(3.6) a. Therearesome/no/atleastthree/atmostthree/exactly three

cats.

3 We also restrict ourselves to the case where the domain of quantification is finite.
For the infinite case, see Topal and Cevik (2020), who proposed a semantics using natural
density to deal with the quantify-related statements regarding infinite sets.

4We use ‘+’ to indicate an infelicitous utterance/interpretation.

54

3.2. Intra-sentential anaphora

b. *There are every/most cats.

The quantifiers in (3.6a) are classified as weak determiners and (3.6b) are

as strong determiners.

3.2 Intra-sentential anaphora

In the previous chapter, we discussed the donkey sentence (3.7) with the
quantifier every. The construction of a donkey sentence is well-studied

also in relation to other quantifiers as in (3.8) and (3.9).

(3.7) Every farmer who owns a! donkey beats it;.
(3.8) Most farmers who own a' donkey beat it;.

(3.9) No farmer who owns a'! donkey beats it; .

In the sentence (3.7), the pronoun it in the nuclear scope refers to the in-
definite a donkey in the restrictor. Now, from the generalized-quantifier
viewpoint, the restrictor and the nuclear scope are denoting sets. How-
ever, there is an additional complexity in that an anaphoric dependency
exists between the nuclear scope and the restrictor. In this case, the two
sets related by the quantifier every are not independent of each other: the
set corresponding to the nuclear scope is defined only after the pronounis
resolved. As the quantifier every lets the restrictor accessible to the scope,
itis said to be internally dynamic. The same applies to most, no, and other
quantifiers in the Table 3.1.

It has been recognized in the literature that there are two readings in

the donkey sentence above: existential reading and universal reading.’

SThere has been some controversy over whether the singular donkey pronoun iz car-

ries uniqueness presupposition or not (Heim, 1982; Kadmon, 1990; Heim, 1990). The

95

QUANTIFIER IN NATURAL LANGUAGE

(3.10) EXISTENTIAL READING (WEAK READING)
Every farmer who owns a donkey beats at least one donkey he

owns.

(3.11) UNIVERSAL READING (STRONG READING)

Every farmer who owns a donkey beats every donkey he owns.

In the early discourse analysis in classical DRT, the theory predicted that
(3.7)’s truth condition corresponds to (3.11). In other words, the theory
predicted that the sentence is false in a situation where one of the farmers
owns two donkeys and beat only one of them while all the other farmers
consistently beat all the donkeys they own. However, some speakers hes-
itate to judge (3.7) is false in such a situation (Geurts (2002), attributed to
Parsons (1978)). What is more, the interpretation of a universal donkey
sentence seems to be not merely ambiguous: although the sentence like
(3.12a) is preferred to get universal reading, its variant (3.12b) is preferred

to get existential reading.

(3.12) a. Every guest who had a' credit card kept it in his wallet.

b. Every guest who had a' credit card used it; to pay his hotel
bill.

These observations have led to the semantic theories that can explain ex-
istential reading as well.

Asis discussed in the literature, there are a variety of factors that deter-
mine the preference of those two interpretations, including the choice of
quantifiers (Kanazawa, 1994), the content of the predicate (Yoon, 1996),

and perhaps more general background assumptions.

discussion of existential/universal reading is based on the view that there is no system-

atic uniqueness presupposition associated with the pronoun (Chierchia, 1992).

56

3.2. Intra-sentential anaphora

Regarding the choice of quantifiers, Kanazawa (1994) examines the re-
lations between existential/universal reading and the monotonicity infer-
ence associated with quantifiers. According to the summary of the data
he observed, quantifiers are roughly categorized into three groups with

respect to the two readings.
* existential reading only: weak determiners (e.g., some, at least n, no)

* universal reading preferred (but may have existential reading): strong

determiners except most (e.g., every)
* Both reading: most

However, as Kanazawa himself pointed out, there exists exception in the

above categorization.

(3.13) No man who had a! credit card failed to use it;.

(3.14) No man with an! umbrella leaves it; home on a day like this.

Although nois a weak determiner, these examples seems to get universal
reading on their most natural reading. He also reports that the case of
most is relatively not clear.® It is still a matter of debate what factors affect
the preferred reading (Yoon, 1994; Geurts, 2002; Tatasiewicz, 2018) and
how the two readings can be captured in the semantics (Kanazawa, 2001;

King, 2004) and pragmatics (Champollion et al., 2019).

6 Brasoveanu (2008) pointed out that a single quantifier can cause both of the two

readings with respect to the multiple instances of singular donkey pronouns.

(i) Every person who buys a! book on amazon.com and has a? credit card uses it,

to pay for it;.

In the natural reading of this sentence, if, receives the existential reading while if; re-

ceives the universal reading.

o7

QUANTIFIER IN NATURAL LANGUAGE

In the next chapter, we provide an analysis that account for basically
only the existential reading of quantifiers including most, because exis-
tential reading is logically weaker for the quantifiers other than no. For

the quantifier no and every, we provide also its universal reading.

3.3 Inter-sentential anaphora

To better understand the meaning of quantifiers as well as their contribu-
tion to the contexts for anaphora resolution, let us consider their external
behavior in discourses.

While quantifiers such as every and most are internally dynamic, they
are externally static: the following examples show that neither their re-
strictor nor the nuclear scope is accessible to the subsequent discourse,

in contrast to the determiner a.

(3.15) a. A!farmer who owns a? donkey beats it.

He, treats it, badly.

b. Every' farmer who owns a? donkey beats it,.

*He, treats it badly.
c. Most! farmers who own a? donkey beat it.

*He treats it badly.

The situation, however, differs when the subsequent sentence involves a
plural pronoun. The following examples exhibit that a plural pronoun can

refer to the restrictor as well as the nuclear scope.

(3.16) a. Every! farmer who owns a? donkey beats its.

They, treat them, badly.

58

3.3. Inter-sentential anaphora

b. Most! farmers who own a? donkey beat it.

They, treat them, badly.

Note that, in both (3.16a, b), the first plural pronoun they in the subse-
quent sentence refers to a set of all farmers that own a donkey and beat
it. That is, the pronoun takes the largest set satisfying both restrictor and
scope as its antecedent (Evans, 1980).

The second plural pronoun them in the subsequent sentence of (3.16a,
b) can be also singular under the reading where they in the subject posi-

tion takes wider scope over it.

(3.17) a. Every! farmer who owns a? donkey beats its.

They, treat it badly.

b. Most! farmers who own a? donkey beats it,.

They, treat it badly.

Itis not only the existence of a plural pronoun that licenses anaphoric
link to the universal quantifier’s nuclear scope. Here we repeat the quan-

tificational subordination cases we discussed in the previous chapter.

(3.18) Every boy will receive a! present. Some boy will open it;.

(3.19) Harvey courts a! girl at every convention.
She; always comes to the banquet with him.

The, girl is usually very pretty.

Even when (3.18) receives V-3 reading, the pronoun if in the second sen-
tence can refer to a present in the first sentence. In this case, the pronoun
is referring to the present that the boy in the second sentence receives.
A similar observation applies to (3.19). Although it involves quantifica-

tional adverbs always and usually, which we will not discuss in detail, the

59

QUANTIFIER IN NATURAL LANGUAGE

example suggests that the nuclear scope of the universal quantifier is ac-
cessible even in the absence of a plural pronoun.’
Note that plural pronoun they can refer to different kind of sets: refer-

ence set, maximal set, and compliment set (Nouwen, 2003).

(3.20) Few senators admire Kennedy.

They are very junior.

(3.21) Few senators admire Kennedy.

Most of them prefer Carter.

(3.22) Few senators admire Kennedy.

They admire Carter instead.

In (3.20), they refers to a set of senators who admire Kennedy (reference
set). In (3.21), them refers to a set of senators, which is the restrictor set
(maximal set). In (3.22), they refers to a set of senators that do not admire
Kennedy (complement set). While anaphoric link to the reference set is

robust, the other two are not generally available.

(3.23) Two senators who admire Kennedy bullied Carter. They are very

junior.
(3.24) * Most senators admire Carter. They admire Kennedy instead.

The example (3.23) cannot mean that the senators who admire Kennedy

are in general junior, which means the pronoun cannot refer to the max-

7 It is known that a singular pronoun can refer even to the restrictor in some special

cases as exemplified below (taken from Roberts (1989), attributed to Barbara Partee).

(i) Each! degree candidate walked to the stage.

He; took his; diploma from the Dean and returned to his seat.

Roberts (1989) called this phenomenon telescoping and explained that this anaphoric

link becomes possible due to some sort of narrative continuity in the discourse.

60

3.4. Inferential property

imal set. In (3.24), the pronoun cannot refer to senators who do not ad-
mire Carter, which is the complement set. According to Nouwen (2003),
the link to the maximal set can be established only in the case of strong
determiner. The anaphoric link to the complement set is rather special.
It involves an inference that is generally not licensed, which makes this

type of anaphora often marked.

3.4 Inferential property

We have shown the dynamic aspect of quantified expressions as linguistic
expressions. In this section, we summarize the logical relations that are
derived from the relations between sets.

The quantifiers of type (1) are classified into two groups: monotone
decreasing and monotone increasing. Each of them is defined as follows,

where M is a universe.

Monotone increasing

Q is monotone increasing ifffor A C A’ € M, Q(A) implies Q(A").

Monotone decreasing

Q is monotonedecreasing ifffor A’ C A € M, Q(A)implies Q(A").

For instance, quantifiers most and no license the following inferences,
where = indicates an entailment relation between natural language sen-

tences.

(3.25) Most students study English hard.
= Most students study English.

(3.26) No student studies English.
= No student studies English hard.

61

QUANTIFIER IN NATURAL LANGUAGE

Here, objects satisfying study English hard is a subset of objects satisfying
study English. As mentioned above, a determiner composed with a noun
is understood as a type (1) quantifier. Therefore, most students is mono-
tone increasing, while no student is monotone decreasing.

Based on the entailment pattern above, the determiner most of type
(1, 1) quantifier is said to be right upward monotone, and no, right down-

ward monotone. Here is the definition.

Right upward (or downward, resp.) monotonicity
Q isright upward (or downward, resp.) monotone iff for A ¢ M

and B C B' C M, (or B C B C M, resp.) Q(A, B) implies Q(A, B').

We often write MON T and MON | instead of “right upward monotone”
and “right downward monotone,” respectively.
Similarly, monotonicity with respect to its left argument can be also

defined.

Left upward (or downward, resp.) monotonicity
Q isleftupward (or downward, resp.) monotoneiffforA C A’ C

M (orA’ C AC M,resp.) and B C M, Q(A, B) implies Q(4’, B).

We often write T MON and | MON instead of “left upward monotone” and
“left downward monotone,” respectively.
It is also known that all natural language quantifiers are conservative.

The definition is as follows.

Conservativity

Q is conservative iff for A, B C M, Q(A, B) & Q(A, AN B).

In the case of quantifier most, for instance, we can see if (3.27a) is true

then (3.27b) is also true, and vice versa.

62

3.4. Inferential property

Quantifiers Conservativity Monotonicity

MONT MON| TMON |MON
some v v v
atleast n v v v
every v v v
most v v
no v v v
atmost n v v v
exactly n v

Table 3.2: Quantifiers and their inferential properties.

(3.27) a. Most swans are white.

b. Most swans are white swans.

Table 3.2 shows basic patterns of inferences associated with quanti-
fiers. There are other inference patterns such as symmetry and reflexivity,
which we have omitted from the table.

At first glance, the inferential properties of quantifiers appear to be
well-established and straightforward. It has been pointed out, however,
that the monotonicity inference in the presence of donkey anaphora poses
a puzzle (Benthem, 1987; Kanazawa, 1993, 1994). Consider the contrast
between the following two monotonicity inference for the left downward

monotone quantifier no.

(3.28) No farmer who owns a! donkey beats it;.

= No farmer who owns a? female donkey beats it.

(3.29) No man who owns a! house sprinkles it;.

= No man who owns a? garden sprinkles it,.

63

QUANTIFIER IN NATURAL LANGUAGE

(3.28) follows the inference pattern of left downward monotonicity, since
farmerwho owns a female donkey is a subset of farmer who owns a donkey.
For (3.29), let us first assume that man who owns a garden is a subset of
man who owns a house, that is, if a man owns a garden, he also owns a
house. Although we expect that (3.29) also follows the inference pattern
of left downward monotonicity under this assumption, the inference is

invalid in this case.

3.5 Previous approaches

GQs are well studied within the model-theoretic approach to natural lan-
guage semantics. In this approach, the meanings of GQs are defined as
relations between sets, as we have explained so far (Barwise and Cooper,
1981). This model-theoretic conception of GQs is also adopted by dis-
course representation theory (DRT; Kamp and Reyle, 1993; Kamp et al.,
2011) and applied to discourse phenomena such as donkey anaphora.
As we have shown, DTS is a proof-theoretic semantics based on de-
pendent type theory. Even if meaning of quantifiers has been well-discussed
in the model-theoretic meaning, to give an analysis within a type-theoretic
framework is not a trivial task; in particular, it is challenging to give anal-
ysis that maintains both logical and dynamic aspects of quantifiers .
Inrecent years, frameworks based on dependent type theory have been
developed as rich proof-theoretic semantics that can handle natural lan-
guage dynamics, including anaphora and presupposition (Sundholm, 1986,
1989; Ranta, 1994; Pérez, 1995; Krahmer and Piwek, 1999; Mineshima, 2008;
Luo, 2012b; Mineshima, 2013; Bekki, 2014; Chatzikyriakidis and Luo, 2014;
Bekki and Mineshima, 2017). Although a framework based on dependent

64

3.5. Previous approaches

type theory has the potential to deal with both the inferential and dy-
namic aspects of quantifiers, an analysis of quantifiers has not been pur-

sued much so far.

One of the few is the study by Sundholm (1989). It gives an explicit set-
theoretic definitions of quantifiers in terms of logical operators provided
in the dependent type theory. The definition captures the basic meaning
of quantifiers such as most, namely, their truth-conditional meaning that
has been associated with the relation between sets. Although the defini-
tion also captures the internally dynamic nature of quantifiers, the inter-

action of quantifiers with anaphora has not been sufficiently explored.

After Sundholm (1986, 1989), Ranta (1994) showed the potential of de-
pendent types with broad empirical data coverage. However, the study
provides little analysis of quantifiers in general. In Modern Type The-
ory (Luo, 2012b; Chatzikyriakidis and Luo, 2014), Lungu and Luo (2014)
give an analysis of monotonicity reasoning. While they define rules for
monotonicity reasoning of the binary quantifiers, the study does not pro-
vide an analysis of the meaning of the sentences containing those quanti-
fiers in general. In particular, the study does not deal with the analysis of
sentences containing both quantifiers and anaphora. Although I1-types
in dependent type theory can capture the internally dynamic property of
every, it is not clear how the property can be taken into account for other
quantifiers. Chatzikyriakidis and Luo (2018) provides a semantic rep-
resentation of numeral quantifiers three. Luo (2020) proposes a way to
introduce a notion of proof irrelevance into Martin-Lof type theory and
provides an account of the quantifier most that can avoid the proportion
problem. However, an overall picture of the analysis of anaphora and in-

ference phenomena generally involved in GQs has not been explored.

65

QUANTIFIER IN NATURAL LANGUAGE

There are atleast two possible approaches to analyze quantifiers in our
proof-theoretic setting.

One is what we call explicit approach. This is the approach adopted by
Sundholm (1989), which is to give an explicit definitions of quantifiers in
terms of logical operators provided in the system.

Another approach is implicit approach, which is well-studied in proof-
theoretic semantics of natural language. This approach is to construct a
proof system which contains quantifiers as primitives in the formal sys-
tem. The study of natural logic (e.g. van Benthem, 2008; Moss, 2010; Icard
and Moss, 2014) and the study of natural deduction system containing
quantifiers (Francez and Ben-Avi, 2014) are subsumed under this approach.
One of the main attractions of such an approach is its computational effi-
ciency. In particular, approaches that employ natural logic and recognize
textual entailment by using a logical prover have been successful in com-
putational linguistics (MacCartney and Manning, 2008; Angeli and Man-
ning, 2014; Abzianidze, 2017).

However, at present, the studies adopting implicit approach mainly
deal with proof-theoretic inference with quantifiers and they do not take
into account dynamics. Thus, it is not clear how to account for the inter-
action between quantifiers and anaphora, which has been studied in the
dynamic semantic frameworks.

Here, we adopt the explicit approach. By giving a semantic representa-
tion of quantifiers in an explicit manner, we provide an analysis of quan-

tifier meaning that can account also for their dynamic aspects.

66

Chapter 4

Quantifier and Anaphora

In this section, we propose a semantic representation of quantifiers in
DTS. We first explain Sundholm (1989)’s explicit definition of quantifiers
in dependent type theory, which provides the basis of our analysis. In
DTS, semantic representation of a sentence represents the meaning of
the sentence and also serves as a context for anaphora. From this point of
view, we will examine the appropriate semantic representation of quan-

tifiers within the framework.

4.1 Constructive generalized quantifier

4.1.1 Cardinality

Meaning of expressions such as at least three students and fewer than five
committees are captured in terms of the cardinality of a given set, as Ta-
ble 3.1 has shown. Here, we will explain the way to introduce the notion

of a cardinality in our framework, which is mostly based on the study by

67

QUANTIFIER AND ANAPHORA

n : Nat

———=="= Nat/
suc(n) : Nat atls

~ ———— Nat]
Nat : type NatF 0 : Nat atlo

n:Nat C:Nat—s e:C(0) f:(k:Nat)— C(k)— C(suc(k)) Nat
a

natrec(n, e, f) : C(n) E

Figure 4.1: Inference rules of natural number (s € {type, kind}).

Sundholm (1989).

First of all, we introduce natural numbers. Figure 4.1 shows inference
rules of Nat. According to the introduction rules, a canonical element of
type Nat is either 0 or suc(n) for some n : Nat. For simplicity of notation,
we often write 1, 2, and 3 instead of suc(0), suc(suc(0)), and suc(suc(suc(0))).
The behavior of the operator natrec in the elimination rule is as follows:
first it executes n, which yields either 0 or suc(a) for some a : Nat. If it is
0, then it returns e. Otherwise, it returns f(a)(natrec(a, e, f)) and further
execute natrec(a, e, f). Similarly to the first step, it executes a, which is a

number one less than the original n .

natrec(0,e,f) —p e

natrec(suc(a), e, f) —p f(a)(natrec(a,e, f)), where a : Nat
Following Aczel (1982), we define the k-element type M, as follows.
Definition 1 (Finite sequence). For k € Nat,
M;. déf natrec(k, L, AxAy.(y W T))

Here, natrec first execute k and returns L if k is 0. If k is suc(a) for some q, it

1 We accommodate parts of the original notation to our notation. For instance, both

set and Prop are written as type.

68

4.1. Constructive generalized quantifier

continues to execute natrec(a, L, AxAy.(ywT))wT.2 Thus, My, M1, Mo, M3,

... are given as follows.

My = 1

M| = 1LuWT

M, = (LWUT)wWT

M; = (LUT)WT)WT

Therefore, My, M;, My, M3, ... are types that has zero, one, two, three, ...
elements, respectively. My inhabits no term, because it is equivalent to L.
As for M;, we have inr({)), where () : T. M, has two elements, inl(inr({)))
and inr({)), which is verified below.

lL:type ():T "

inr(()) : LW T ¢ T:type J_LﬂT::type O:T

inlGinr(())) : (LW T)w T ol inr(() : (LY T)w T ik

Similarly, M3 has three elements, inl(inl(inr(¢{)))), inl(inr({))), and inr(()).
Now we have special types that have a specific number of elements,
e.g., M3 having three elements, M5 having five elements, and so on. We
can account for the number of elements of a type by using an injection
and a surjection from M; to the given type. In dependent type theory,

their definitions are given as follows.
Definition 2 (Injection). Forany A, B : typeand f : A — B,

injection (f) 2 (y: A) — (v : 4) = (fy =5 f¥) = (v =4 V')

2 Aczel (1982) and Sundholm (1989) define the finite sequence with universe of small
types (Martin-Lo6f, 1984). For our purpose, we adopt NatE that concerns both type and

kind. It allows us to recursively construct types.

69

QUANTIFIER AND ANAPHORA

Definition 3 (Surjection). Forany A, B : typeand f : A — B,
. e def
surjection(f) = (z:B) > (y : A) X (z =g fy)
Bijections are defined as follows.
Definition 4 (Bijection). bijection (f) déf (injection (f) x surjection (f))

Based on these machineries, we can represent various quantifiers. For

instance, we can represent the sentence three farmers are diligent as fol-

lows.3
FiM; o X : entity
farmer(x)
(4.1)
injection (f)
(y : M3) — diligent(r1(fy))

What this formula roughly says is as follows: first, there is a mapping f,
which is an injection from Mjs to (x : entity) x farmer(x). Existence of an
injection from a three-element set to a set of farmers means that there
is (at least) three farmers. Moreover, (y : M3) — diligent(r;(fy)), where
n1(fy) refers to an entity that is a farmer, requires that those three entities
are all diligent. Note that the functional term f is used to construct a term
that fills an argument of the predicate diligent. Consequently, when (4.1)
is true, there are (at least) three elements x of type entity that make both
farmer(x) and diligent(x) true.

Along this line, Sundholm (1989) provides a definition of certain types

of quantifiers including finitely many, there are more... than ..., and most.

3 Here we use three as an simple example to show how the finite sequence and injec-
tion work for counting. However, it has been argued that numeral expressions such as
three are not quantifiers themselves (Link, 1987). We will come back to this point later in

Section 4.4.

70

4.1. Constructive generalized quantifier

He argues, however, this definition needs to be revised in order to count

the farmers correctly. We will come back to this point later.

4.1.2 Notion of more than half

Sundholm (1989) interprets most as more than half (i.e., adopting the def-
inition |A N B| > |A|/2) and provides its constructive definition. In order
to make sense of saying “more than half of A,” A should contain a finite
number of elements. Thus, we first need the notion of finiteness, which

is defined as follows.

Definition 5 (Finiteness). For any A : type,
k : Nat
Finite(41) 2 | [f: M, > 4
bijection (f)

According to the definition, a proof term of Finite (A) is a tuple whose first
element is some natural number. As f is a bijection, this number corre-
sponds to the exact number of elements in A.

Next, we need a way to obtain the natural number that corresponds to
the majority of a given number, e.g., 3 if either 4 or 5 is given. First, the

operator sg is defined as follows.
Definition 6 (Signum). For any » : Nat,
def
sg(n) = natrec(n, 1, Ax1y.0)

Here, natrec first executes n. If n is 0, then it returns 1; otherwise, it returns

0. Thus, sg behaves as follows.

Sg(O) =3 1

sg(suc(a)) =g 0 wherea :Nat

71

QUANTIFIER AND ANAPHORA

The operator rem;, which gives the remainder of a number divided by

2, is then defined as follows by using sg.

Definition 7 (Remainder). For n : Nat,

d
remo-(n) éf natrec(n, 0, AxAy.sg(y))

Again, natrec first executes n and returns 0 if n is 0. If n is suc(a) for some
a : Nat, it continues to execute (1xAy.sg(y))(a)(remy(a)) = sg(remy(a)),

where rem; (a) is recursively computed until the argument reaches to 0.

remy(0) =5 0

remy(suc(a)) =5 sg(remsy(a))

The operator that gives the quotient of a number divided by 2 is de-

fined as follows with rems,.

Definition 8 (Integral part). For n : Nat,

[n/2] déf natrec(n, 0, AxAy.(y + remy(x)))

According to the definition, [-/2] is executed as follows.

[0/2] =5 0

[suc(a)/2] =p [a/2]+remy(a)

Thus, for k = 0,1, 2, ..., [k/2] gives each of the following numbers that

72

4.1. Constructive generalized quantifier

corresponds to the integral part of k divided by 2.

[0/2] = 0

[1/2] = [0/2] +remy(0) =0+0=0
[2/2] = [1/2]+remp(1)=0+1=1
[3/2] = [2/2]+remy(2) =1+0=1
[4/2] = [3/2]+remy(3)=1+1=2

[5/2] = [4/2]+remp(4)=2+0=2

We are now able to represent the majority of n : Natby [n/2] + 1. Here-
after, we write majorityOf (n) for [n/2] + 1.

Lastly, the definition of > is given as follows.
Definition 9 (>). For any m, n : Nat,

def
m>n =

m=Nat " + k

k : Nat }

4.1.3 Definition of Most

With the above preparation, Sundholm (1989) defines Most for arbitrary
A type, ¢ : A — type, and a : Finite (A) as follows.

[, A:type, ¢ : A — type, a : Finite (A) + Most(4, ¢) : type,
— k : Nat —
[k > majorityOf (m1(a)) |
where Most(A, ¢) déf f:My—> A

injection (f) l
(y : My) = ¢(fy)

73

QUANTIFIER AND ANAPHORA

This formula represents that more than half of A are ¢. Here, a : Finite (A)
is imposed as a presupposition in order to make sense of Most(4, ¢).* As
the first projection of the term a : Finite (4), m;(a), is the number of ele-
ments in A, k is more than half of A’s cardinality. Function f is an injection
that maps every element in My to an element in A that satisfies ¢. When
such f exists, more than half of A’s elements certainly satisfy ¢. This cap-
tures the intended meaning of most A are ¢.

Note that the Sundholm’s definition is based on the treatment of com-
mon nouns as types. Hence, ¢ is of type A — type. Since common nouns
are not types but predicates in DTS, we need to modify this definition

slightly for our purpose as follows.

I', N : entity — type, V : entity — type, a : Finite ((x : entity) x N(x))
+ Most(N, V) : type,

- k : Nat

[k > majorityOf (11 (a))

d
where Most(N, V) =

f Mg — (x : entity) x N(x)
injection (f)
(v : My) = V(m(fy))

Here, both N and V are of type entity — type and the term a is a proof

term of Finite ((x : entity) x N(x)).

4.1.4 Proportion problem

Sundholm (1989) pointed out, however, that there is a problem to adopt

the above definition: this leads to the well-known proportion problem (Kad-

“In Sundholm (1989)’s formalism, it is not clear how this presupposition can be han-
dled in the compositional setting. In DTS, such presupposition is represented as a lexical

meaning of most in terms of @-term, as we will see later.

74

4.1. Constructive generalized quantifier

mon, 1987; Heim, 1990). This problem is not limited to the case of most
but is mainly caused by the definitions of injection and surjection given

earlier.

This becomes clearer if we consider a sentence where the restrictor
contains existential quantification of another entity. To simplify the demon-

stration, we consider the quantifier three.
(4.2) Three farmers who own a donkey are diligent.

Here, the restrictor of the quantifier is farmer who own a donkey, where we
consider the situation that each of the quantified farmers own a donkey.
Again, similarly to (4.1), the semantic representation of (4.2) can be given

as follows with an injection.

- x : entity

— farmer(x)
fiM3 — z : entity
(4.3) donkey(z)

own(x, z)

injection (f)

(y : M3) — diligent(m(fy))_

Here, f should be a function from M3 to a X-type that consists of nested
pairs: each term of the Z-type would be a 5-tuple (e1, pr,), €2, Pd(ey) Po(er e2))>

where each of the participated terms is understood as follows.®

5 We often abbreviate nested pair (x1, (x2, x3)) as (x1, x2, X3).

75

QUANTIFIER AND ANAPHORA

el an entity who is a farmer

Pf(ey) a proof that the entity e; is a farmer
e an entity which is a donkey

Pde,) aproofthat the entity e is a donkey

Po(er,e;) @ proof thate; owns e,

Suppose that there is only one farmer, f,, who owns a donkey. He owns
three donkeys d,1, d,2, and d,3. We also have a proof that f, is a diligent

person. In this situation, we have the following three 5-tuples.

(4.4) far Pict,) dats Pd(dar)r Polfdar))
(Ja> PE(£,) a2y Pd(dn) Pofuda))
<fa’ pf(fu)’ d“?” pd(duS)’ po(favda?)))

According to the definition of injection (Definition 2), an injection from
M3 exists because we have three tuples. As we have assumed that the first
component of each tuple, f,, is diligent, the semantic representation is
true even if there is only one farmer, which is counter-intuitive. Here we
see a typical situation of the proportion problem that is caused by quan-
tifying over tuples.

In the standard setting, the proportion problem is associated with a
sentence where the quantifier restrictor contains the relative clause with
an indefinite in it. In the proof-theoretic setting, however, quantifying
over tuples may cause problem even in absence of indefinite.

Consider the simpler variant of (4.2).
(4.5) Three farmers are diligent.

Now, similarlyto (4.3), there exists a function from M3 to the X-type (x : entity)x
farmer(x). This X-type consists of pairs (ey, pge,)), where pg.,) is again a

proof of farmer(e;). This means that not only entities but also proposi-

76

4.1. Constructive generalized quantifier

tions such as farmer(e;) introduce a proof term. Quantifying over tuples
(pairs) may then cause problem because one proposition can have mul-
tiple different proofs.

Consider the proposition “John s diligent” and let us assume that John
is a Canadian policeman. If we have the proof term p; of that assumption
, as well as the proof term p, that every Canadian is diligent, we can con-

struct a proof that John is diligent by combining p; and p5.

. X : entity
john : entity, p; :

Canadian(john)] (
, P2 LU

policeman(john)

— diligent(m u)
Canadian(x)

F p2(john,m py) : diligent(john)
Now, suppose that we have another proof term p3 that every policeman is

diligent. We can construct a proof that John is diligent also by combining

p1 and ps.

. x : entity
john : entity, p; :

Canadian(john)] (
, Pz i |u .

policeman(john)

— diligent(r; u)
policeman(x)

- pa(john, mapy) : diligent(john)
In this way, we can obtain two different proof terms for the proposition
“John is diligent.” Therefore, counting pairs may cause the problem even
in the absence of an indefinite.

To avoid this problem, Luo (2020) proposes to extend Martin-Lof type
theory with the logic of mere propositions called h-logic and introduce
the notion of proof irrelevance. Proof irrelevance is a principle that any
two proofs of the same logical proposition should be the same. This can
solve the multiple proofs problem noted above, but is usually not avail-
able for predicative type theories such as Martin-Lof type theory, where

every proposition is also a type: for instance, two entities a and b of type

77

QUANTIFIER AND ANAPHORA

entity are identified, which is an unwanted result. Since the extended
system have mere propositions which are distinguished from type, it can
have a rule that every two proofs of a mere proposition are equal.

Luo (2020) suggests that one can also avoid the proportion problem by
defining a weak existential quantifier 3in terms of mere propositions and
use it to represent the relative clause of the donkey sentence instead of
¥. The resultant semantic representation, however, seems to block some
sort of inter-sentential anaphoric link (see, Section 5.6).

To maintain the anaphoric accessibility, we will crucially use Z-type
also for the relative clause of the donkey sentence. In order to avoid count-
ing same entities multiple times as in (4.4), we follow Sundholm’s pro-
posal and use different version of injection, surjection, and bijection, which
identify tuples by its first component, namely, an object of type entity
in our setting. Note that entity in DTS can be defined as an enumera-
tion type. For now, we assume that for any objects of entity, we know its

canonical form and thus can distinguish one from the other.

4.1.5 Counting entities

Sundholm (1989) defines the following injection where two tuples are iden-

tified regarding to their first component.®

Definition 10 (injectionm). Forany A, B : type, C : B — type, and [:
A— (x:B)XxC,

o o . df /7 7 4
injection, (f) = y:A) -G A ->m(fy)=sm(fy)—>y=ay

6 Since Sundholm’s original definition contains a type mismatch, we present a slightly

modified version of it here.

78

4.1. Constructive generalized quantifier

Here, f is a function whose range is a X-type, and injection, (f) says that
f is an injection which is relativized to the first component B. Two terms
y and y’ of A are equated if the first components of f(y) and f(y’) are the
same, regardless of the rest of the tuple. The following theorem immedi-

ately follows by definition.

Theorem 1: injection and injection,

Forany A, B : type,C : B — type,and f : A — (x:B) x C, if

injection, (f), then injection (Ax.71(f(x))).

Proof. Assume injection, (f). Then the following holds by definition.

.y 1A - m(fy) =g mi(fy) 2 y=ay

Assume we have y : A,y : A, and (Ax.n1(f(x)))y =p (Ax.m1(f(x)))y’. From
(Ax.mi(f(x))y —p mi(f(y)) and (Ax.m1(f (x)))y" —p mi(f(y’)), we have

m(f(y) =g m(f(y)).

Thus, by in]'ection,rl (f), we obtain y =4 y’. By II-introduction, we get

1,y :A) = Axm(f(x)y =p Axm(Fx))y =y =ay

End of proof.
Surjection is defined analogously.
Definition 11 (surjection, .). For any A, B : type, C : B — type, and

f:A—> (x:B)XC,

surjection, (f) = (z:(x:B)xC)—
m1(z) =g m1(fy)

79

QUANTIFIER AND ANAPHORA

While the standard surjection requires that there exists a corresponding
element of A for every tuple z, surjection, only requires that the corre-
sponding element exists for z’s first component. For instance, if there are
(b, c1) and (b, c2), it is enough to have only one y such that fy =(.zxc
(b, c1) because (b, c2) =g 71(fy) =g b.

Bijection is also defined in the same way as before.

Definition 12 (bijection,). For any A, B : type, C : B — type, and f :
A— (x:B)xC,

bijection, (f) = (injectionm(f) X surjection, (f))
Accordingly, finite,,, which adopts bijection, , is defined as follows.

Definition 13 (Finiteness). For any B : type and C : B — type,

k : Nat

def

finite, (x : B)x C f:Mp—> (x:B)xC

bijection,, (f)

Finally, we can revise the definition of Most as follows, where finite,,
and injection, are abbreviated notations of finite,, and injection, , re-

spectively.
(4.6)

I, N : entity — type,V : entity — type, a : finite, (x : entity) X N(x)
+ Most(N, V) : type,

— k : Nat

[k > majorityOf (r1(a))

where Most(N, V) ¢ [+ My — (x : entity) X N(x)

injection, (f)

(v : My) = V(m(fy))

80

4.2. Analysis of most in DTS

The range of f corresponds to the quantified objects, which is given by
the restrictor noun phrase of most. In DTS, such objects are always repre-
sented by a =-type of (x : entity) x N(x) for some predicate N, whose first
component is type entity. Thus, we can quantify over entities instead of
tuples.

Here is a remark on the uniformity problem pointed out by Sundholm
(1989). Since Sundholm (1989) treats common nouns as types, the range
of f can be any type, but injection, is applicable only when itis a Z-type.
Thus, as Sundholm himself pointed out, one needs to define Most by case

analysis on A.

4.2 Analysis of most in DTS

Sundholm (1989) sketched the constructive definition of Most in a way
that can avoid the so-called proportion problem. Although the study pro-
vides an essential tool-set to translate the traditional set-theoretic quan-
tifier analysis into Martin-Lof type theory, an analysis of the natural lan-
guage quantifier is not yet well explored. In particular, as we have pointed
out previously, an analysis that can deal with both dynamiclinguistic phe-
nomena and the proof-theoretic inference of quantifiers has not been well
studied. In this section, we will provide the semantic representation of the
quantifier most in DTS on the basis of the formalism by Sundholm (1989).

Given the linguistic behavior of the quantifier most, we can say that
there are at least two points to be improved in the definition (4.6).

One is the existential presupposition. Quantifier most is known as a
strong determiner: the sentence Most farmers own a donkey presupposes

that there exists a farmer, not only presupposing the number of farmers

81

QUANTIFIER AND ANAPHORA

is finite.

Another is the maximization of the number. When Most(V, V) is true
(i.e., there exists a proof term of Most(N, V)), we will have a natural num-
ber k and a function f of My — (x : entity) x N(x) as part of the proof.
However, k is not necessarily the number of entities in question: all we can
sayis thatitis anumber greater than the majority of entities in (x : entity)x
N(x). As aproofterm can behave as a discourse referent, we thinkit is cru-
cial that k is the exact number of entities.

Besides, we need to devise a way to give semantic representations for
other quantifiers in the same way. This is because the definition employs
injection, . Due to its nature, the existence of an injection from M;, to the
target entities ensures that there are at least k entities. On the contrary,
it cannot guarantee that there are exactly k entities or at most k entities,
which is necessary to represent the meaning of quantifiers such as exactly
three and at most three.

Therefore, we define Most as follows.

(4.7) Mostin DTS
ForT + N : entity — typeand T, x : entity, u : N(x) + V :
entity — type, I' - Most(N, V) : type,

k : Nat
: enti
a : Finite,, * - entdlty
k > majorityOf| m;7; | @ :: N(x)
d >1
where Most(N, V) éf |m@
X : entity
fiMiy— | [u:N(x)
V(x)

bijection, (f)

Lexical entry of most is then given as follows.

82

4.2. Analysis of most in DTS

most; (S/(S\NP))/N; AnAv.Most(n,v)

Here we represent the presupposition of most by the underspecified
term in DTS. The annotated type of @-term expresses the presupposition.
This captures that the quantifier most triggers the presupposition that the

quantification domain is finite and non-empty.

The resolution of @-term proceeds along the same line as the case of
existential presupposition of definite descriptions (see Section 2.6.1). By
the type checking and proof search in DTS, it will be eventually replaced
with a concrete proof term (a, e) where a is a proof of finiteness and e is
a proof that the number of elements is greater than or equal to 1. From
the first component, a, we can obtain its first component r;(a) which is
the number of entities in (x : entity) x N(x) (Definition 13). On the other
hand, the second component e is discarded: it is only used to specify that

n1(a) > 1, which is needed to presuppose the existence of an element.

To maximize the natural number k, we use bijection, , which is the
conjunction of injection, and surjection, instead of only injection, .
This is because surjection, (f) ensures that every entities in (x : entity) x
(u : N(x))xV(x)has a corresponding element in M. The subsequent dis-
course may use this number k in the proof search for @-term resolution
(see Section 4.5). Also, this enables us to account for quantifiers such as

exactly three as well as monotone decreasing cases such as at most three.

As we mentioned in Section 3.1, the quantifier most can be defined
also as |[A N B| > |A — B|. If we adopt this definition, the semantic repre-

sentation of most can be given as follows.

83

QUANTIFIER AND ANAPHORA

k : Nat
X : entity

u:| [f:Mp— || u:N(x)

V(x)

bijection, (f)
def T

(4.8) Most(N,V) k’ : Nat
X : entity
vi| | ffi My = | | v:N()
-V(x)

bijection, (f’)

mu > mvuv

Here, myu > mv compares the cardinality of (x : entity) x (u : N(x)) x V(x)

and (x : entity) X (u : N(x)) X =V (x).

If these two semantic representations at least represent the same car-
dinal condition, how do we choose one over the other? One possiblity is
that, as (Hackl, 2009) argued, to choose the second one based on the dif-
ference in their verification procedure. For this particular formulation,
however, we prefer the first version over the second one from the view
point of its anaphoric potential. Since semantic representation (4.8) has a
parallel structure, itis natural to expect that u and v have the same anaphora
accessibility. However, since u and v correspond to the reference set and
the complement set, respectively, this contrary to the Nouwen (2003)’s
observation, where the reference to complement setis generally not avail-

able.

Although it may be still possible to explain the difference in anaphora
accessibility by assuming other factors, here we adopt the first one given

above as the semantic representation of most in our analysis.

84

4.3. Donkey sentence

farmers who own a donkey

N
Most
- farmer(x)
(S/(S\NP))/N .
y : entity

AnAv.Most(n, v) Ax.
u : donkey(y)

own(x, y)
S/(S\NP)
beat it
farmer(x) e
S\NP
y : entity
Av.Most | Ax. Ax.beat(x, @; :: entity)
u : donkey(y)
own(x, y)
S
k : Nat
X : entity
farmer(x)
a : Finite,, y : entity

k > majorityOf| m;m | @, ::
u : donkey(y)

own(x, y)

ni(a) > 1
X : entity
farmer(x)
y : entity

f Mg — w:
u : donkey(y)

own(x, y)

beat(x, @ :: entity)

bijection, (f)

Figure 4.2: Semantic composition of (4.9).

4.3 Donkey sentence

The semantic representation of most captures the internally-dynamic na-

ture of the quantifier. Consider the following donkey sentence.

Most farmers who own a! donkey beat it;.

The semantic composition is analogous to the universal donkey sen-
tence (2.20) in Section 2.5.1. Hence, the semantic representation of (4.9) is
derived as in Figure 4.2. Here, @, represents the pronoun it in the nuclear

scope and @, represents the existential presupposition of most.

85

QUANTIFIER AND ANAPHORA

As the obtained semantic representation should be of sort type, the

following judgment should hold for @;.

X : entity
farmer(x)

a : Finite : enti
(4.10) K, k:Natr ™ Y vy true

u : donkey(y)

own(x, y)

i mi(a) =21

Let us assume that we have a knowledge that exactly five farmers own a
donkey. In this case, the global context K contains the following proof

termin (4.11).

- x : entity

- farmer(x)

(4.11) (5,7, 8B) : Finite, y : entity

u : donkey(y)

own(x, y)

Recall that the proof of finiteness consists of a natural number, a function,
and a proof that the function satisfies bijection, , which correspond to 5,
¥, and B, respectively.

Since there is no preceding discourse in (4.9), there is no option for
presupposition filtration for the presupposition represented by @,. Thus,
itisresolved by the information in K. As we have (4.11) in K and can also
prove 5 > 1, which we write £, we can construct ((5, ¥, 8), £) that satis-

fies the judgement (4.10). This proof can substitute for @,.

For @,, the following two judgement should hold.

86

4.3. Donkey sentence

(4.12) _
X : entity
farmer(x)

a : Finite,, y : entity -
K, k : Nat, ((5,F,8),P): ,p : k > majorityOf (5),

u : donkey(y)

own(x, y)

I m(a) > 1
farmer(x)
y : entity
u : donkey(y)

z : Mg, x : entity, w : F @ :: entity : entity

own(x, y)

(4.13) »
X : entity
farmer(x)

a : Finite,, y : entity
K, k : Nat, ((5,F,B),P): ,p t k > majorityOf (5),

u : donkey(y)

own(x, y)
I m(a) > 1
[X : entity
[farmer(x)
f: M — w: y - entity , i : injection, (f), x : entity,

u : donkey(y)

own(x, y)

beat(x, @, :: entity)
farmer(x)
y : entity

F @ :: entity : entity
u : donkey(y)

own(x, y)

Here, (4.13) is the @-term which appears in bijection, , in the antecedent
clause of surjection, . This means that, in Most(N, V), N appears three
times and V appears twice in total. If N and V contains @-term, it is du-
plicated in the semantic representation. In this case, we have to resolve
@-term with the same index in a consistent way.

In general, if we haveI' F @; :: A : AandI” + @; :: A : A, the proof

87

QUANTIFIER AND ANAPHORA

term constructed for @; :: A under I" should be also constructed under
the context [I'], where [T”] is obtained from I"” by only renaming the vari-
ables.” In the current case, we can find 77w that can replace @,, which
corresponds to the intended reading of (4.9).

The fully resolved semantic representation is as follows.

[k : Nat
k > majorityOf (5)

X : entity
farmer(x)
4.14 : enti
(4.14) oo | w: | |? entity

u : donkey(y)

own(x, y)

beat(x, r;mow)

bijection, (f)

” The treatment of @-terms presented here is not compatible with the assumption

made by Kubota et al. (2019) in their analysis on the interpretive parallelism within DTS.
(i) Every English man thinks, and every American believes, that he is a genius.

In order to obtain the bound reading of the pronoun hein the above sentence, they made

two assumptions which play key roles in their analysis (quoted from page 4).

a. Ban on the duplication of underspecified terms: In a well-formed semantic rep-
resentation of DTS, an underspecified @-term with the same index can appear at

most once.

b. Normal form requirement on compositionally derived semantic terms: At each
step of semantic composition, the semantic term assigned to the derived linguis-

tic expression is in 8-normal form.

Since the restriction (a) invokes anaphora resolution before the 8-reduction of the se-
mantic representation takes place, the bound reading can be naturally derived.

In our case, @-term that appears in the object position of vV in Most(/N, V) can find
its antecedent only after the semantic composition completed. Thus, if we adopt the

restriction (a), the semantic composition just fails when Most takes V.

88

4.4. Other quantifiers

As majorityOf (5) is 3, the semantic representation can be immediately
understood as at least three farmers who own a donkey beat his donkey.
Note that the semantic representation in 4.14 corresponds to the ex-
istential reading of the donkey sentence (4.9): we count farmers if there
exists a proof of an associated donkey in a beating relation. Suppose that
there are five farmers and they own at least one donkey and beat some of

them. The situation is illustrated below.?

farmer fa fo fe fa Je
donkey da1 dp1, dp2 de1, deo da de1
beat (farda1) (fordp1) (fe, de1), (fe, de2) - -
not-beat - (fo, dp2) - (fa, da1) (fe, de1)

Now, the donkey sentence (4.9) is intuitively true in the existential read-
ing, because three in five farmers, f;, f;,, and f;, fulfill the condition. Obvi-
ously, (f;, d,1) can be a destination of the function f. For f;,, (f;, dp1) can be
the destination as well only because it fulfills the condition: the existence
of (fy, dp2), which is notin a beating relation, does not matter. For f, either
(fe» de1) or (f, dc2) can be a destination of f. Recall that only one of them
can be a destination of f as f meets injection, (f). Also, none of f, fi,, and

Jc is overlooked as f meets surjection, (f).

4.4 Other quantifiers

The proposed definition can be naturally extended to other quantifiers
such as at least three, exactly three, and at most three.

We treat three in at least three as an expression provides numerical

8Astherange of f is complex Z-type, the precise elements in the range of f are 6-tuples

consists of an entity that is a farmer, a proof of the entity being a farmer, and so on.

89

QUANTIFIER AND ANAPHORA

specification, whose syntactic category is specified as NUM, and at least
as an phrasal expression which modifies such a numeral. Their lexical en-

tries are given as follows.”

three; NUM; 3
k : Nat

k >k’
atleast; S/(S\NP)/N/NUM; Ak’.AN.AV.

Vx

bijection, (f)

Then the semantic representation of quantifier at least three is given as

follows.

(4.15) aAN.aV.

bijection, (f)

Letus abbreviate it as AtLeastThree. By similar procedure, we obtain AtLeastN
in general for the semantic representation of at least n, where n corre-

sponds to the natural number N.

Exactly n and at most n can be represented in the same way.

9 Here we simply treat the semantic type of NUM is Nat. It is also possible to treat it

as an object of type entity and define an operation to convert it to an object of type Nat.

90

4.4. Other quantifiers

— k : Nat
If =Nat N
: entit
(4.16) ExactlyN(N,V) 2 p y
fiMg — u: N(x)

V(x)

bijection, (f)

- k : Nat

(k<N

def - x : entity

) fiMi— | | u:N(x)
V(x)

(4.17) AtMostN(N, V)

bijection, (f)

They are all defined in terms of bijection, . In this way, we can give
the semantic representation of the downward monotone quantifier such
as at most n.

For the bare numeral three in the sentence three farmers are diligent,
there is no expression that takes the numeral and behaves as a quantifier.

Here we assume that we have the following empty expression.!?

10 Here we treat numerals as themselves are not quantifiers. This view point agrees
with studies where numerals are accounted for as expressions modifying nouns (Link,
1987; Krifka, 1996, among others).

Under the numeral-as-modifier approach, expressions such as the three students can
be naturally handled. Link (1987), however, allows postulating an extra node for numer-
als to avoid strings like pretty three girls. Also, Krifka (1996) assumes a morphologically
empty determiner for his analysis of NPs like fwo students in order to derive the quan-
tificational meaning.

Although we adopt different analysis here, the use of NUM and @, is similarly mo-
tivated. Based on our current analysis, definite article the in the three N V can be an-

alyzed as an expression whose syntactic category is S/(S\NP)/N/NUM, similarly to at

91

QUANTIFIER AND ANAPHORA

n : Nat
n==k
x : entity
20; S/(S\NP)/N/NUM; Ak.AN.AV.
f:M, - u:Nx

Vx

injection, (f)

With this bare expression, we can have a quantifier N for the bare numeral
nin general.
n : Nat
n =Nat N
def x : entity

(4.18) NWw,V) =
f*M,— | |u:Nx)

V(x)

| injection, (f)

Note that this semantic representation corresponds to the distributive
reading of the numeral expressions, as it is understood as there are n en-
tities which satisfy both properties N andV. On the other hand, in the fol-

lowing case, this reading seems to be not the preferred one.

(4.19) Three men lifted the piano.

(4.20) Three men met in the park.

On the distributive reading of (4.19), the sentence means that there were
three men each lifting a piano. However, there exists another reading,
which seems to be more natural, that there has been at least one joint lift-
ing with three people involved (Link, 1987). The second reading is called

collective reading. In (4.20) where the collective verb met appears, only

least, which is the different lexical entry we presented in the earlier chapter.

92

4.4. Other quantifiers

the collective reading seems to be plausible. To account for both the col-
lective reading and the distributive reading in a compositional way, we
can integrate the existing analysis of plural objects into our framework.
See Link (1983) for the standard approach. Proposals on the treatment of
plural objects in a dependently-typed setting has been also made by Bol-
dini (2001) and Chatzikyriakidis and Luo (2013). Since the full discussion
of this phenomenon is beyond the scope of this thesis, we will focus on
the distributive reading of numeral expressions.

The difference between ExactlyN and N is that only the former maxi-
mize the natural number k in the representation by bijection, . This en-
sures that Exactly n N V becomes false in the case where there are more
than N elements.

The sentences At least n N Vand n N V have the same truth condition,
but we define them in a different way. This is because the determiners
behave differently when the noun phrases are referred to from the subse-
quent sentences. As Kadmon (1987) observed in the following sentences,

ten N differs from at least ten Nin anaphora possibilities.

(4.21) [Atleast ten kids]; walked into the room. They; were making an

awful lot of noise.

(4.22) [Ten kids]; walked into the room. They; were making an awful

lot of noise.

Both of the first sentences of (4.21) and (4.22) can be true in the situa-
tion where there are actually more than ten kids. Suppose that there are
twelve kids who walked into the room. In (4.21), they in the second sen-
tence refers to all the twelve kids who walked into the room. By contrast,
they in (4.22) refers to a collection of ten kids in question. Thus, at least

ten kids behaves as the maximal collection of kids, while ten does not.

93

QUANTIFIER AND ANAPHORA

We define AtLeastN and N to reflect this difference in anaphora possi-
bilities. We define AtLeastN with the condition k > N, where k is maxi-
mized by bijection, . On the other hand, we define N with the cardinality
condition k = N. It can still be true when there are more than three ob-

jects, as we use injection, .

Quantifiers some, no, and every can be represented in the same man-

ner. Existential reading of some and no can be represented as follows.

X : entity
f M1 > | | u:N(x)
V(x)

4.23) Some(N,V) Y

injection, (f)

X : entity

e My — .
(4.24) NO(N, V) dEf f 0 u N(x)
V(x)

bijection, (f)

Recall that M; = L w T. Then it follows that (4.23) and (x : entity) x
(u : N(x)) x V(x) are mutually deducible. Similarly, by My = 1, (4.24) and
- (x : entity) x (u : N(x)) X V(x) are mutually deducible.

As for every, we can have the following semantic representation, which

captures the cardinality condition of the restrictor and the nuclear scope.

94

4.4. Other quantifiers

n : Nat
x : entity
a: f:M, -
N(x)
bijection, (f)

.25 EveryN,)Y | [[x : entity

g Myu— | | u:N)
V(x)

bijection, (g)

| W (mia >1)

Here, PR (A) déf (@; 1 A) =4 (@; 2 A). PR is the operator which we call
presupposition operator. It can be used to represent the presupposition
thatis independent of the assertive content. Since it is defined in terms of
an identity, it does not contribute to the assertive content of the semantic
representation. In the type checking stage, however, the @-term in the PR
operator triggers the proof search just like other @-terms, which requires
that the proposition A is provable under the context. In the current case,
the PR operator triggers the proof search of r;a > 1, which requires that
the cardinality of the restrictor is at least one. This captures the existential
presupposition of the strong determiner every.

One crucial problem of (4.25) is that a formula we can deduce from it
is weaker than we expect. As both f and g are bijection, we can prove that

the following proposition holds.

x : entity
X : entity
(4.26) < || u:Nx)
N(x)
V(x)

This is, however, not sufficient for the meaning of every, because the an-

tecedent and the consequence clauses consider different entities. This

95

QUANTIFIER AND ANAPHORA

motivates us to more directly represent the relation A C B (not |[A| = |[AN

BJ). More appropriate representation for every is as follows.

k : Nat
x : enti
a f . Mk - ty
u N(x)
(4.27)
bijection, (f)

(2 Maya) - V(mif(2)
_ PR (mymiu > 1)

Now, we treat that the finiteness of the restrictor is also a part of the pre-
supposition of every and represent the inclusive relation between the re-
strictor and the nuclear scope. The semantic representation in (4.27) cor-
responds to existential reading. To account for both the universal reading

and the existential reading, we have the following semantic representa-

tion.
k : Nat
. £iMy - x : entity
u N(x)
(4.28)
| | bijection, (f) |
(2 :My0) = (v : N(m1f(2)) = V(m1f(2))]

PR (mymiu > 1)

In the semantic representation of donkey sentence, e.g., every farmer who
owns a donkey beats it,he @-term corresponding to the donkey pronoun
appears in V. Thus, it can always find at least two antecedent: one is in v
and the otherisinn,f(z). If the @-term is resolved by using v, the resultant
semantic representation corresponds to the universal reading. If the @-
term is resolved by using 72 f(z), it corresponds to the existential reading.

Let us illustrate this by the example of universal donkey sentence. For

96

4.4. Other quantifiers

simplicity, let us ignore the second part, R (mymu > 1). The semantic
representation of Every farmer who owns a donkey beats it is given as fol-

lows.

[k : Nat

[— x : entity
farmer(x)

fiMp — y : entity

donkey(y)

(4.29) own(x, y)
[b : bijection, (f)
farmer(r, f(2))
y : entity
donkey(y)

(z: M) > |v: — beat(r; f(z), @, :: entity)

own(rf(z), y)

The possible resolution for @; in question is v and mymam2(f(2)).

Let us deduce simpler formula from (4.29). The key is that we have the
proofofbijection, (f), from which, we can obtain the proof of surjection, (f),

which we write s;.

[x : entity
farmer(x) M
(4.30) sp:fw: y : entity - v
mz = mf(y)
donkey(y)
own(x, y)

Here, we informally refers to k and f appears in the original formula (4.29),
but of course both should be extracted from the proof of (4.29) by X-elimination.
We also have the following formula, which is the last component of (4.29).
(A represents the proof term which has replaced @, . In the current case,

itis either mymov or mymoma(f(2)).)

97

QUANTIFIER AND ANAPHORA

farmer(r, f(z))
y : entity
donkey(y)

(4.31) p:(z:Mp)—>|v:] — beat(r,f(z), A)

own(r1f(z), y)
(4.30) plays two crucial role. One is, by taking the proof of farmer who
owns a donkey, returns a proof of My, which can be fed to (4.31). The other
is to provide the identity relation of the entity.

From (4.30) and (4.31), we will eventually obtain either of the following
formula with respect to the result of the resolution of @;.

Az’.pgm(sf(z’))) :

X : entity
") farmer(r,z’)
armer(x
(4.32) y : entity
z': y : entity —|v: — beat(m, 2/, rymov)
donkey(y)
donkey(y)
own(mz’,y)
own(x, y)

Az’.pfnl(sf(z’))) :

X : entity
¢ @ farmer(r,z’)
armer(x
(4.33) : enti
2| | [y : entity S| [y ~ beat(m 2/, mmpma(f(mi5y(2)
donkey(y)
donkey(y)
own(mz’, y)
own(x, y)

Although itis notimmediately obvious what is going on here, in (4.32), the
object position of beat refers to v, which is a universally quantified object.
On the contrary, in (4.33), it refers to a particular entity which is obtained
via f with respect to z’.

It is easy to show that (4.32) and the following classical semantic rep-
resentation of universal quantifier are mutually deducible.

- X : entity
farmer(x)
(4.34) z' y : entity — beat(n;z’, mymomne2’)

donkey(y)

own(x, y)

98

4.5. Plural anaphora

On the contrary, from (4.33), we can prove the following proposition, which
better reflects the existential reading.

x : entity

y : entity
farmer(x) donkey(y)
u: onke
(4.35) |z y : entity - Y
own(m z',y)
donkey(y)
beat(m,z’, mu)
own(x, y)

The semantic representation of no that account for both universal and
existential reading can be given analogously based on (4.24).
x : entity
f:Mo— | | u:N(x)
(v :N(x)) = V(x)

(4.36)

| bijection, (f) |
Again, this is mutually deducible with the following formula.
x : entity
(4.37) || u:N(x)
(v:N(x) = V(x)
Here again, if the @-term in V is resolved by using v, the semantic repre-
sentation corresponds to the universal reading; if it is resolved by using «,

it corresponds to the existential reading.'!

4.5 Plural anaphora

In the previous section, we provided semantic representations of GQs such

as most and the cardinal quantifier three. In this section, we will see their

H Tt is also possible to get the semantic representation of most for both universal and
existential reading in a same manner. We will not further pursue the direction in this

thesis.

99

QUANTIFIER AND ANAPHORA

behavior in the discourse, especially how they interact with plural pro-

nouns.

4.5.1 Plural anaphora and dependent interpretation

Consider the following examples involving plural anaphora ((4.40) is due

to Krifka (1996)).

(4.38) Every! boy received a! present.

They, opened it;.

(4.39) Most! farmers own a? donkey.

They; love its.

(4.40) Three! students wrote a® paper.

They; sent it to L&P.

Let us focus on a reading of (4.38) where every boy receives wide scope
over a present (henceforth, the V-3 reading). In that reading, the singular
pronoun it in the second sentence refers to its antecedent in the nuclear
scope of the quantifier in the first sentence: the second sentence of (4.38)
can mean that every boy received a present and opened the present he re-
ceived. By V-3reading, a similar interpretation applies to (4.39) and (4.40);
the second sentence of (4.39) is understood to mean that most farmers
own a donkey and love the donkey he own; the second sentence of (4.40)
means that three students each wrote a paper and each student sent the
paper he wrote to L&P.

Another thing to pay attention to is that, in all of the above examples,
the singular pronoun it in the second sentence receives the interpretation
that depends on the subject: it in (4.38) is interpreted as the present he

received, where he refers to each of the subject boy; the same applies to

100

4.5. Plural anaphora

(4.39) and (4.40).

The source of such interpretations must be the interpretations of the
first sentences, the quantificational sentences. For instance, the interpre-
tation of it in (4.40) is possible because we know from the first sentence
that there exists a paper for each of the three students. This suggests that
the V-3 reading of the first sentence induces a dependency relation be-
tween students and papers, which plays a crucial role in the interpreta-
tion of the singular pronoun in the second sentence.

Therefore, analysis of anaphora such as (4.38), (4.39), and (4.40) should

also account for this dependent interpretation.

4.5.2 Dependency relation

As the dependency interpretation is crucially involved in plural anaphora
in general, it has been widely discussed in the literature (Kamp and Reyle,
1993; van den Berg, 1996a,b; Krifka, 1996; Nouwen, 2003; Brasoveanu, 2008).
In classical Discourse Representation Theory (DRT) (Kamp and Reyle,
1993), reference to adependencyrelation is handled by using a copy mech-
anism. First, the first sentence in (4.38), every boy received a present, yields

the following discourse representation structure (DRS).

(4.41) X Y
every
present(y)
boy(x) | *
receive(x, y)

This form of DRS is called duplex condition and used to represent a sen-

tence involving a quantifier. The construction of this DRS triggers the op-

101

QUANTIFIER AND ANAPHORA

X
X’
y
X
y EVETY > present(y)
* every boy(x) x
present(y) receive(x, y)
boy(x) x
receive(x, y)
Xy
Xy
X =3 DOY®)
X =3¢ POV present(y)
present(y) receive(x, y)
receive(x, y)
Xy
* every boy(x) every
x €X' x open(x, y) present(y) * open(x, y)
receive(x, y)

a. DRS for (4.38) before applying copy operation. b. DRS for (4.38) after applying copy operation.

Figure 4.3: DRS associated with (4.38).

eration called abstraction, which constructs a new plural discourse ref-
erent X’ consisting of an object that satisfies the condition of x. The pro-
noun they refers to this X’ and yields the DRS in Figure 4.3a, where univer-
sal quantification over X’ takes place. In this DRS, however, there is no dis-
course referent which can be associated with singular y in open(x, y). In
such a case, there is an option to apply a copy operation, which copies the
conditions of x constituting X’ to the restrictor part of the duplex condi-
tion. The corresponding DRS is given in Figure 4.3b. In this way, the singu-
lar variable y in open(x, y) can refer to each present associated with each
boy. What plays an important role here is operations performed based on

DRS construction.

Krifka (1996) tries to account for the phenomena without introducing

an additional level of semantic representation such as DRSs. He proposes

102

4.5. Plural anaphora

an analysis based on an enriched assignment function called parametrized
sum individuals based on the approach interpreting a sentence as a re-
lation between assignment functions. Parametrized sum individuals are
sets of pairs of an individual and a variable assignment associated with
that individual. A possible instance of parametrized individuals for every
boy received a present may have the following representation, where x and

y are variables for boys b; and presents p;, respectively .

(x, {{b1, {{y, p1) 1) (b2, {{y, p2)}), (b3, {<y, P3) 1), -+ 1)

The individuals can be either singular or plural. Since individuals are fol-
lowed by assignments associated with them, this structure captures de-
pendency relations between objects. In the case of the distributive inter-
pretation, each parametrized individual is independently evaluated against
predicates. Thus, singular pronouns can be interpreted along each parametrized
individual, which produces an effect of interpretation sensitive to the de-
pendency relation. By introducing such a recursive notion of variable as-
signment, the theory keeps to interpret a sentence as a relation between
assignment functions.

van den Berg (1996a,b) proposed to encode dependency relations by
adopting information states for plurals in Dynamic Plural Logic. In this
approach, formulas are interpreted relative to information states, which
are sets of assignment functions, instead of to assignment functions as in
standard Dynamic Predicate Logic (Groenendijk and Stokhof, 1991) and
Krifka (1996)’s approach. A possible information state for every boy re-
ceived a present may have the following structure, where x and y are again

variables for boys b; and presents p;, respectively.

{{(x, b1), (¥, P} K, b2), (ys p2)}, {(x, b3), (¥, p3)}, -}

103

QUANTIFIER AND ANAPHORA

When distribution over x is involved, predicates are evaluated against each
assignment of information states. The assignment of new values takes
place independently of each assignment function; thus, the variables in-
troduced may be dependent on x. This is the source of dependency.

The main intuition behind these analyses, and also behind the analy-
sis we will present here, is that the dependency relation is introduced by
distributive reading. In general, interpretation of pronouns can be sen-
sitive to linguistically introduced dependency relations between objects:
in Chapter 2, we have seen that this dependency relation is involved in
plural anaphora as well as quantificational subordination cases. The ap-
proaches mentioned above, however, account for only part of these phe-
nomena. In DRT, the copy mechanism is triggered by the resolution of the
plural pronoun they. Thus, it needs additional stipulation or operation to
handle more general cases including quantificational subordination. The
same can be said of approaches by Krifka (1996) and van den Berg (1996b).
van den Berg'’s analysis can account for (4.42) where a subset relation al-

lows reference to a dependency relation.
(4.42) Every boy will receive a' present. Every young boy will open it;.
(4.43) EBvery boy will receive a! present. John will open it;.

In general, however, a semantic link between the restrictor of the univer-
sal quantifier and the subject of the subsequent discourse is not limited to
the subset relation, as in (4.43). Rather, the dependent interpretation in-
volves a more general kind of inference, of which a semantic link in terms
of subset relations is a special instance.

We will show that, in DTS, dependent types are readily provided as
information source of such dependency between objects and can con-

tribute to the context for pronoun resolution. In Chapter 2, we have ex-

104

4.5. Plural anaphora

plained that cases such as (4.42) and (4.43) can be explained in terms of
IT-types in DTS setting. In Section 4.4, we have shown that the seman-
tic representation of every on is analogous to I1-types, which captures the
dependency relation.

Below, we provide a lexical entry of plural pronoun they and show that

we can account for dependency interpretation in plural anaphora.

4.5.3 Plural pronoun

Let us take (4.40) as our working example, which is repeated here as (4.44).

(4.44) Three! students wrote a® paper.

They, sentit, to L&P.

The first sentence that involves three is represented as follows.

- n : Nat
n=3
x : entity
u : student(x)
(4.45)
fiMg — y : entity
v : paper(y)
write(x, y)

injection, (f)
Here, f is a function that returns tuples. Each of the tuples involves two
entities, one is a student and the other is a paper, that come together with
the proof that the student writes the paper. In other words, (4.45) repre-
sents the dependency between students and papers.

The pronoun they in the second sentence is represented by an under-

specified term, as other anaphoric expressions are. Singular pronouns

105

QUANTIFIER AND ANAPHORA

such as it or he are represented in terms of @-terms annotated with type
entity, which ensures that the term will be eventually replaced with some
entity in the context. In contrast, the semantic representation of they is
defined as referring to multiple entities in the context.
Therefore, we want to have a type as follows to annotate the @-term:

- k : Nat -
(4.46) k22
f : My — entity

injection (f)

Let us write this type £L for short. With £L, we can give a semantic rep-

resentation of they as follows.
(4.47) Av. (Z : Mﬂl(@i;;pg)) — v((mymona(@; :: PL))z),

Here, m(@; :: £L)is a cardinal number and 7172 (@; :: PL) is a function
M, — entity. The semantic representation of they analyzed as introduc-
ing distributive interpretation.'?

By assigning CCG category S/(S\NP) to they, it is straightforward to
obtain the following semantic representation for the second sentence of

(4.44). The Underspecified term @, is introduced by they and @, by it.
(4.48) (z: My @:pr)) — sendItTOL&P((n172m2(@) :: PL))z, @, :: entity)

After combining two sentences by the progressive conjunction, anaphora
resolution takes place. From the proof term S; of the first sentence (4.45)

, one can construct the following proof term for @;:

(4.49) (3, P3spr AX.m((M1727251)X), Pinjection(Lx.x (m17ama(S1)x)))

12 Some may prefer to introduce distributivity separately from they. As the sentence
needs to receive distributive reading in any way, it is not harmless to assume this lexical

entry with respect to our current purpose.

106

4.5. Plural anaphora

Here, p;., is a proof that 3 is greater or equal to 2. The term mym72S is a
function introduced by the first sentence, who has type M3 — (x : entity)x
Awhere A is the complex =-type. Recall that, given f : My — (x : entity) X
Aand i : injection, (f), we can obtain Ax.mf(x) : My — entity and
i’ : injection (Ax.71f(x)) (see Section 4.1.5). The third and fourth com-
ponent of (4.49) are constructed from 7y m272(S1) in this way.

When @; is resolved with the proof term shown in (4.49), one obtains

the following intermediate semantic representation.

- n : Nat
- n=3
- — x : entity
5 - — u : student(x)
(4.50) f: M — y : entity
v : paper(y)
write(x, y)
] injectionﬂ;(f) 1]
_ (z : M3) — sendItTOL&P (11 ((m17127m2851)z), @, :: entity) |

Therefore, by resolving @, with n;7om)((m17127281)2), one can obtain
the fully-specified representation of (4.44). After the anaphoraresolution,
the first and second arguments of sendItToL&P both involve (1727251)z.
This is a proof that a student x write a paper y. As the first and second
arguments of sendItToL&P refer to the entities corresponding to x and
y, respectively, the two arguments satisfy write which is witnessed by the
proof (m1mam281)z. In this way, the semantic representation captures the
dependency relation between students and papers.

Note also that, as we have discussed in Section 4.4, the universally-

quantified entities in the second sentence are only those who were men-

107

QUANTIFIER AND ANAPHORA

tioned in the first sentence, whose cardinality is three. This is because L
is to look for not entities themselves but a function introduced by the pre-
ceding sentence. As the quantifier three introduces a function from M3 to
the X-type, we are able to refer to only those three students as is intended.

The same analysis applies to the case where the quantifier of the first
sentence introduces bijection, . Since bijection, is defined as a con-
junction of injection,, and surjection, , one can construct an object of
PL also from such sentences.

An advantage of the proposed DTS analysis is that dependent types
are readily provided as structures that can capture dependency between
objects: from the proof p of (x : A) X B, we can obtain m;p : A, which is
accompanied by the witness m2p : B(r; p); from the proof f of (x : A) — B,
we can obtain the witness f(p) : B(p) for any p : A. Thus, by following the
standard dynamic conjunction operation and anaphora resolution pro-
cedure as proof search, those dependency relation encoded as proofs can
naturally contribute to anaphora resolution in general, including plural

anaphora and quantificational subordination.

108

Chapter 5

Quantifier and Inference

In this chapter, we will show that the semantic representations of quanti-

fiers defined in the previous chapter capture their inferential properties.

5.1 Entailment of quantified sentences

5.1.1 Inferential properties

As we have mentioned in the earlier chapter, quantifiers exhibit various
inference patterns in relation to the sets they associate with. Conserva-
tivity is a general property that all natural language quantifiers have. It
is model-theoretically formulated as follow (see, e.g., Peters and Wester-

stahl, 2006).

Quantifier Q is conservative if and only if, for all universe M and

A, B C M, Qu(A B) © Qu(A, AN B)

Monotonicity is another well-known phenomenon. There are four types

of monotonicity: right upward (MoN 1), right downward (MON |), left up-

109

QUANTIFIER AND INFERENCE

ward (T MON), and left downward (| MON). Here we repeat the definition

of right upward monotonicity.

Quantifier Q is Right upward monotone (MoN 1) if and only if, for all M,

AC M,and B C B’ C M, Qu(A, B) implies Qy(A, B').

For our purpose, these properties need to be defined from both proof-
theoretic and dynamic perspective (Kanazawa, 1994). We first consider
conservativity and right upward/downward monotonicity. We can for-

mulate them as entailments in dependent type theory.

Definition 14 (Conservativity). A quantifier Qis conservative ifboth judge-

ments

Ip: QA B)F Q(A, (u : A) X B) true
[,p:Q(A (u:A)xB)+ Q(A, B) true

hold, where
[+ A: entity — type
I, x : entity, u : A(x) + B : entity — type
'+ Q(A, B) : type
Definition 15 (Right upward monotonicity). A quantifier Q is right up-
ward monotone if the judgement
[, p:Q(A B), g : (x: entity) — (u: A(x)) = B(x) — B'(x) + Q(A, B') true

holds, where

[+ A: entity — type
I, x : entity, u : A(x) + B : entity — type
[, x : entity, u : A(x) + B’ : entity — type
'+ Q(A, B) : type

110

5.1. Entailment of quantified sentences

In our proof-theoretic setting, the meaning of a sentence is justified
by the entailment of its semantic representation. In this section, we will
provide a proof that these entailment relations hold for the semantic rep-
resentation of quantifiers given in the previous section.

When human judge entailment relations between sentences, we focus
on the particular reading where the interpretation of anaphoric expres-
sions is already fixed. This means that anaphora resolution has already
taken place, in other words, the judgement does not contain any @-term.
Therefore, for some strong determiner Q, we can assume that there ex-
ists some proof in the context which can resolve the existential presup-
position of both the premise and the consequence. Also, as shown in the
above definitions, the scope B can contain the proof term u of the restric-
tor A as a free variable, if B contained an @-term that has been resolved by
the proof of A. This is the dynamic setting which has been also explored
in the context of DPL (Kanazawa, 1994).

When the quantifier Q is either most, at least n, at most n, or exactly n,
our semantic representations of quantified sentences, which correspond

to 3-reading, can be schematically written as follows.

- k : Nat
Rk, N)
X : entity 5.1)
My — | | u:Ax)
B(x)
| | bijection, f

We call this type Q7. Here, N is a natural number and R is a binary

relation between natural numbers. They are determined with respect to

111

QUANTIFIER AND INFERENCE

type N R quantifiers monotonicity

Qiost * = most MONT
Qlluy n = atleastn TMONT
Qi voss N < atmostn IMON|
Q7 et y, n = exactlyn neither

Table 5.1: Relation between the quantifier types and inference. If the
number N changes depending on the restrictor’s cardinality, it is indi-

cated by x.

the choice of the quantifiers. Table 5.1 summarize the relations between
the quantifiers and the combinations of R and N used in their semantic
representations. All of them are conservative, but they exhibit a different
pattern of right monotonicity: when R is the >-relation, the quantifiers
are monotone increasing; if it is the <-relation, the quantifiers are mono-
tone decreasing. The choice of the specific number N is, for instance, 3
for at least three. For the quantifier most, N is a natural number that cor-
responds to more than half of the restrictor’s cardinality. As we have ex-
plained in the previous chapter, the number is obtained through the pre-

supposition resolution.

5.2 Conservativity

The proof of conservativity is straightforward, as the following two are
mutually deducible for any A, B : type regardless of the choice of the par-

ticular k.

112

5.2. Conservativity

x : entity
x : entity
v:A(x)
fiM — u: Ax) g:M; —
4k u: A(x)
B(x)
B(x)
bijection, (f)
- bijection, (g)

Thus, we can always construct a proof of Q(A, (u : A) x B) from a proof of
Q(A4, B), and vice versa.
We will prove only the case of type Q7. The theorem on their conser-

vativity is formulated as below.

Theorem 2: Conservativity (Type Q7 quantifiers)

k : Nat

k : Nat -
— r:R(k,N)
r:Rk,N) r
. X : entity
X : entity
true -+ v:A(x) true
FiMe— | | u:A(x) g:M; —
u: Ax)
B(x)
B(x)
bijection, (f)
- bijection, (g)

holds under the context I', where

' + A: entity — type
[, x : entity, u : A(x) + B : entity — type
v ¢ fv(A)U fv(B)

Proof. The proof of the left-to-right direction is given as follows. When
the type on the left side is inhabited, there exists a proof of this type. We

write it M.

From M, we can extract its part by =E. We write the letters shown below

113

QUANTIFIER AND INFERENCE

in the left hand side for the proof terms in the right hand side.

k= mM : Nat (5.2)
r= mroM : R(k, N) (5.3)
f= mmmM M — (x: entity) X (u : A(x)) X B(x) (5.4)
b = moman2M : bijection, (f) (5.5)

Let us begin with constructing the function g. Assume y : M. By ap-

plying IIE to y and f, we get
f(y): (x : entity) X (u : A(x)) X B(x) (5.6)

By applying ZE several times, we get each of the following terms.

n1f(y) : entity (5.7)
maf (v) + { (u 2 A(x)) X B(X) }r, £1)/x] (5.8)
mimaf(y) : {A) Yy po)/x] (5.9)

Here, the notation { A(x) },/,; means that every occurrence of the free vari-
able x in A is substituted with a.

By 21 with (5.9) and (5.8), we get

v:A(x)
(mumaf(y), maf(¥)) : [.] (5.10)
(W ACNX B |]
By =1 together with (5.7), we obtain
X : entity
(mif), (mmaf (), maf(Y))) | | v A®x) , (5.11)

(u : A(x)) X B(x)

from which, we get the following by discharging the assumption.

x : entity

(5.12)

Ay (mf (), (mimaf (y), m2f () : Mk — | | v A(x)

(u : A(x)) X B(x)

114

5.2. Conservativity

We write this function g.

Next, we prove that injection, (g) and surjection, (g) hold.

Giveny : My, y’ : My, if m1g(y) = m1g(y’) holds, nr1 f(y) = n1f(y’) holds
because 1y.m1g(y) = Ay.m1 f(y) holds according to (5.12). As injection,, (f)
is true by (5.5), y = y" holds. Thus, we can conclude that injection, (g)
holds.

To prove surjection, (g), assume z : (x : entity) x (v : A(x))x(u : A(x))X

. y - Mg y Mg
B(x). we will prove that true, namely, true
mz =mg(y) mz =mf(y)
holds.
From z, we obtain:
m1z : entity (5.13)
mz t{ (v 1 A(x)) X (u : A(x)) X B(X) }Hr,z/x] (5.14)
memzz t{ (u 1 A(x)) X B(x) }[nlz/x][mﬂgz/v] (5.15)

Asv ¢ fV(A)UfU(B)’ { (u : A(x)) X B(x) }[nlz/x][rr]ngz/v] = { (u : A(x)) X B(x) }[rr]z/x]'
Thus, by applying 1 with (5.13), we obtain

x : entity
(M2, MoM022) - (5.16)
(u : A(x)) X B(x)
x : entity y : Mg
From by of (5.5), wegetmab; 1 | 2" : — :
(u : A(x)) X B(x) mz' =mf(y)
. . : y : Mg
Thus, by applying I1E with 72b and (5.16), we obtain our goal .
mz =mif(y)
We can prove the right-to-left direction in an analogous way.
End of proof.

Note that the proof above is independent of the types such as entity
and M;..

115

QUANTIFIER AND INFERENCE

In the proof above, we are careful to handle the variables when prov-
ing (v : A(x)) X (u : A(x)) X B(x) from (u : A(x)) X B(x) and vice versa. This is
because there may be a dependency between A and B, as anaphora reso-
lution has already taken place. Specifically, the proof above can account

for the conservativity of a sentence involving anaphora.

(5.1) Most farmers who own a! donkey beat it;.
& Most farmers who own a donkey are farmers who own a! don-

key and beat it;.

It is also straightforward to prove a theorem where B depends on v not on
u, in other words, only v occurs free in B. Such a case corresponds to the

following entailment.

(5.2) Most farmers who own al! donkey beat it;.
& Most farmers who own a! donkey are farmers who own a don-

key and beat it;.

5.3 Proofs of right monotonicity

5.3.1 Overview of the proofs

The proof of right monotonicity is more tricky. Let us first consider right
upward monotonicity.

Our intuition behind the right upward monotonicity of most is that the
originally established relationship between A and B is preserved even if B
is enlarged to B’. In other words, we are interested in only the preserva-
tion of the relation between those numbers. As we adopt bijection in the
semantic representation, however, we need to construct a new bijection

that extends B to B’, which gives the corresponding specific numbers.

116

5.3. Proofs of right monotonicity

X : entity
X : entity

fiMg — g:Myu—||u:A

B/
bijection, (g), m < k

bijection,, (f)

(1) || Theorem 3 Theorem 3 |} (6)
’ . . * u:A
f': M — {x : entity | A} g :M,, — {x: entity | ;
bijection (f’) B
bijection (g’), m < k
(2)|] Theorem 4 Theorem 4] (5)
A A A
7 My — {x: entity | u:Allw u:A g” :M,, — {x: entity | u:A
B B B’
bijection (f”) bijection (g”), m < k
(3)| Theorem 5 Theorem 10 | (4)
A A
f* My — {x: entity | u:A W {x : entity | u:A
B’ B
bijection (f*)

Figure 5.1: Diagram showing the proof steps of Theorem 11.

Therefore, we will carry out the proof in two steps. In the first step, we
assume the finiteness of the restrictor and show that its part, (x : entity) x
(u : A(x))xB’(x), is also finite with respect to entity. This proof will give the
cardinal number of (x : entity) X (u : A)x B’. In the next step, we will prove
that the number satisfies the expected large/small relation with respect

to the restrictor.
The proof process for the first step is illustrated in Figure 5.1.

The step (1), Theorem 3, concerns the mutual conversion between

bijection, and bijection. For this theorem, we introduce subset types (Nord-

strom et al., 1990; Jacobs, 1998). We use the subset type for the transition

117

QUANTIFIER AND INFERENCE

Formation rule]
x: Al
A:type B(x) : type F
G A BO)}: type V1
Introduction rule
M:A N :B[M/x] hr

ig(M) : {x:A|B(x)}

Elimination rule (standard)

i

XAl .y:B(x)

M :{x:A|B(x)} N::C(x) B
Nlog(M)/x] ’

wherey ¢ fu(N)U fv(C)

Elimination rules we adopt

M:{x:A|B(x)} M :{x:A|B(x)}

o) :a WE 20M) : Blog)/x] VB
Computation rules
iglop(M)) —pg M og(ig(M)) —g M

Figure 5.2: Inference rules of subset type.

from the X-type to the type consisting only of entities. Figure 5.2 shows

the inference rules. The introduction rule looks similar to that of the -

type. Unlike the X-type, the subset type {x : A | B(x)} consists only of A’s

elements satisfying B, where B is often called specification. A proof of the

specification is used only to confirm the membership of the subset and is

forgotten afterward. This propertyisreflected in the standard elimination

rule. According to the standard elimination rule, when z is an element

of {x : A | B(x)}, we cannot use proof of B(z), even though it is obvious to

118

5.3. Proofs of right monotonicity

hold.

Therefore, we use the abnormal elimination rule here. The elimina-
tionrule on the left is derived from the standard one. The elimination rule
on the right is adopted for using the proof of B(z). As we can not know the
precise proof term, we express it in terms of a constructor. We will cru-
cially use this rule in Theorem 3 and Theorem 5.}

Theorem 4 concerns the inference on the specification of subset type.
Theorem 10 states that if the disjoint union of types is finite, then a type
is also finite. In all the proof steps shown in Figure 5.1, we assume that for
arbitrary P : entity — type, P is a decidable predicate; that is, for every
x : entity, it is either P(x) or —P(x).

We will give the proofs of these theorems in the following sections and
then prove that the quantifiers we have defined satisfy the right mono-

tonicity property as intended in Section 5.4.

5.3.2 Theorem: convertibility of bijection and bijection,

Theorem 3

(1) For any P : entity — type and k : Nat,

x : entity .
[, f: Mg — , by : bijection, (f)
P(x)

[’ My — {x : entity | P(x)}
F true
bijection (f”)

! This rule may disrupt the harmony of the system, as an introduction immediately
followed by an elimination cannot give exactly the same proof of B(z), which means the
system does not satisfy the normalization property. A detailed investigation of the im-

pact on the system is left for future work.

119

QUANTIFIER AND INFERENCE

(2) For any P : entity — type and k : Nat,
T, f: My — {x:entity | P(x)}, b} : bijection ()

bijection, (f)

Proof. (1) The function f’ : My — {x : entity | P(x)} is constructed as

follows.
FiM — x . entity y:Mkl FiM - X . entity y:Mkl
P(x) P(x)
I1E I1E
enti : entit
f): i v f):) y
P(x) P(x)
mf(y):entity nf () Pmi)

ip(mif(y)) : {x : entity | P(x)}
Ayip(mif(y) : Mg — {x : entity | P(x)}

Next, we prove that it is an injection. Assume y : My, y’ : My, and

w ip(mf () = (centitylpo)) P11 (V)
We have

reflentity (0p (ip (111 () : 0p (ip (M1 (1)) =entity op(ip(m1f(y))). (5.17)

By substitution with u, we get?

P15 (reflentity (0p (ip (r1£(1))))) : 0p(ip (11 (1)) =entity or (ip (71 (¥"))), (5.18)

which is computed to

plS(reﬂentity(OP (ip(mf () i mf(y) =entity mf(y) (5.19)

2 By the bold face p, with subscripted index, we indicate that we use the theorems or

derived rules presented in the appendix.

120

5.3. Proofs of right monotonicity

As f satisfies injection, (f), we conclude thaty = y” holds.

Next, we will prove that the function is a surjection. We will prove
Y. Mk . .
_ by assuming z : {x : entity | P(x)}. From z,

Z ={x:entity|P(x)} ip(m1f(y)
we obtain op(z) : entity and ?(z) : P(op(z)) by subset elimination. Hence,

by =1, we obtain

x : entity
(op(2),%(2)) : (5.20)
P(x)
As f satisfies surjection, (f), we have
: enti M
paby iz | Y] S (5.21)
P(x) 1% =entity mf(y)
By applying I1E to (5.20) and (5.21), we get
y « Mg
(m2by)({op(2),2(2))) : : (5.22)
op(z) =entity m1f(y)

We abbreviate the term obtained in (5.22) to w. By applying XE to (5.22),

we obtain

m1(w) : My (5.23)

mo(w) @ op(2) =entity T1f (m1(w)). (5.24)
Now, we have
reﬂ{x;enﬁty|p(x)}(iP(OP(Z))) tip(op(2)) ={x:entity|P(x)} ip(op(2)) (5.25)
By the substitution with (5.24), we get

p15(ref|{x:enﬁty|P(x)} (ip(op(2)))) (5.26)

{ip(0p(2)) = (yentitylpoy PFTW))

121

QUANTIFIER AND INFERENCE

which is computed to

p15(reﬂ{x:entity|P(x)}(iP(OP (2)))) (5.27)

* 2 ={xentity|P(x)} ip(m1f (11 (w))) |

Thus, by applying =1 to (5.23) and (5.27), we finally get the following proof.

. ¥+ Mg
(m(w), plS(reﬂ{x:enﬁtwp(x)} (ip(op(2))))) :

Z ={x:entity|P(x)} ip(m1f(y))

(2) The proof for the other direction is analogous to (1). The function

x : enti

f:M; — is constructed as follows.

P(x)

[’ Mg — {x :entity | P(x)} y:M ! [’ Mg — {x :entity | P(x)} y:M !
f'iy): {x : entity | P(x)} f'iy): {x : entity | P(x)}

or(f) : entity ° o) Pe o
x : entity
Cp(FN 2"
P(x)
17,1
x : entity

Ay Lop(f/(1), 2(f'()) : My —
P(x)

We show that injection, (f) holds. Assume y : My, y’ : My, and u :
op(f'(¥)) =entity OP).

We have
ref {x:entity|P(x)} (ip(p (F' () (5.28)
Hipp(F/(1)) = rentitylpx)) 1P (f'(¥)))
By substitution with u, we get
P15 (reﬂ{x:entity|P(x)} (ip(op (f' (M) (5.29)

ip©p (1)) =(centitylpo)) PP (D),

which is computed to

p15(ref|{x:entity|p(x)} (|P (OP (f/(y))))) : f,(J/) :{x;entity|P(x)} f/(y,) (5’30)

122

5.3. Proofs of right monotonicity

As f’ is an injection, we conclude that y = y’ holds.

M
Next, we show that surjection, (f) holds. We prove vk
mz = op(f'(y))
. x : entity
by assuming z : .
P(x)

From the assumption, we get 7r; z : entity and 72z : P(m;z) by 2E. Thus,

by subset introduction, we obtain
ip(m12) : {x : entity | P(x)} . (5.31)

As surjection (f’) holds, we have

M
mobs @ (2 : {x :entity | P(x)}) — -k . (5.32)
z=f"(y)
By applying IlE to (5.31) and (5.32), we get
. Y+ Mg
(maby)(ip(mi2)) 2 | (5.33)
ip(r12) = f'(y)

We abbreviate the obtained proof term to w’. By applying £E, we obtain

mw’ : My (5.34)
mow' :ip(myz) = f'(muw’) (5.35)

Now, we have
reflentity (0p (ip (712))) : 0p(ip(712)) =entity op (ip (712)) (5.36)

Thus, by substitution with (5.35), we get
P15 (reflentity (0p (ip (12)))) : 0p (ip(712)) =entity op (f'(mw’)), (5.37)
which is computed to

P15 (reflentity(0p (ip (112)))) : M1z =entity op (f'(m1w")). (5.38)

123

QUANTIFIER AND INFERENCE

Therefore, by applying =1 to (5.34) and (5.38), we finally get the follow-

ing proof.

y + Mg

(mw’, p15(reflentity (op (ip (712)))))
mz = op(f'(y))

End of proof.

5.3.3 Theorem: subset types with equivalent specification

Theorem 4

Forany P, Q : entity — type and k : Nat,

T, f: My — {x :entity | P(x)}, by : bijection (f),

My — {x: i
t: (x : entity) — (P(x) & Q(x)) + & ¢ {x entity | Q(x)} true
bijection (g)

Proof. Webeginwith constructinga function of My — {x : entity | Q(x)}.
Lett; be of type (x : entity) — P(x) — Q(x)and #, be of type (x : entity) —

Q(x) — P(x). We can construct the function as follows.
f: M > {x:entity | P(x)} y:My
() : {x : entity | P(x)}
op(f(y)) : entity

e f: (x:entity) — P(x) - Q(x) _ f(): {x: entity | P(x)}

nor () : PO () = Qor () " 2Gon peGom |

op(f (y)):: entity (1P (FN) CUG)) : Qlop (F()) W
iQlop(f(y)) : {x : entity | Q(x)}
Ay.iqop(f(1)) : My — {x : entity | Q(x)}

We next prove that 1y.ig (op (f(y))) is a bijection.
To prove injection (1y.ig(op(f(¥)))), we assume y : My, y’ : M, and
u igp (F(¥))) = (rentitylow) ier(F(Y')) and show that y =y, y’ holds.

From f : My — {x:entity | P(x)} and the assumptions y and y’, we

124

5.3. Proofs of right monotonicity

have:

fly): {x : entity | P(x)}
(') : {x : entity | P(x)}

With f(y), ('), and u : ig(op(f(¥))) = {x-entity|Q()} io(op(f(y'))), it fol-
lows that f(y) = (wentitylp()} S (V) holds by Theorem 28 (see page 210).

Therefore, as f is an injection, we conclude that y = y’.

To prove surjection (1y.ig (o (f(¥)))), we assume z : {x : entity | Q(x)}
Y+ Mg
and construct a proof of _
Z = {xentitylo()} 1@ P (f(¥)))
By the derivation,

t:
(x : entity) 0g(2') : entity
— Q(x) = P(x)

. HEz : {x : entity | Q(x)}
t2(0q (2),) , 2@): Q0g@)
2’ {x : entity | Q(x)} 1 Q(oq(2") — P(oq(2))

0o (') : entity {}E (22(00(21)) (2(2)) : P(0g(2")) nr e

{}E:

by : bijection (f)
ma(by) : surjection (f)

def
ﬂg(bf) . .
in(0g (NS () : {x entity | P(x)) = {; ety | PG
z = {x:entity|P(x)}) E
M
(rab)ipoGENFON: |
ip(0g(27) = {xentity|P(x)} f»)
we obtain
. , Y. Mk
(maby)(ip(og () f(y)) : _ ,) (5.39)
ip(0g(2") ~{x:entity|P(x)}) |
We write this w. By applying =E, we get
mw . Mk (5-40)
mow *ip(0Q(2")) ={ entityp()} S (M1W) (5.41)

125

QUANTIFIER AND INFERENCE

Now, the following holds.
refl 2 ig(op(ip(0g(2)))) = [xentitylo()} 1@ ©p(ir(0g (z"))) (5.42)
With (5.41), we get the following formula by substitution.
refl +iq (0p (ip (00 (2)))) ={ entityjox)} 1@ 0p (f(m1w))) (5.43)
Asig(op(ip(og(2))) =p z’, we get
refl : z’ = {xeentity|Q(x)} ig (op (f(mw))). (5.44)
Therefore, by applying =1 with (5.40) and (5.44), we can construct the proof:

M.

(), refly s | 7 (5.45)

Z = {rentitylQ()} 1@ P (F(¥)))

End of proof.

5.3.4 Theorem: subset types with disjoint specification

Theorem 5

For any P, Q : entity — type and k : Nat,

[, ¢ (x:entity) - P(x) - Q(x) > L,

f My — {x:entity | P(x) W Q(x)}, by : bijection (f)

f*: Mg — {x: entity | P(x)} ¥ {x : entity | Q(x)} e
bijection (f*)

F

Proof. Wefirstconstructafunction thathas type M, — {x : entity | P(x)}w
{x : entity | Q(x)}.

126

5.3. Proofs of right monotonicity

Assume y : M. With f, we obtain f(y) : {x : entity | P(x) & Q(x)}, from
which we get the following proofs by the subset elimination rules (we ab-

breviate Ax.P(x) W Q(x) as PQ.
OpQ (f(y)) . entity (546)

() Plopo(F(¥)) ¥ Qopo (f())) (5.47)

By (5.47), proof can be divided into two cases, (i) and (ii):
(i) Assume z : P(opq(f(y))). We get the following by {|}I together with
(5.46).

ip(opq (f(1))) : {x : entity | P(x)} (5.48)
By wi,
inl(ip(opo (f(¥))) : {x : entity | P(x)} C) {x : entity | Q(x)} (5.49)

(i) Assume z : Q(opo(f(y))). We get the following by {|}I together with
(5.46).

io(0po(f(¥)) : {x : entity | Q(x)} (5.50)
By wi,
inr(ig(0pq(f(y))) : {x : entity | P(x)} v {x : entity | Q(x)} (5.51)
From (i) and (ii), by wE, we obtain

case 2(f(y)) of (Az.inl(ip(0pq (f(¥)))), Az.inr(ig (opq (f()))))
: {x : entity | P(x)} C {x : entity | Q(x)} (5.52)

Thus, by applying 11 to y : My, we obtain the function

Ay.case 2(f(y)) of (Az.inl(ip(0po (f(¥)))), Az.inr(ig (0pq (f(¥)))))
: M — {x:entity | P(x)} ¥ {x : entity | Q(x)} . (5.53)

127

QUANTIFIER AND INFERENCE

We abbreviate the function as Ay.case ?(f(y)) of (1z.L(y), 1z.R(y)).
Next, we will prove that (5.53) is an injection. We assume y : M and

y’ : My, and show that the following holds.

case ?(f(y)) of (1z.L(y), 1z.R(y)) = case 2(f(y")) of (1z.L(y’), 1z.R(y"))

—)V =M y
(5.54)

By ?2(f(y)) and ?(f(y)), which have both the type {x : entity | P(x)} @
{x : entity | Q(x)}, the proof s divided into four cases.

1. caseinl(t) of (1z.L(y), Az.R(y)) = case inl(t’) of (Az.L(y’), 1z.R(y"))

— Y =M y,

2. caseinl(z) of (1z.L(y), Az.R(y)) = caseinr(t’) of (1z.L(y’), 1z.R(y"))

—y=m Y

3. caseinr(t) of (1z.L(y), Az.R(y)) = case inl(¢’) of (Az.L(y’), 1z.R(y"))

— Y =M y,

4. caseinr(t) of (1z.L(y), A1z.R(y)) = case inr(t’) of (1z.L(y’), 1z.R(y"))

—>y=m Y

In cases 2 and 3, the equation in the antecedent clause leads to contra-
diction as their canonical form is different (see Theorem 25 on page 204).
Thus, we can apply LE to derive the consequence.

In case 1,

case inl(¢) of (1z.L(y), Az.R(y)) = case inl(¢’) of (1z.L(y"), 1z.R(y"))
L(y) = L(y")
inl(ip(opq (f(¥)))) = inl(ip(opq (f(¥")))) (5.55)

128

5.3. Proofs of right monotonicity

As Ax.inl(x) is an injection (see Lemma 20 on page 200),

ip(0pg (f(¥)) =iplopo(f(¥')) (5.56)

By Theorem 28, we can eliminate i and o, so as to get f(y) = f(y’). As f is
an injection, we can conclude that y = y” holds.

The proof of the last case, 4, is similar to case 1.

case inr(t) of (1z.L(y), 1z.R(y)) = caseinr(t’) of (1z.L(y’), 1z.R(}"))
R(y) = R(y")
inr(iq (opo (f(¥)))) = inr(ig(opo (F(¥'))) (5.57)

Again, because Ax.inr(x) is an injection (Lemma 21) and we can eliminate
i and o (Theorem 28), we obtain f(y) = f(y’). Thus, y = y’.

By combining cases 1 to 4 above and applying wE several times, we can
conclude that (5.54) holds.

Lastly, we will prove that (5.53) is also a surjection. We assume z :
{x : entity | P(x)}w{x : entity | Q(x)} and prove

z = case 2(f(y)) of (1z.L(y), 1z.R(y))
By z, the proof can be divided into two cases, either itisinl(z’) orinr(z’)

for some z’.

(D Assume z’ : {x : entity | P(x)}. We will give a proof term of

y i Mg

(5.58)
inl(z") = case 2(f(y)) of (1z.L(y), 1z.R(y))

First, by the following derivation,

z’: {x : entity | P(x)}
by : bijection (f) 2(2') : P(op(z')) {l}E?q z’: {x : entity | P(x)}
. 15 e &) ¥ Qlor) Y op(2) - entity
v ir(0p(2) : {x : entity | P(x) & Q(x)}
z=f(y)

{I}E

(m2by) : (2 : {x : entity | P(x) W Q(x)}) — 1

E

My
(rabipg(op () : [y ¢

ipg(op(2) = {xentity|P(x)#Q(x)} f)

129

QUANTIFIER AND INFERENCE

we construct

. , y Mg
(m2by)ipg(op(2))) :) (5.59)

ipg(op(2)) ~{x:entity|P(x)¥Q(x) } f)

We abbreviate (72bs)(ipg (0p(2'))) as w. From (5.59), we obtain

muw : Mk (5.60)

mow 1 ipg(0p(2)) =, entitylp(rwow)} f(T1W) (5.61)

Now, let us prove

(f(mw)) = 2(f(mw))
— inl(z") = case ?(f(m1w)) of (Az.L(myw), Az.R(mw)).
(5.62)

Onceitis proved, by applying I1E with (5.62) and refl : ?2(f (mw)) = 2(f(m1w)),

we obtain
inl(z") = case ?2(f(mw)) of (Az.L(mw), Az.R(mw)), (5.63)

from which, by applying =1 together with (5.60), we obtain our goal, (5.58).
The proof of (5.62) is divided into two cases, with respect to ?(f(rw)) :

P(opq(ipq(op(27)))) W Q(opq(ipg (0p(2)))).

(I-1) Assume v : P(opq(ipg(op(2')))). We will prove
2(f(mw)) = inl(v)
— inl(z") = case ?(f(m1w)) of (Az.L(miw), Az.R(mw)).

By assuming ?(f(mw)) = inl(v), the following equation holds. Here,

130

5.3. Proofs of right monotonicity

(5.68) is obtained by the substitution with (5.61).

case 2(f(mw)) of (Az.L(mw), 1z.R(m w)) (5.64)
= caseinl() of (Az.L(mw), Az.R(m1w)) (5.65)
= L(mw) (5.66)
= inl(ip (0po (f (11w)))) (5.67)
= inl(ip (opq(ipq(0p(2))))) (5.68)
= inl(z’) (5.69)

(I-ii) Assume v : Q(opq (ipg (op(2")))). We will prove

2(f(mw)) = inr(v)
— inl(z’) = case ?(f(miw)) of (Az.L(mw), Az.R(mw)).
(5.70)

As Q(opqglipg(0p(2)))) = Q(op(z’)), we have v : Q(op(z’)). On the
other hand, as we have assumed z’ : {x : entity | P(x)}, we also have
2(z")P(op(2)). Thus, from the assumption ¢ : (x : entity) — P(x) —
Q(x) — L, we obtain a contradiction. Therefore, by LE, we can de-

duce (5.70).

By combining (I-i) and (I-ii), (5.62) is proved.
(I) The proof of the other side can be given analogously by assuming
z': {x : entity | Q(x)}.
From (I) and (II) above, by wE, we obtain a proof of
¥+ Mg
z = case 2(f(y)) of (1z.L(y), 1z.R(y))

Therefore, we conclude that a proof exists for

y Mg
z = case 2(f(y)) of (1z.L(y), 1z.R(y))

(z: {x : entity | P(x)} @ {x : entity | Q(x)}) — [

131

QUANTIFIER AND INFERENCE

End of proof.

5.3.5 Lemma: segmentation of a type

We are to prove the theorem that says that if some type is finite, then its

part is also finite.

Theorem

Given A : type, B : type, and k : Nat, if there exists a function f :
M; — A w B such that bijection (f) is true, there exists a function

g : M,, —» Aforsome m < k such that bijection (g) is true.

Here, g is a function whose co-domain is A, which is a part of the co-
domain of f. We want to construct such a function from f. However, it is
impossible unless we know, for each of the elements in My, either it goes
to A or B. Therefore, here we consider an additional function, /. The func-
tion h is designed as follows: for each element in My, if f maps it to an

element of A, h maps it to M,,;; otherwise, h maps it to M,, (Lemma 8).

To prove this inductively, we use M-, where k” < k. There always exists
an injection from My to My, that can connect all the element in M, with

the first k’ elements in M. We formulate this as Lemma 6.3

3 Hereafter, we use the abbreaviated notation (x, x’ : A) — Bfor(x: A) - (x' : A) - B

if there is no confusion.

132

5.3. Proofs of right monotonicity

Preparation

, [My — Moy,
Lemma6: I + (k' : Nat) — (n : Nat) — true
injection (f)

Proof. Given k’ : Nat, we prove the consequence by induction on n :

Nat.

(1) First we give the proof for the case n = 0. We can prove the existence

of a function of My — My by the identity function:
idv,, : My — M.
Now, for any x,y : My, if idwm,, (x) = idwm,.(y) then x = y. Hence, we have
the following proof, which we write Liay,, -
Liay,, : injection (idw,,)
Thus, by =1, we get

. [iMp — Mpyo
(idm,) liay,,) : iy (5.71)
injection (f)
(2) Assume that we have the proofu : (f’ : My — My,)Xinjection (f7)

for n’ : Nat. We will give the proof for suc(n’). For any x : M,

(m1u)(x) : M.

By Wi,
inl((myu)(x)) : Mgryp WT.

Hence, by 111,
Ax.inl((miu)(x)) : Mgy > Myrgpr W T,

133

QUANTIFIER AND INFERENCE

As My s W T = Mguckr+n) = Mirisuc(nry
Ax.inl((m1u)(x)) : Myr = My isuc(n)- (5.72)

From IH, we have mou : injection (r,u). Also, injection (Ax.inl(x)) holds
for Ax.inl(x) (see Lemma 20 on page 200). As the composition of two in-
jections is also an injection (see Lemma 22 on page 201), we can obtain a

proof of injection (Ax.inl(mu(x))). We write it I ini((x,u)(x) as below.
I/lx.inl((mu)(x)) . injection (/1x|n| ((7'['1 u)(x))) (5.73)
By applying =1 to (5.72) and (5.73),

) fll : Mk/ — Mk; (,)
(/1x.|n|((7rlu)(x)), I/lx.inl((mu)(x))) : .. . e
injection (")

Hence, by I17, we obtain

An’./lu.(/lx.inl((nlu)(x)), Iﬂx'in|((ﬂlu)(x))) .
"My — My "t My = Mirssuc(n
(n’:Nat)—> f k k’+ R f k k’+suc(n’)
injection (f’) injection (f”)
(5.74)
Combining (1) with (2), that is, by applying NatE to (5.71) and (5.74),

we get

, , _ [Mg = Mpry
natrec(n, (idm» liay,,), An.du.(Ax.inl(mu)(x)), Lnxinl(Grupeen)) -

injection (f)
for any n and the given k’. Therefore,

, 3 , i f . Mk’ g Mk'+n
Ak ./ln.natrec(n,(szk,,I,-de,), An .Au.(/lx.lnl((nu)(x)),I/lx_in|((,m)(x)))) :

injection (f)

End of proof.

The following judgement immediately follows from Lemma 6.*

“When we apply the same inference rules successively in an obvious way, we will omit

134

5.3. Proofs of right monotonicity

Corollary 7:

i: Mk/ g Mk
'+ (k,k’ :Nat) > (u: k' <k)— true
injection (i)

Proof. The followingderivation shows the construction of the proof, where

p stands for the proof of Lemma 6.
—_—1

. n : Nat (Lm6)
k=k +n P(k Nat)
: Na
KNat' — mu:Nat ot LMo M
- VL k’+n _1
— (n : Nat) — . Nat
injection (i) P
Mo oM IE* k=k+n
r: k' k’+my(u XE
(k)1 () :) o) k= K+ mu) R
injection (i)

conv
[i: Mk/ i Mk
k : Nat P (1 (w)) :

injection (i)

I, 1*
i: Mkr g Mk
Ak. Ak Au.p(k’)(m(u)) : (k, k" :Nat) » (u: k' < k) —

injection (i)

End of proof.
We have proved that we can construct an injection from My to My

whenever k' < k holds. For simplicity of notation, we let iy < stand for

such an injection of type My, — M.

Proof of Lemma 8

We are to construct a function # : My, — M; that we mentioned in the
beginning of this section. The function & maps every element x in My- to
M, if f maps iy <r(x) to an element of A. Otherwise, h maps it to M,,. The

existence of such & is formulated as Lemma 8.

the derivation steps by indicating this by the superscript = next to the inference rules’
label.

135

QUANTIFIER AND INFERENCE

Lemma 8:
I', A:type, B : type +

m : Nat
n : Nat
kK"=m+n

h:Mp - M, wM,

[bijection ()
z:A
[—
(x: M) — Firr<k(x)) =aup inl(2)
z:B
%2 =
(S (i< (x)) =aup inr(2) D

(k, k" : Nat) - (u: k' < k) — (f : My > Aw B) — bijection (f) —

w:M,,]
h(x) =m,,um, inl(w)
w: M,

h(x) =m,,um, inr(w) } 111

true

Proof. Let k : Nat be an arbitrary number. Proof is given by induction

on k’ : Nat.

(1) First, we prove the following formula for the case k’ = 0.

(k :Nat) - (up: 0 < k) > (f : M(k) > Aw B) — bijection (f) —

m : Nat
n : Nat
O=m+n

[1 M(0) = M(m)w M(n)

[bijection ()
(z:A
vy .] ~)
(x : M(0)) — flio<k(x)) =aup inl(2)
z.B

flio<k(x)) =awp inr(z)

Assume k : Nat, u,

s
)

:0 < k,f : M(k) > AW B, bijection (f). The

w: M(m)
h(x) =pm(mysm(ny inlw)
w: M(n)

h(x) =p(mysm) inr(w)

|
|

following derivation holds, where g, and g, are proved below in D] and

D).

136

5.3. Proofs of right monotonicity

Dy

s M(0) — M(0) & M(0)

bijection (1)
_L . (| z:A) [w : M(0)]
q1:0=0+0 qgo: vy) —)
(x: M(0) — flio<k(x)) =awp inl(2) h(x) =pmoysmo) inl(w)
|z:B w : M(0)
" flio<k(x)) =aup inr(2)) - h(x) =pmyem(o) inr(w) ><1
0=0+0
h s M(0) — M(0) w M(0)
bijection (h)
0 Nat " (g1q0) : NERE | wim
(1 M(0) (vl | S o<t (0) =ap inl(2)]) hx) Zoponio) inl@w)]
| z:B w: M(0)
(V ’ [f(i()sk(x)) =awg inr(z)]) - h(x) =m(0)wm(o) inr(w)]
n : Nat H
0=0+n
h:M(0) — M(0)w M(n)
T Nat Natl, © () : bijection (r)
RERE: . w: M(0)
M) (U1 | A GENO)0))(®) Za0p inl(2)) HC3) =nroponacn 1)
|z:B w s M(n)
” F (1 (i(k)(0)(u0)))(x)) =aup inr(z))_) h(x) =pom(n) inr(w)
m : Nat H
n : Nat
O=m+n
h:M(0) > M(m)w M(n)
(0,¢0,{q1, G2))) : bijection ()
| z:A w: M(m)
(x: M) — (Vl | A (GO o)) =aup inl(2)]) ” [h(x) =pmemyom(ny inl(w)]
KX B w: M(n)
| A GEXO o)) =asp inr(2)]) - (x) =m(myom(n) inr(w)]
(5.75)
/.
& :
0:Nat 20§ Nat N0 Nat] -
Nat : type 0+ 0: Nat 0 : Nat 0 0+0=50 Thi
Nat : type reflNac(0) :0+0=0 (Th16)
=Sym

P13(reflNae(0)) :0=0+0

Thus, ¢ in (5.75) is p13(reflnat (0)).
D5
First, as M(0) 2 1, we obtain Az.case,() : M(0) — M(0) & M(0) from

the following delivation.

137

QUANTIFIER AND INFERENCE

Z:1? Lw.l'type
LW 1:type
z L} Az.LW 1 : 1 — type
case,(): LWL
Az.case,(): L —> LWL

wk
I11, 2
1E
I, 1

(5.76)

Second, we show that Az.case,() : M(0) — M(0) w M(0) is a bijection.

By definition,

bijection (1z.case,()) =
surjection (1z.case,())

injection (1z.case,())]

Asinjection (1z.case,()) =(y: L) = (' : L) — (Az.case;())(y) = (Az.case,())(y’) —
y = ', the proof is given by the following delivation.

z' L 2
(¥ : 1) > (Az.case;())(2") = (/iz.casez 0)y') — 2z =y : type
y:iL 1 Az'.(y' 1 L) > (Az.case;())(z") = (1z.case;())(y') = 2’ =y’ : L — type 11, 2
case,() : (¥’ : L) = (dz.case;())(y) = (Az.case;0)(y') = y =y’ Hllf
Ay.casey() : (¥ : L) = (¥ : L) = (Az.case,0)(y) = (Az.case;0)(y') =y =y

On the other hand, the proof is given by the following delivation as
yiL

z' = (Az.case; ())(y)

surjection (1z.case,()) =(z': LW L) —

138

5.3. Proofs of right monotonicity

3 4
z L z L
- : type vl : type
inl(z’) = (1z.case;))(y) inr(z’) = (1z.case, 0)(y)
111, 3)4
——2 Az’ yid ——2 7. yid
Zhid inl(z") = (Az.case, 0))(y) 271 inr(z’) = (Az.case, 0)(y)
1 1 — type 1 1 — type
1E 1E
Zi1lwl 1 case,~() : yid case () : yid
inl(z”) = (1z.case;0))(y) inr(z”) = (Az.case; ())(y)
WE,
y:iL
case z’ of (1z”.case,~(), 1z”.case,~()) :
= (Az.case;0)(y)
11,1
yiL

Az’ .case z’ of (1z”.case,~ (), Az”.case,»()) : (z/: LW 1) —>

= (dz.case; 0)(¥) }
Therefore, by =1, we obtain

(Ay.case (), 1z".case z’ of (12.case,/(), Az’.case,/())) : bijection (1z.case; ().

(5.77)
Third, the following delivation holds.
z:A w: M(O)
vy L g
l flio<k(x)) =aup inl(2) (Az.case; 0)(x) =m()em(o) inl(w) : type
z:B w: M(0)
v -
(’ fio<k(x)) =aus inr(z) D [(Az.case; 0)(x) =pm()sm(0) inr(w) -
(Z:A w 2 M(0) Y
vy i
11 1 fiozk(x)) =awp inl(z) (Az.case; 0)(x) =m(yem(0) inl(w) : L - type
z:B w: M(0)
VoL g
flio<k(x)) =awp inr(z) D (Az.case; ())(x) =p(0)m(0) inr(w)
1E
w : M(0)
v
U Pliee @) =aon inl@) || | (Az.case. 0)x) =woponroy inl(w)
casex() :
z:B w: M(0)
vy
(flio<k(x)) =awp inr(z)]) (Az.case, ())(x) =pm(ywm(0) inr(w) o
z:A w: M(0) Y
vy i
Arcase,): (x: 1) — fio<k(x)) =aws inl(2) (Az.case; 0)(x) =m(0ysm(0) inl(w)
z:B w : M(0)
1273 d
(fio<k(x)) =awp inr(z) D (Az.case; ())(x) =m()wm(0) inr(w)]
(5.78)

Thus, by applying =1 with (5.76), (5.77), and (5.78) in order, we obtain:

139

QUANTIFIER AND INFERENCE

(Az.case; (), ({1y.case, (), 1z’.case 2’ of (12’.case,/(), 1z’.case;-())), Ax.case,())) :

h s M(0) — M(0) & M(0)

- bijection ()
z: A
vy . —
(x . M(O)) N f(ioik(x)) =AWB In|(z)
z:.B
Up . N
(flio<k(x)) =aws inr(z))

This is what g, stands for in (5.75).

w : M(0)
h(x) =p0yemo) inl(w)
w: M(0)

h(x) =ppwm() inr(w)

|
I

(2) Assume that the formula holds for ¥’ = d, i.e., we have the following

proof term JH.

(k:Nat) > (u:d < k) > (f : M(k) - A B) — bijection (f) —

m : Nat
n : Nat
d=m+n

[1 M(@) = M(m)w M(n)

We will prove it for k’

IH :
bijection (h)

z:A
(x: M(d)) > fliasi(x)) =aup inl(2)

z:B
fia<k(x)) =awp inr(z)

exists.

w: M(m)
h(x) =p(mysna(ny inl(w)
w : M(n)

h(X) =pM(mysm(n) inr(w)

(k : Nat) — (u’ : suc(d) < k) — (f : M(k) > Aw B) — bijection (f) —

m’ : Nat
n’ : Nat
suc(d) =m’ +n’
I’ : M(suc(d)) — M(m') ¥ M(n')
bijection (1")
z:A
f(isuc(ay<k(x)) =aus inl(z)
z:B
vy
f(isuc(@ <k(x)) =avp inr(z)

)4
)ﬁ

(Ul
(x : M(suc(d))) —

w: M(m)
R (x) =p(myomy inl(@w)
w:M(n')

R (x) =pm(mryomney inr(w)

suc(d), i.e., the proof of the following proposition

(5.79)

Assume k : Nat, u’ : suc(d) < k, f : M(k) - AW B, and ¢ : bijection (f).

140

5.3. Proofs of right monotonicity

From I'H and these assumptions, by applying I1E several times, we obtain

{'ﬂ(k)(pls(u’))(f)(q) :

m : Nat

[n : Nat
[d=m+n

[b M(d) — M(m)w M(n)
[bijection (1)

(v .
(x: M(d)) —»

lz:A w: M(m)
1 [(ia<k(x)) =avs inl(z) h(xX) =p(myom(n) inl (W)

z:B w : M(n)
flia<k(x)) =awp inr(z) h(x) =p(myom@ inr(w)

where p19(v’) is a proof of d < k obtained from u’ : suc(d) < k and Theo-

rem 19. From the proof above, we obtain each of the following proof terms

by applying XE several times. We write the letters shown in the left hand

side for the proof terms in the right hand side.

m
n
uj
h
uz

us

i (TH (k) (P19 (@))(f)(q)) : Nat
mma(ZH (k) (P19 ())(f)(q)) : Nat
mmama(IH(k)(Pro(w))(f)(q) :d=m+n
mimemama(ZH (k) (P1o(@))(f)(q)) : Mg — M, & M,
mymanamema(IH (k)(P1o(w'))(f)(q)) : bijection (k)
mamamamama(ZFH (k) (P19 () (f)(q)) : (x : M(d)) — -

(5.80)

We let C stand for the proposition in the consequence of (5.79).

m’ : Nat
n’ : Nat

[suc(d) =m’ +n’
W : M(suc(d)) —» M(m')w M(n’)
bijection (1)

(x : M(suc(d))) —

z:A w:M(m')
v —
flisucay<k (%)) =aws inl(2) R (X) =p(mryomny inl(w)

z:B w: M)
122 -
[Gsucay<k (%)) =awp inr(z) W (x) =pm(mryom(nry inr(w)

141

QUANTIFIER AND INFERENCE

We will construct proof terms #, f», and #3 that appear in the following

delivation.
2 2
L Dy Pl P
: z. A z:B
fn:
1 i Flisscta<xinr(0)) | Flisuctrenr()))
z:
) =awp inl(2) =a0p inr(z)
f(isuc(d)sk(mr(()))) D, Dy
=aup inl(2) Tt f:C 3:C
z:.B
W1 flisuca<k(inr((})))
=awp inr(z)
case ty of (Ap'.tp, Ap'.13) : C wE 2
(5.81)
..... 'Hlsabbrematlonfor
z: A z:.B
Ax.C: @ — type
flsuc@ <k (inr(()))) =awp inl(z) flsuc@y <k (inr()))) =awp inr(z)

Henceforth, we will omit the derivation for the trivial case of type infer-

ence.

The intuition behind (5.81) is as follows: now we consider the case
where the function’s domain is extended from M, to Mg,. By the in-
duction hypothesis, we already know which elements in M, are related to
A and which are to B. Thus, we only care about the newly-added element,
inr({)). We again have two possibilities, whether it is related to A or B. This
is shown in the derivation D; below. We will then prove that we can obtain

the consequence in either cases, in D, and Ds.

142

5.3. Proofs of right monotonicity

: yial Aztype : y:B! B:type
AwB type inl(y):AWB _ “AwB:type inr(y):AWB 7IUR
, ! reflawp (inl (1)) 5! reflawp (inr(y))
k : Nat f‘suc(d) . Y S inl () =awp inl(y) Y S inr(y) =awp inr(y)
. = I Xl
0T " Trpe [T (ureflinGnlo)) (. refl o) :
Isuc(a)<k inr(()) : z:A T3 z:B Ta
Mucld)) - M) MGucd) inl(y) =0 inl(z) inr(y) =aws inr(2)
. . . Wlg
fM(k) L AwB ’““‘”j\;((';;“”)' inl((y, reflaup (inl(y)) : inr((y, reflaosinr () :
—E z:A z:A
e 7 inl(y) =s0p inl(2) inr(y) =qop inl(2)
z:B z:B
W)
inl(y) =aup inr(z) inr(y) =awp inr(z) }
, 1

case f(isuc(ay<k(inr(()))) of (Ay.inl((y, reflawg(inl(y)))), Ay.inr((y, reflawg (inr(y))))) :

z:A " z:B
flisuc@y<k(inr(()))) =awp inl(2) [(isuct<k(inr(()))) =awp inr(z)

Thus, #; in (5.81) is:
case f(isuc(ay<k(inr({)))) of (Ay.inl((y, refl4up(inl(1)))), Ay.inr((y, reflawp (inr(y))))).

z: A z:.:B
Ay. @ : AW B — type

z:.B
: type

inl(y) =aws inr(z)

z:A
e
inr(y) =awp inl(z)

Next, we will give D, in the derivation (5.81). For D, we will show

Do_1, Doy, and Dy_3 in

143

QUANTIFIER AND INFERENCE

i Do
fr-3:
Dos (x : M(suc(d))) —
(t2-2-1,12-2-2) : (Ul |z tA)_) w: M(m')]
bijection (') f(isuc(ay<k (%)) =awp inl(2) 7'(X) =p(myom(ny inl@w)

z:B w:M(n)
v —
[isuc(@y<k(x)) =awp inr(z) 1 (x) =p(mryomn) inr(w)

(t2-2-1,t2-2-2), 2-3) :
bijection (1)

z:tA w: M(m')
fisuctay<k(x)) =awp inl(2) R'(x) =pm(mryom) inlw)
(z:B) w:M(n')

V2 —

7N
flisuctay<k(x)) =awp inr(2) (X)) =p(mryom(w inr(w)

s M(sucd)) — M(suc(m)) & M(n) (vl :
(x : M(suc(d))) —

I, {(t2-2-1, t2-2-2), 12-3)) :
K M(suc(d)) — M(m') ¥ M(n')

bijection (1)

(z:A) w:M(m')
vt —
(x 1 M(sucd))) — f(isuc@y<k(x)) =awp inl(z) 1(x) =pmysm(ny inl(@w)

z:B w:M(n')
122 e
flisuc(ay<k(x)) =awp inr(z) 1'(X) =na(myom(w) inr(w)

(5.82)

with which we will be able to provide D, by the following derivation.

144

xI

I

5.3. Proofs of right monotonicity

H Nat : type suc(d) : Nat _
ur:d =Nacm+n reflya(suc(d)) : suc(d) =nar suc(d)

(Th15)

Ax.suc(d) =nat suc(x) :

Nat:type d:Nat m+n:Nat
Nat — type

suc(d) =Nat suc(m + n)

P15(P13(1); reflnac (suc(d))) : suc(d) =nat suc(m + n) =5 ucld) =y suctm) +

conv
§ (5.82)
[WV {({to-2-1, t2-2-2), t2-3)) :

Pi15(p13(u1); reflnac(suc(d))) : suc(d) =nar suc(m) + n R M(suc(d)) — M(m') & M(n')

xI
P15(P13(w1); reflnae(suc(d), (1, ((t2-2-1, t2-2-2), 12-3)))
suc(d) =m’ +n’'

I M(suc(d)) — M(m’) & M(n')

z:1A w:M(m')
[-
flisuc(@<k(x)) =aup inl(2) () =ty inl(w)
z
51

B w:M(n')
vyt —
[lisuc(ay<k(x)) =asp inr(z) R(x) =Mooy inr(w)

H bijection (1)
n: Nat

(x : M(suc(d))) —

n, (P15 (P13 (); reflnac (suc(d)), (W', ({t2-2-1, f2-2-2), 12-3))))
n’ : Nat
suc(d) = m’ +n’
: W M(suc(d)) — M(m')w M(n')
—m Nat_ P
suc(m) : Nat : bijection (1)
(z:4A w: M(m')
v -
(x : M(suc@)) — flisuctay<k (%)) =aup inl(2) R (%) =pmimnum(w) inl(w)
z:B w:M(n')
20 -
flisuc(ay<k(x)) =aus inr(z)) R(X) =pmryomory inr(w)
g
suc(m), {n, (P15 (P13 (11); reflnat (suc(@))), (', ({t2-2-1, t2-2-2), 2-3))))) *
m’ : Nat
n’ : Nat

suc(d) =m’ +n’

R i M(suc(d)) = M(m’) & M(n")

bijection (1")
z:A w:M(m')
vyt -
(x : M(sucd))) — flisuc(ay=k(x)) =aup inl(z) R(x) =pm(mryom() inl(@w)
z:B w:M(n')
vyt -
f(suctayzk(x)) =aup inr(z) W (x) =mimnyomy inr(w)

(5.83)

1)2_1:

h:
ViM@ ' M@ :
— M(m) @ M(n) T U M(m): type ol
—E Wip

h(y") inr(y’)

M(m): type M(n): type Triype T M(n) - type

: M(m)w M(n) tM(m)w T
(Th12) Wi
m 2 7 case h(y’) of (Az.inl(inl(2)), Az.inr(2)) inl(inr(y))
v o © M(suc(m)) © M(n) - M(suc(m)) & M(n)

case y of (1y’.case h(y’) of (1z.inl(inl(2)), Az.inr(2)), Ay".inl(inr(y"))) '

M(sucld)) : type - M(suc(m)) © M(n)

111, 2
Ay.case y of (1y’.case h(y’) of (1z.inl(inl(2)), Az.inr(z)), 1y”.inl(inr(y")))
: M(suc(d)) — M(suc(m)) & M(n)

QUANTIFIER AND INFERENCE

In what follows, h’ stands for the obtained proof term
Ay.case y of (1y.case h(y’) of (Az.inl(inl(2)), Az.inr(2)), Ay .inl(inr(y))).

Dz_zl

To give D,_, in the derivation (5.82), we prove bijection (1’). We construct

proof terms f,_»_; and f»_»_» in the following delivation.
: Droq : Dy 2n
f_p_1 : injection (k') t_»_» : surjection (h’)
(t2-2-1,12-2-2) : bijection (1’)

Do _pq:
Forinjection (i) =g (y : M(suc(d))) — (¥ : M(suc(d))) — h'(y) =m(sucim)yem(n)

W(y') = ¥ =muc@) ¥'» we construct a proof term ,_»_; by the following

derivation.
2 = 1 2 ——4 JE— s
yiM@© Y M@ yiM@© YT yiT2 Y M(d) y:TszrT
i Dapaqyy t D22-1(2) i Do) i Doz
3 f2-2-11) ¢ f2-2-1(2) 5 f-2-13) l2-2-19) *
= WG — W(inlty /G T—— = WG — W GnlrY W Gnr (o)) = B (inr(y”
Mesuc(@) M (inl(y)) = W(inl()) H(inl(y)) = K (inr(y)) Mucgy) ® Moy =k (inl(y)) K(inr(y)) = ' (inr(y"))
— inl(y) = inl(y) — inl(y) = inr(y) — inr(y) = inl(y") —inr(y) =inr(y")
: WE, 4 WE, 6
M(suc(d)) case {' of (Ay".t2-2-1(1), "J"-l‘zf/z—ll(zy) : M(sucd) case f/ of (Ay'.tr-2-1(3), /ly’.tz,?,l/m) :
- type R (inl(y) =psucimpyomn h'(V) - type R (inr () =pmucimyommn b’V
= inl(y) =psuctay V' = inr(y) =msuctay V'
| 1,3 1, s
Ay'.casey’ of (Ay".t2-2-101), A" t2-2-112)) * Ay'.case y’ of (Ay".t-2-13), Ay 12-2-14))
w0 MCuc@) (' : M(suc(d)))
o = W (nl(y)) =psucimyonten B) = inl(y) =ysue@) ¥ = K (inr(y) =msucimyomn) 1) = inr(y) =ssuca) ¥’ -
; WE,
M(su‘c(d)) case y of (1y.Ay’.case y’ of (Ay".ta_p_1(1), Ay" -ta—2-1(2)), Ay.Ay’.case y' of (Ay”.t2-2-13), AY”-12-2-14))) ©
(v : M(suc(d)))
: type

= W) =mesucmyemm F'Y) = ¥ =meuc@) ¥’

Ay.case y of (Ay”.Ay".case y’ of (Ay".tr-2-1(1), AY" l2-2-12), Ay Ay’ case y’ of (Ay" 12213, AY"-t2-2-14))) *
(v s M(suc(d))) = (y" : M(suc(d))) = h'(y) =msuctmpemn) B'(Y') = ¥ =mesucy V'

5.3. Proofs of right monotonicity

The following term that is at the bottom of (5.84) corresponds to f,_,_;.

Ay.casey of (1y” Ay’ case y’ of (Ay” .trp_1(3), Ay .t2-2-1(4)))

(5.85)

.Ay"case yl of (/1y”~t2—2—1(1): /Iyl"l’z_z_l(g)), Ay

As the assumptions y : Mgycg) and y’ : Mg,c(q) are both disjoint union
of types, the proof is devided into the following four cases with respect to

the assumptions.

* y:Myandy’': My (derivation D,_»_1(1) for to_»_1(1))

* y:Mgandy’: T (derivation Dz_5_;(2) for to_5_1(2))

* y:T and y My (derivation 92_2_1(3) for t2_2_1(3))

* y:T and y T (derivation D2_2_1(4) for t2_2_1(4))

Below, we prove the four cases one-by-one.

Do _2-1(1):
. ! (inl(y))
uz u _
bijection () » =M (suc(m))wM(n)
[bhat——TH Gl W Gnl(y))
m(uz) : y: y, . =M (suc(m))eM(n) = TI
injecti h M(d) M(d R (inl(y” : T:
injection (h) (@) M(d) - ' (inl(y") 1Y) =tmyontcn 1) : }}(/l(d) e
Mm@ : v o wl,
hY) =p(mponmn) MY') N , M(suc(d)) : inl(y) :
: =Y =u@ Y MY) =pmemyomny M(y') type M(suc(d)
: : ~E =1
M@d): y: oy AYnl() =meuc@) inl() (1 (u2))NNW) : reflisucay (inl()
type M(d) M(d) M(d) — type y=m@y inl(y) =nsucy) inl(y) -
. =Sul

P15 (11 (u2)(1)()(@); reflyr(suciay (inl(1))) =

B Gnl() =mrcsuctmyonton W (nl(y)) : type
(inl(»)) =m(sucomyem(n) K (inl(y")) : typ inl(y) =sriscay inl()

1
A Pi5 (w1 (2))(y) (N @); reflarsucian (inl (1)) «
h'(”"(}’)) =M (suc(m))wM(n) h'(i"KV')) d inl(y) =M (suc(d)) i“'(}")

147

QUANTIFIER AND INFERENCE

Di-2-1(2);

h: Vv X:M(n)‘1 VT
M(d) : i Dy
— M(m)w M(n) M@ b:
nE
h(y): pu case inl(x) of (1z.inl(inl(2)), Az.inr(z)) caseinr(x) of (1z.inl(inl(2)), 1z.inr(2))
f]

M(m)w M(n) =M(suctm)em(n) inl(inr(y’))

= inl(y) =pmisuc(ay) inr(y’)

=M(suc(m)ysm(n) inl(inr(y)

= inl(y) =msuctay inr(y)

case h(y) of (Ax.a, Ax.b) :

wE,1 case h(y) of (Az.inl(inl(2)), Az.inr(2))

=M(sucm)em(n) iNl(inr(y’))

case h(y) of (Az.inl(inl(2)), Az.inr(2)) =ps(sucomyyenm(ny inlinr(y’)) — inl(y) =pr(suctay) inr(y)

— inl(y) =pmsuciay) inr(y")

=g R (inl(y) =M (suc(m))wM(n) R (inr(y"))
= inl(y) =msucy) inr(y’)

conv

case h(y) of (Ax.a, 1x.b) :
R (inl () =misuctmyemm B (nr(y")) = inl(y) =presucay) inr(y’)

(5.86)

where D, and D, are given below.

792
s . P , . _ . " -
: Ay.case y of (Az.inl(inl(2)), Az.inr(2)) =prsuctm)omny inllinr(y)) = inl(y) =prsuc(y) inr(y’) : M(m) W M(n) — type
H
Dain Dy p 1(2):
—_— — (Lm20) Muclm)) : type M(n): type 2 caseinl(x) of (Az.inl(inl(2)), Az.inr(2))
Py © injection (Ax.inl(x)) H '
T M(T : type M(m) : h =n(suctmomin inl(inr(y?))
*in“(x)’:”"wsudlz';) o, S :“";(esucr‘(m)) o aselof UenEnG). Az e
=M(suctm)om(n) inl(inr(y))
Pan(M(suclm)(M(m)nl())nr () = ety TN inlil () =ursactmponrin ilGinr(y))
inlGinl) =rcsuccmponrcn inllinr () '+ nlGnl() =wsuctmyontin ilinr(y) .
— inl() =prgsuctm) inr(y) M(m):type Titype | x:M(m) y:T o
(Poo(M (suc(m))(M(n))(inl (x))(inr (y)) () ¢ P2l y)
inl(x) =pr(suctmy) inr(y') 20l =prsucm) 7))
(p25(x3 1)) ((P2g(M(suc(m))(M (n))(inl (x)(inr (¥))(w) = Ab.inl(y) =nr(sucay) inr(y’) =
n 1 — type
N . L1E
caseinl(x) of (2z.nl(il(z)), Az ine(2)) 9358 () (patMtsuclmM ity) O
=psuctmyenr(n Nl(inr(y)) : type inl(y) =ns(sucta) inr () o
A58 1 539) (Banarisuctmm i inr) O
case inl(x) of (Az.inl(inl(2)), Az.inr(2)) Zprcsuemyyntcn inllinr())
= inl(y) =misucy) inr(y’)
.
Dy In Dy 5 12):
3 caseinr(x) of (Az.inl(inl(2)), Az.inr(2))
u':
. § X =m(sucm)em(n) inl(inr(y))
case inr(x) of (Az.inl(inl(2)), Az.inr(2))
- =
=MGsuc(m)em(n) inl(inr(y)) . o
sy inr(x) =ps(sucem)yom(n) inlinr(y’))
conv
u's : : M(m):type y:T wl
inr(x) =pr(sucim)em(n) inlGinr(y) - M(suc(m)) : type M(n): type inr(y) : M(suc(m)) " x:M(n) (Th2s)
pis(w): Ppas(inr(y); x) «
inl(inr(y")) =msuctmyn(n) inr(x) =(inlGnr(y)) =(sucemyonmn) inr(x)) :
SE :
(P25 (inr(y); x))(p13 () : Ab.inl(y) =psuca) inr(y’) =
L 1 — type
. . L1E
case inr(x) of (Az.inl(inl(2)), Az.inr(2)) €ase(pus inr(y)i (prs()) 0 :
=wisuctmsn(n inllinr(y)) : type nl () Znisuctay inrly’)
1,3

AU’ €ase(pys inr(y)i 0 *

case inr(x) of (Az.inl(inl(2)), Az.inr(2)) =ps(sucimyysmin inlGinr(y")

= inl(y) =mGsuc(a)) inr(y)

148

5.3. Proofs of right monotonicity

Do 2-1(3):

YiMm oyt

a: b
inl(inr()) inl(inr(y))

= case inl(x’) of (4

R M(d) > M(m) s M(n)_y': M(d)
7(y) = M(m) @ M(n) 1 Ao
nl(inl(2)), Az.inr (z

= inr(y) =pisucay) inl(y') — inr(y) =pisuctayy inl ()

=)t(sucm)om(n) €ase inr(x') of (Az.inl(inl(2)), 1z.inr(2))

b))

inl(inr(y)) =ar(sucmyyon(n) case h(y’) of (Az.inl(inl(2)), Az.inr(2))

case h(y’) of (Ax".a

= inr(y) =pgsucta inl(y')

WE, 1
inl(nr(y)) =nssucomyumn case h(y’) of (1z.inl(inl(2)), Az.inr(2))

= inr(y) =wisucay) inl (')

=g WGnr() =ssucimyomon H(inl() = inr(y) =priuctay inl(y)

case h(y') of (1@, Ax' D) = W(nr(y) =ssactmyonton 7 GNIG7)) — 0t () =arisacta) M1G7)

where D, and D, are given below.

conv

(5.87)

Dy in Dy _3-13):

2
-

inl(inr(y))
=attsuctmyen(n) case inl(x’) of (z.inl(inl(2)), Az.inr(2))
M(suc(m)) : type M(n) : type

P2 Injection (ximice) 120

inl(inr(y))

=wtsuctmyentn) case inl(¥') of (Az.inl(inl(2)), Az.inr(2))
=s
inlGinr(y))

=tsuctm)emen inl(inl(x))

X iM(m) Titype | M(m):type y:T w'

W) Meuom) 2) s Mucim)
nE*

Pao(M(suc(m)))(M(n))(inl(x)(inr(y)) =
inlGnl(x)) =ssisuctmpntn inlGnr()) = inl() Zxssucimy inr(y)

Pisu):

inlGinr (1)) =ssuctmenin) inlinl(x))

conv

(Th13)

M(m): type Titype | ¥ :M(m) y:

(P2o(M (suc(m))(M (n))(inl(x"))(inr (y))(p13 () =
inl(x') =ys(sueqm) inr(y)

inl(inl(¥)) =wisucmpenrn) inlCinr(y))
—E

T
(Th25)
Pas(x3y) ¢
(00l () =psgsuctm) i07() 1
L

((P2o(M(suc(m))M (m))(inl (<))(inr (1)) (P13 () (P25 (x'; ¥
L

Ab.inr(y) =nsueay () :

1 — type
) LE
inlinr(y)) 35 o) (g Msuctm il prsy) O
=uisuctment(n) case inl(x) of (Az.inl(inl(2)), Az.inr(2)) : type inr(y) =nisuctay inl(y’
1,2
A A5 (1 i3 (g M suclm)) M)il ()i)i) 0:
inl(inr(y))
=nsuctm)ont(n) case inl(x') of (Az.inl(inl(2)), Az.inr(2))
= inr(y) =arsucta) inl(y)
Dy 1n Dg_g_l(z) .
- 3 inl(inr(y)
:\(..mm) =p(suctm)en(Case inr(x’) of (Az.inl(inl(2)), Az.inr(2))
= asuctmyent(n) case inr(x’) of (Az.inl(inl(2)), 1z.inr(2)) ’T(o) : ; M(m, L
U =M(suc(m))$M(n; B H e
inl(inr! Msuc(m)sn(n) inF(x’ conv M(suc(m)) : type M(n) : type inr(y) X't M(n) (Thzs)
u': Pas(inr(y); ') :
inl(inr(y)) =prcsucemyonin) inr(x) =(inlGnr()) =pisucomomon inr(x')) :
—E :
(pas(inr(y); x))(w’) : Ab.inr(y) =pisuctay inl() *
L 1 — type
LE

inl(nr(y))
= caseinr(x") of (Az.inl(inl(2)), 1z.inr(2)) : type

case(ps el 0
inr(y) =msue@) inl()

Au' case(pys nr () 0+
inl(inr(y))
=M(suctmyent(n) Case inr(x’) of (Az.inl(inl(2)), Az.inr(2))

= inr(y) =pisucay inl(y)

Do 2-1(4):

Given y : Tand y’ : T, assume u’ : h'(inr(y))

1,3

=M(sucm)um(n) W (inr(y")).

Since h'(inr(y)) =g inl(inr(y)) and h’(inr(y")) =g inl(inr(y’)), we have the fol-

149

QUANTIFIER AND INFERENCE

lowing by conv.

u' sinl(inr(y)) =m(suctmyywmn) inl(inr(y”)) (5.88)

By Lemma 23, we have proof p,; : injection (1y.inl(inr(y))). Therefore, we
obtain

Pos(M(m))(T)YM ()W) 1y =1 ¥, (5.89)
by applying I1E several times. Now, by applying =1 with inr(y) : M (suc(d)),
we have

reflysucay) (inf()) = inr(y) =msucay) inr(y). (5.90)
Thus, by substitution by identity (5.89) and (5.90), we obtain

P15(Po3(M (m))(THM (n)(y)(y")w"); reflassuciay) (inr(y))) :

(5.91)
inr(y) =msuc(ay) inr(y’),
from which we obtain the following by 117 with u’.
Au’ P15 (Po3(M (m))(T)M (n)(Y) (")(w); reflys(suciay (inr () : (5.92)

R (inr(y)) =m(sucimyyem(ny B (inr(y")) — inr(y) =prsuceay) inr(y’).
Dor_s_5in Do at (5.82):
Next, we prove surjection (h’). As surjection (h’) = (w : M(suc(m)) w M(n)) —

Y M(suc(d)) . .
, the proof ©_»_» in (5.82) is constructed by the
W =M (suc(m))wM(n) h,(y)
following derivation.

w” : M(m) 3 w' T 3
: Doz-2(1) : Daz-22)
) 22201 : (7-2-2(2) *
w' : M(suc(m))~ T2 ¥ M(suc(d)) ¥ : M(suc(d))
inl(inl (")) =pmsucemyyomm W' () inl(inr(w”)) =psucomyyom(n B) »
WE,3 w' : M(n)
1 Da2-23)
case w’ of (Aw”.tr_p_51), AW Lr_3_2(2)) : 223t
. .
w: M(suc(m))w M(n) T11 ¥ : M(suc(d)) ¥ M(suc(d))
inl (") =p(suctmyenn 1'(y) inr@w’) =puctmyenon B

WE, 2
case w of (Aw’.case w’ of (Aw”.ta_p_p1), AW ta_2_2(2)), AW .ta_2_33)) :

¥y M(suc(d))]

W =M(suc(m))wM(n) H(y)

M((suc(m)) ktJ:M(n) : type

I, 1
Aw.case w of (Aw'.case w’ of (Aw”.ta_p_2(1), AW .tr__5(2)), AW’ .fa_3_23))
: M(suc(d))
(w : M(suc(m)) & M(n)) — vt
W =pr(sucim)em(n) 1Y)

150

5.3. Proofs of right monotonicity

As Mgycim) WM, = (M, ¥ T) wM,, the proofis devided into three cases.
When we assume M,,, or M,,, the proof is given by IH. In case of () : T, as
this is the one to be added to the M,,, side, it should be associated with the
suc(d)-th element of Mgyc(g)-

@2_2_2(1), Dg_g_g(g), and @2_2_2(3) are giVGIl below.

Aw. [) : M(suc(m)) & M(n) — type

W =M (suc(m))wM(n) h,(y)

, | v M(suc(a))
Aw’. _
inl(w’) =M (suc(m))¥M(n) h/(J’)

] : M(suc(m)) — type
Doy o1)in Do p_»:
. y : M(suc(d))
Given w” : M(m), we prove . From

inl(inl(w")) =pm(suctmy)yommn) H'(y)
the assumption, we get

inl(w”) : M(m)w M(n), (5.93)

by wi. From IH and assumptions k : Nat, p19(u) : d < k (by Theorem 19
and the assumption u : suc(d) < k), f : M(k) — A¥B, and g : bijection (f),
by applying I1E several times and then applying E several times, we ob-
tain

na(uy) : surjection (h). (5.94)
By applying I1E with (5.94) and (5.93), we have

o y' 1 M(d)
(mr2(u2))(inl@™)) = | : (5.95)
inl(w”) =pmmysmny h(y")

151

QUANTIFIER AND INFERENCE

Let s be (2(u2))(inl(w”)). By applying £E; and Ex with (5.95), respectively,

we obtain:

m(s) : M(d) (5.96)

mo(s) 1 inl(W") =pmmywm(n) R(m1(8)). (5.97)

We have inl(7;(s)) : M(suc(d)) by applying wi with (5.96). By I1E with »” and

inl(rr1(s)), we have
R (inl(m1(8))) : M(suc(m)) & M(n), (5.98)
from which, by =1, we obtain

reflar(sucimyysmi(n) (B’ (inl(m1(8)))) :
R (inl(7r1(8))) =m(sucim)ywm(n) I (inl(m1(s))).

(5.99)

As h'(inl(71(s))) =p case h(m1(8)) of (1z.inl(inl(2)), Az.inr(z)), we have

reflar(sucimyyumn) (' (inl(w1(8)))) :

case h(my(s)) of (Az.inl(inl(2)), Az.inr(2)) =pr(sucimyysm(n) B (inl(m1(s))).
(5.100)

From (5.97) and symmetric property of identity (Theorem 13), we have
p13(m2(s)) : h(m1(S)) =m(mysm(n) inl(w”). By (5.100) and substitution by
identity (Theorem 15), p13(72(s)), we obtain

I'e'l:lM(suc(m))Ef)M(n) (R’ (inl(71(8)))) :

case inl(w”) of (Az.inl(inl(2)), Az.inr(2)) =p(sucomyywm(n) 1 (inl(m1(s))).
(5.101)

As case inl(w”) of (1z.inl(inl(2)), Az.inr(z)) =g inl(inl(w”)) holds, we have

refla(sucmyyonm(m) (B (inl(1(s)))) : (5.102)

inI(inI(w”)) =M(suc(m))wM(n) h/(in|(7(1(S))).

152

5.3. Proofs of right monotonicity

Thus, by =1 with inl(r1(s)) : M(suc(d)) and (5.102), we obtain

. . y : M(suc(d))
(inl(m1(8)), reflyrsucomyommy (R (inl((s)))) + |~
|n|(|n|(w")) =M (suc(m))eM(n) h,(y)
(5.103)

Do 3 22)In Do 3 »:
Suppose we have w” : T. We prove

inl(inr(w")) =M (suc(m))sM(n) h'(y)
From k' and inr()) : M(suc(d)), by =1, we have

y : M(suc(d))]

reflysucomy)yonny (W (inr(())) = A'(inr(())) =m(sucimyom(n) B (inr(())). (5.104)

Since h'(inr(())) =g inl(inr(¢))) holds, by g-conversion and conv, we obtain

reflssucimyyonany (B (inr({)))) < inlGinr(())) =pm(sucimyywmm) B (inr(())). (5.105)

By applying TE with the given w” : T and (5.105), we obtain

casey (refly(sucmyyont(ny (' (inr(())))) = inl(inr (W) =p(sucmyyonm(ny B (inr(()))
(5.106)
From inr(()) : M(suc(d)) and (5.106), by =1, we obtain

M (d)
(inr(()), casey (reflyssucimyysm(my (0 (inr(()))))) : y : M(suc(d))

inl(inr(w”)) =M (suc(m))¥M(n) W (y)

(5.107)
Do _2-23):
The proofis similar to D>_5_»(1).
) y : M(suc(d))
Given w” : M(n), we prove | . From the
inr(w’) =M (suc(m))wM(n) h/(.V)
assumption, we get
inf(w”) : M(m) W M(n), (5.108)

by wI. From JH and assumptions k : Nat, p19(u) : d < k (by Theorem 19
and the assumption u : suc(d) < k), f : M(k) —» A¥WB, and q : bijection (f),

153

QUANTIFIER AND INFERENCE

by applying I1E several times and then applying E several times, we ob-
tain

na(uy) : surjection (h). (5.109)
By applying I1E with (5.109) and (5.108), we have

o, y' +M(d)
(m2(u2))(inr ™)) = | : (5.110)
inr(w”) =pmmywmn) W(y")

Let 8’ be (m2(u2))(inr(w”)). By applying £E; and XE; with (5.110), respec-
tively, we obtain:

m(s) : M(d) (5.111)

m(8) ooinr(W”) =pmyemn) H(T1(S)). (5.112)
We have inl(r1(8’)) : M(suc(d)) by applying wi with (5.111). By I1E with »’
and inl(mr,(s”)), we have

R (inl(71(8%))) : M(suc(m)) W M(n), (5.113)

from which, by =1, we obtain

reflvsucomyywm(n) (R (inl(m1(8%)))) :
R (inl(71(8"))) =m(suctm)ywm(n) ' (inl(m1(8))).
As 1'(inl(m1(8")) =g case h(m1(8’)) of (Az.inl(inl(2)), Az.inr(z)), we have

(5.114)

reflav(sucimy)yem(n) (' (inl(1(8%)))) :

case h(m1(8)) of (Az.inl(inl(2)), Az.inr(2)) =p(sucim)ysm(n) P (inl(m1(8))).
(5.115)

From (5.112) and symmetric propery of identity (Theorem 13), we have
P13(m2(8) : h(m1(S")) =m(mysmn) inr(w”). By (5.115) and substitution by
identity (Theorem 15), p13(m2(s’)), we obtain

reflar(sucmyyomi(ny (B’ (inl(1(8%)))) :

case inr(w”) of (Az.inl(inl(2)), Az.inr(2)) =p(sucom)emn) B’ (inl(m1(8"))).
(5.116)

154

5.3. Proofs of right monotonicity

As case inr(w”) of (1z.inl(inl(2)), Az.inr(z)) =g inr(w”) holds, we have

reflyssucimyysna(n) (' (inl(m1(8))) : (5.117)

inr(w”) =M (suc(m))wM(n) R (inl(mr1(s))).

Thus, by =1 with inl(1(8’)) : M(suc(d)) and (5.117), we obtain

. ‘ y : M(suc(d))
<In|(7T1(S,)), |'eﬂM(suc(m))L+JM(n)(h',(ml(ﬂl(s’))))> : .
mr(w”) =M((suc(m))wM(n) h/(Y)
(5.118)

Finally, we prove D;_3 in D,:

1, =4
e
M@ Flisct@=nr(()) =aop inl(z)
i Dot iDras

z:A w : M(suc(m))
-
Fl(suctay<)(inr(x)) =a0p inl(z) W (inr () =wsuctmpyon(n) inlw)

) w: M(n)

XT

Lot b2t

[a:a w: Msucm))
) v - o
TTME@) 2 Tis U (sl) =g inl(2) Wnl()) =itauctmyonrn inlw) '

NER:) w: M(n) (
: - v

case x of (Ax".1-3-1, Ax'.12-3-2) ©
z:A w : M(suc(m))
-
Flisuc(@=k(x)) =4 inl(2) 7(X) =pr(suctmyyontn) inl(w)
) w: M(n)

[lisuctay<k(x)) =aup inr(2) H'(X) =ps(sucomyem(n) inr(w)

w : M(suc(m))

() =np(suctmyyonr(ny inlw)

z:B

| (et inl () =aom inr(z) Y (inl(x)) =ps(suctmyontn) inr(w) F((suc(=<i)(inr(x))) =4 inr(z) (inr(x') =p1(sucmpyontn) inr(w)

WE, 1

i v
M(suc(d)) : type
z:B

Ax.case x of (Ax'.123-1, AX'12-3-2) ©

z:A
-
Flisuctay <k (x)) =asp inl(2)

The proof #,_3 is given at the bottom of the derivation.

17,2

vt

z:B w: M(n)

va:

(x : M(suc(d))) = I

Flisuctay <k (X)) =awp inr(z) (%) =x1(suc(myent(n) inr(w)

The left hand side can be proved by IH. For the right hand side, it leads
to contradiction, because at the beginning of the derivation 9., we have

assumed that the newly added element is associated with A, not B.

Dy_3-1 and D,_3_, are given below.

(z: A) w : M(suc(m))
vt -
N fsuc(ay<k(x)) =aws inl(2) R (%) =m(suc(m)yomn inlw) . M(suc(d)) — type
z:B w: M(n)
V2
(f(isuc(@y <k (X)) =awp inr(z)) R’ (X) =m(suc(m))em(n) inr(w)

QUANTIFIER AND INFERENCE

Dy 3.1:
Given x’ : M(d), by applying I1E with u3 of (5.80), we obtain

. — z:A w: M(m)

us() e f ((m1 (k) (@) (P19 ())))(x")) =awp inl(2) - h(x") =m(mysm(n) inl(w)
| z:B w: M(n)

e | f ((m1(i(k)(@)(P19())))(x)) =awp inr(z) ~ h(x") =p(mywm(ny inr(w)

(5.119)

By Lemma 27, we obtain an identity by the following delivation, Dz_3_1(1).

(Lm27)
Par _ wisicd <k g,
k,1,n : Nat) — ik = () S (y: M) — w isuc(d) <k " .
(k,1,n: Nat) > (p1 suc +m) = (MO = 4 Nat) Nat B m):) M@ W' = (m man')
(my (k) (suc(D)({rm, L))l (1)) k =Nar suc(d) + (') H |
i(k)(suc(d. o’ ¢
=mr) (mAK)DP19(n, pOINY) (m (i)(Suc(f))({mu’, mau’)))(inl (x")
nEe* =) (MAK)(@)(Pr9((mw’, m2u')"
Pa7(k)(d)(my () (2 (u))(x') _
(my(i(k)(suc(d)((myu’, mou)))(nl(x) =pqk) (r1 (k)@ (Pro ((myu’, mau’)))))(x") =
(isuc(ay <k)(inl (x))
=me) (mAk)(@)(P1a()))(x")
. conv
M(k) i type P27 (k)(@)(m1 (W) (ra(u))(x')
(suctay<k)(inl(x')) =) (m1A(k) (@) (P19 (w)))(x")
(Th13)
P13 (P27 (k)(d)(m1 () (ma(u))(x")) ¢
(k)@ (P19 NN =p(x) (isuctar<i)(inl (x)
Therefore, the following delivation holds.
P Dyzay us(x') :
:) ‘ o P D@ [, |74 [mom
(e oype IBOPONE: et bOD 7, iyt PR GE@ P13 D)) = inl(z) 1) =rmpontcn) mlG0)
=m0k (suc@<i)(inl (') . z:B INEE M(n)
F (@) (@)(pro (@) =aup inr(2) B(X) =t(myon(n) inr(w)
(Th15)
Z:A) w : M(m)
v 5
isuc(a)<k)(inl(x))) =aup inl R(X') =t(mypent(ny inl (@)
P15 (P13 (P (R)(@) 1 () o) () ws(x') : £ cnze)in (D) =pop inl2)) Zaatmpontcn inle)
Z:B w : M(n)
vy -
(: [(lisue@<)(inl(x)) =aup inr(2)) h(x") =p(myom(ny inr(w)

z: A w : M(m)
4] -
Ay. F(y) =aws inl(2) 10 Zntmonatn 1 11y ype
z:'B w: M(n)
v —
? f(¥) =aus inr(2) h(x) =pm(mysm(n) inr(w)
Let
de
vw 2 m1(P15 (P13 (P27 (k) (@) (m1 () (2 () (x")); us(x”)))
dej
Vo L ra(pis(Pra(pa (6)(d)(m () o)) (x)); us(x'))

156

5.3. Proofs of right monotonicity

in

z: A w : M(m)
Vyi|vy e —
_ f ((isuc@ <k)(inl(x"))) =aup inl(2) h(x") =pm(mywm(n) inl(w)
(5.120)

z:B w: M(n)
A\ R - .
i f ((isuc@ <k)(inl(x"))) =awp inr(z) h(x") =pm(myom(n) inr(w)

(5.121)

Now assume

z:A

f((isuc(d)sk)(inl(x/))) =AwB inl(z)

By applying I1E with (5.120) and (5.122) and then applying £Ez, we obtain:

(5.122)

mo(vi(v))) i h(X") =p(mysmny inl(T1(vi(v]))) (5.123)
By=1,

refl s sucimyywni(ny (case h(x”) of (Az.inl(inl(z)), Az.inr(2))) :

case h(x’) of (Az.inl(inl(2)), Az.inr(2)) =pr(sucm))wm(n) case h(x’) of (Az.inl(inl(2)), Az.inr(2))
(5.124)

By (5.124) and substitution by identity (Theorem 15) with (5.123), we have
P15(m2(v1i(v])); reflyrsucimyywmi(n) (case h(x") of (Az.inl(inl(2)), Az.inr(2)))) :
case h(x") of (Az.inl(inl(z)), Az.inr(z))
=M(suc(m))wM(n) Case inl(m1(v1(v)))) of (Az.inl(inl(2)), Az.inr(2)),
from which we can obtain
P15 (m2(vi(v))); reflysucomy)om(n) (case h(x") of (Az.inl(inl(2)), Az.inr(2)))) :
R (inl(x")) =pm(suctmywnm) inl(inl(r1(v1(v))))) (5.125)
by B-reduction and conv, as the following equivalence holds.
case inl(m1(v1(v}))) of (Az.inl(inl(2)), Az.inr(2)) =g inl(inl(m1(v1(v]))))

case h(x") of (Az.inl(inl(2)), Az.inr(2)) =g h'(inl(x))

157

QUANTIFIER AND INFERENCE

By applying 21 with inl(71(v1(v}))) : M(suc(m)) and (5.125), we have

(inl(m1(v1(¥]))), P15 (m2(v1(v)); reflar(sucimyyunm(ny(case h(x”) of (Az.inl(inl(2)), Az.inr(2))))) :
[w : M(suc(m)) }

R (inl(x")) =M (suc(m))wM(n) inl(w)

(5.126)
Thus, by I17 with (5.122) and (5.126), we obtain

AV} (inl(1(vi()))), P15 (m2(Vi(v])); reflyrsucomywmn (case h(x”) of (Az.inl(inl(2)), Az.inr(2))))) :

, z: A w : M(suc(m))
[29 —
Y £ ((suetay <) (nl () = inl(2) 1 (inl (') =p(sucmyem(n) inl(w)
(5.127)
On the other hand, let us assume
z:.B
v (5.128)

flisucay<k(x)) =aws inr(z)

By applying I1E with (5.121) and (5.128) and then applying £Ex, we obtain:

m2(V2(v3)) o h(X") =p(mywm(n) inr(m1(v2(v5))) (5.129)
Again, by =1,

reflyrsucimy)wmn) (case h(x”) of (Az.inl(inl(2)), Az.inr(2))) :

case h(x’) of (Az.inl(inl(2)), Az.inr(2)) =p1(sucim))wm(n) case h(x’) of (Az.inl(inl(2)), Az.inr(z))
(5.130)

By (5.130) and substitution by identity (15) with (5.129), we have
P15(m2(V2(v5)); reflys(sucimyywni(n) (case h(x”) of (Az.inl(inl(2)), Az.inr(2)))) :
case h(x") of (Az.inl(inl(2)), Az.inr(z))
=M (suc(m))wM(n) Case inr(m1(V2(v}))) of (Az.inl(inl(2)), Az.inr(2)),
from which we can obtain
P15 (m2(va(v5)); reflyssucimyyon(n) (case h(x’) of (Az.inl(inl(2)), Az.inr(2)))) :
R (inl(x")) =m(suc(myywmn) inr(m1(va(v5)))

(5.131)

158

5.3. Proofs of right monotonicity

by B-reduction and conv, as the following equivalence holds.

case inr(m1(v2(v5))) of (Az.inl(inl(2)), Az.inr(z)) =g inr(x1(V2(v5)))

case h(x’) of (Az.inl(inl(2)), Az.inr(2)) =g h'(inl(x"))

By applying 1 with 71(v2(v3)) : M(n) and (5.131), we have

(m1(v2(v3)), P15(m2(V2(v5)); reflyssucomyywnm(n) (case h(x”) of (Az.inl(inl(2)), Az.inr(2))))) :
w: M(n)

R (inl(x")) =M(sucOm))wm(n) inr(w)

(5.132)

Thus, by I17 with (5.128) and (5.132), we obtain

Ay (1 (V2(v3)), P15(m2(Va(v5)); reflar(sucimyywni(n) (case h(x’) of (Az.inl(inl(2)), Az.inr(2))))) :
(vé :

Thus, by applying =1 with (5.127) and (5.133), we finally obtain the fol-

z:B w: M(n)
[(isuc(@y<k(x)) =aws inr(z) R (inl(x") =n(suc(m))om(n) inr(w)
(5.133)

lowing proofas t;_3_;.

(Av (inl(m1(vi(¥))), P15 (m2(v1(v])); reflassucimyywmn) (case h(x’) of (Az.inl(inl(2)), Az.inr(2))))),
v {m1(V2(v3)), P15 (m2(v2(v3)); reflyssucimyywm(n)(case h(x’) of (Az.inl(inl(2)), Az.inr(2)))))) :
z:A w : M(suc(m))
[—
F((isuc@ <x)(inl(x))) =awp inl(z) R (inl(x")) =p(suctm)ysmny inl(w)

z:B w : M(n)
[%22 —
F ((fsue@<x)(inl(x))) =awp inr(z) R (inl(x") =p(sucm)wmn) inr(w)

(5.134)

159

QUANTIFIER AND INFERENCE

Do-3-2:

M(suc(m))&/:M(n) stype h'(inr(x)): M(;uc[m)) W M(n) inl(inr(x)) : M(:suc(m)) wM(n) I(inr(x") =g inl(inr(x")) -

h16)
Wik reflarsucemynion (1 (inr(x)) =

R (inr(x") =nssuctmysn(ny inllinr(x’))
51

X T
inr(’) : M(suc(m))

z:A l ! (mv(x'),reﬂmsu:(mnuwmy(h'(lnr(x’))] :
v

T w : M(suc(m))

F i) D) =pop nle) W) =arucomronton nl)

iTis
Zia (inr (), reflyrsuctomponton (0 (inr())) :
:] . w s M(suc(m))
S (asctze)inr () =aen nl2) H(inr(x) =nsuctmenmn inlw) T
. " . “n L1 i Daza
A4 inr (e, reflgauctm onscn (1 Gine () .)
Z:A w: Msuc(m) P (Uz: z:B D R
. N . I i) =
U FlGaetzinr) s 2 ||| e) =stmponin inl0) S CGnctaseinr&D) =pon inr(e) || HGor () =utscomyenn i)
xI
z:4) w: M(suc(m) }
v : o _ - ’) =,
(A0} (e, refhuetmponn (Gr D), -5 200) - Fl(suctay<k)(inr(x))) =up inl(2) R (inr(x')) =n(suctmyon(n) inl(w) e
2B w': M(n)
v 5
(S ((Gsuc(@<i)(inr(x')) =aup inr(z)) R (inr(x') =ng(suctmyonmn) inr(w)
Do 3-2(1):
2
, z:B
Vat . o, . .
f ((isucqay<k)(inr(x))) =awp inr(z) : T1e
: Da3-2(2) w: M(n)
l2-3-2(2) - L pyo) 1L — type
R (inr(x")) =pm(sucomyyem(n) inr(w)
1E
z:B w: M(n)
, : type Caser, 4 5,0 ¢
) . . R f
F((sucta<i)(inr(x)) =awp inr(z) R (inr(x") =prsucomyyom(n inr(w)
11,2
z:B w: M(n)
Avj.caser, ; ,, 01| v): -
. L, . P)
F((suctay<k)(inr(x)) =awp inr(z) W (inr(x")) =prsuctmyem(n) inr(w)
D :
2-3-2(2)"
z:A /s
L _ax. N
T ((isuctr)inr (D)) =aos inl(2) :
T — type flsucay=k(inr(()))) =awp inl(z)
TE
z:A
case (p) :
I ((sucay<)(inr(x))) =avp inl(z)
SEq
ma(casex (p)
I ((suctay<k)(inr(x)) R
: =awp inl(mi(caser (p'))) f(Gsuet <)(inr(x))) =aws inr(2) .
HI 3 Ex
; inl(m (casex (p)) : AW B Pua(ma(case, () : ma(v}) :
A9 B’ type o)) AU B inl((case, () F(lcty=0)inr(x)
: =aop [((suc@<x)(inr(x))) =aop inr(m (1)) H H
inr(my(v}) : AW B A B: (casey (p) : A):B
1(v; h1s) type type m(casey (p) m(vy) thas)
Pia(pi3(ma(caser (p)); ma(v3)) = P25 (mi(caser (p); m(v))) =
inl(my(casex (p))) =aup inr(mi(v))) —(inl(m1(casey (p'))) =aws inr(mi(v3)))

(P25 (mr(case (p); 11 (05))) (Pra (pra (ralcaser () m2(3) - L

Now we have proved D;_1, Dy, and Dy_3. D, is thus given as in the

derivation shown at (5.83).

Ds: Using the same technique as in the derivation of D,, we can obtain a

counterpart of the proof ¢, from the assumption.

End of proof.

By Lemma 8 proved above, we can deduce the following corollary by

putting k" = k.

160

5.3. Proofs of right monotonicity

Corollary 9:
(4, B : type) — (k : Nat) — (f : My — AW B) — bijection (f) —
m : Nat
n : Nat
k=m+n
h:M,—->M,,uM,
bijection (1)
z:A w:M,,
us . N
(x: M) > f(x) =awp inl(2) h(x) =M,,5M, inl(w)
z:B w: M,
Uy . —
(f(x) =awp inr(z) D h(x) =m, oM, inr(w)]

5.3.6 Theorem: Finiteness of a part

Now we will prove the following theorem, which we mentioned in the be-

ginning of the previous section.

Theorem 10

Given A : type, B : type, and k : Nat, if there exists a function f :
M; — A w B such that bijection (f) is true, there exists a function

g :M,, —» Aforsome m < k such that bijection (g) is true.

Proof. The proofwill bedivided into two steps: (1) first, we begin by con-
stucting a function M,, — A for some m : Nat; (2) next, we prove that the
function is bijection.

(1) By assumption A : type, B : type, k : Nat, f : M; — AW B, and
by : bijection (f), Corollary 9 yields a proof term of the following type. Let

us write this term c.

161

QUANTIFIER AND INFERENCE

_m:Nat

—n:Nat
—k:m+n
1M — M, w M,

bijection (k)

()CZMk)—>

—

h(x) =m,,em, inl(w)]

f(x) =aup inl(2))

|
l)~

f(x) =4uwp inr(z) h(x) =m,,uM, mr(uﬂ] NN

By applying XE several times to ¢, we get the following terms, which we

abbreviate to m, n, h, by, and C, respectively.

m1(c) : Nat

) X
S &

71'171'2(6) : Nat

QAU
W&

by,

X
& 2
S g

Moo m2(C)

(x:Mk) —

mmamana(c) : M — M,

&
&

w M,

mmamomano(c) : bijection (k)

w:M,,

h(x) =m,,sm, inl(w)

w:M,

z.A
i f(x) =awp inl(2)

—

z:.B
| f(x) =aup inr(z)

h(x) =m,,sm, inr(w)

Term h~! of type M,, wM,, — M;, stands for Aw.n72by,(w), which is the

inverse of 1 obtained from surjection (%) by the following derivation.

162

5.3. Proofs of right monotonicity

by, : bijection (h)

def
injection (h)
bh :
surjection (h)
noby, : surjection (h) *E dof
€

¥ Mg S
moby i (w:M,, ¥ M,,) — w:M,, M,

w =m,sM, ")
I1E

y + Mg
ﬂgbh(u)) .

w =m,eM, h(y)
2E
7T17T2bh(w) : Mk I 1

Aw.mmbp(w) : M, M,, —> M ’

Similarly, we obtain the inverse of f, Aw.mmbs(w) : AW B — My, from

by : bijection (f). We write it f 1.

a.A
inl(a) =aup f(h~1(inl(w)))

We construct g’ : (w : M,;,) — for m : Nat,

which gives Aw.n g’ (w) : M,,, — A.

i Da i Dy

b1, WML Mactype
: g (t, reflaup(inl(1))) dy

inl(w)
My, & M, ‘M, ¥ M, fa:a faza
M ok : | inl(@) =aep inl(e) | inlt@) =10p ine(0)
P : 1,1 mnr,2
My Aul l('l:[""’” ALl @))) =gom x A, reflyup(inl(0))) Audy
- Me

Ty aes - aid #f(0 nl)) =0 inl (1) S FO nl@w))) =ap inr(0)
inl(a) =aup X a:A a:A
1AW B — type inl(@) =aup inl() inl(@) =4up inr(t)

WE, 3 : :
AwB:type f(h\(inlw)):AwB -

case f(h™(inl(w))) of (At.Au.(t, reflawp(inl(6))), At.Au.dg)
reflaws (F (™" (inl@)))) ©

2 f(R(nl))) =a0p £ (" (inl@w)))
a:A FN(inl @) =aup £(h™(inlw)))
inl(@) =ap f(h™(inl(w))
—E

(case F(h™(inlw))) of (A£.Au.(t, refl s (inl (1)), At.Aut.dlg))(reflaws (F (™ (inlw)))))
. a:A
" inl@) =aws £ Ginlw)))
11,4

Aw.(case f(h~'(inl(w))) of (At.Au(t, reflyp(inl(£))), At.Au.dp))(refl s (f (R~ (inl (w)))))
a:A

T(w:Mp) =
inl(@) = f(h™(inl@w)))

D, and Dg, as well as dg, are given below.

163

QUANTIFIER AND INFERENCE

i (A
AwB:type inl():AwB

refl 4 (inl(2)) : inl(2) =4 inl(z) =1 u: f(hY(inl(w))) =awp inl(z)
A reflaop (inl(2) 2 1) =1up Nl(0) wk

Wl

21

(t, reflqwp(inl(2))) :
inl(a) —A@B |n|(t)

D Asthecondition C stated above holds for f and i, term f(h ™1 (inl(w))) :

AW B cannot consist of a proof of B. We will show that the assumptiont : B

leads to a contradiction.

(zia) w:M,, A " cn
st i PV ; inr() : AWB fliAYB - M
CiixiMp) — [(x) =pup inl(2) h(x) =m,om, inl(w) T i) M —E
Z:B w:M,
us :
F(x) =sup inr(2) h(x) =m,0m, inr(w)
ME
C(f(inp()) :
z:A
us :
SN inr())) =aop inl(2)
w:M,
N
RN nr(0)) =w,um, inl(w)
:B
ug :
£ (inr(£))) =0 inr(z)
(s R
[(f~(inr (1)) =m,,em, inr(w)
. B en)) (f~1inr(6)) =, om, inr(w -
e : : 2B I N (A 6))] FAYE e (r Minr(0) ¢
: . : : uy nE z:B
AWB f(fNGnr(@) inr() X =pup inr(2) Dy (inr(1)) st = I Atype " 1:B
 type JAWB {AWB l w: M, PN (0)) =aop inr(@) w{'n{‘" (inr(02)) =sop inr(2) Au s type “avh ol
S N : AvB:type) :AYB
h(f~(inr(6))) =m,,om, inr(w) - ROF () =, o, inr(0) . reflyup(inr(1))
:AWB — type inr(t) =aup inr(t)
=Sub
Pis(t24(inr(6)), m2C(f ~ inr (D)) (1, reflaup (inr (6)))
z:B w: z:B
s - :
inr(1) =aup inr(z) R(f(inr(2))) =m,,0m, inr(w) inr(f) =aup inr(z)
nE

P15 (t2a(ine()), 12 C(f~ (inr (), Vefhu[(\"r(r)))

wiM,
’ l RO G0r(0)) =, om, inr(w)

Let X stand for py5(t24(inr(2)), m2C(f~1(inr(£)))))({¢, refl sz (inr (1)), the proof
term constructed by the derivation above. The term X has type
w' : M,
h(f~(inr(2))) =m,,uM, inr(w’)
w' M,
h(FY(f(hY(inl(w))))) =m,,um, inr(w’)
f~1and h~! are inverse of f and h, respectively, we will get a proof of

w' M,

.Aswehaveassumedu : f(h7(inl(w))) =aus

inr(¢), we can have a proof of . As

. We show the derivation below.
inl(w) =m,,um, inr(w’)

164

5.3. Proofs of right monotonicity

‘M, M,
pt. WiMa M. :type

inl(w) :
Maom A0B u

(Th2a} Mk . stype (RN (inl(@w))) =pup inr(2)
oyt B e——— i =$ Dy
vy Wl inlw)) : WM P : .
My M H ; i n .y
= @) =w, x Y AwB i) 0 inlw)) x| () ine(t) I Y
i y TAWY tAY = WL (inl i
" el) Ype :aus avs =M, om, in7(w) s £l @))) e
: t;pe : £ (nl))) :AwB - type M,
) ' —sub
H MR =m, L (inl(w)) o)
L (inl @) T) =w,om, inr(w) i,
M ‘M — type RO (01)) = om, inr(e’)
B (inl(w))
1 My
=Sub
P (24 (kY (inl(w))), P15 (P13 (), X
(Th24) . w M,
o4 H R~ (inl(w))) =m,,0m, inr(w’)
H . (x My, UM,) inlw) : M, ¥ M,
: o o WM, D hO) =,

M,;p]:[M)) e,) aa(nIG0)) < R inlG0))) = inlGo) e

1M, UM, — type

w M,
Pi5(t24(inl), P15 (t2a(h™ (inl @))), P15 (s (), X))) =

] =Sub

inl(w) =m,,om, inr(w’)

Now we have p15 (f24(inl(w)), p15 (24(h ™ (inl(w))), p15 (P13 (), X))) of type
"M,
v . We write it Y. The following derivation shows
inl(w) =m,,em, inr(w’)

a:A

that we can get a proof of ,as mY :oinlw) =m,uM,
inl(a) =awp inr(z)

inr(mr1Y) leads to a contradiction with Theorem 25.

a:A] 5
:type q: L

inl(a) =awp inr(r)

wk
w' M, — a:A
: : : : type
inl(w) =m,,um, inr(w’) M, :t M, -t ‘M Y'M inl(a) =awp inr(r)
: : m YPE T WWPE W:Hm T La g S5
mY tinl(w) =m,em, inr(mY) pas(w, mY) : =(inl(mY) =m,em, inr(m1¥)) SE a:A
p2s(w, mY)(m2Y) : L Aq. 11— type
inl(a) =awp inr(r)

1E
a:A
casep,; (w,my)(my)) ©

inl(a) =awp inr(t)

a:A
inl(a) =AwWB f(h_l(ml(w))) ,

which we write g’. This yields Aw.n; g’(w) : M,,, —» A, where m < k.

We have constructed a proofof(w : M,;,) —

(2) We next prove that bijection (1w.m g’(w)) holds, namely, (i) injection (1w.m, g’ (w))

and (ii) surjection (Aw.n; g’(w)) are true.

(i) injection (Aw.m1g’(w)) We prove y =m, y’ under the assumption y :

M),y : M,,and e : m18'(y) =4 m1g’(y’). By the following derivation, we

165

QUANTIFIER AND INFERENCE

obtain p14(p13(P15(e, 128’ (y))), 128" () = f(h~(inl(y))) =aws f(R™'(inl())).

a:A
ViMy gi(w:iMy) -
inl(@) =0 £(h~\(inl(w)))
nE

a:A
gw:
A type : inl(@) =4wp F(\(nl()))
: : ZEy
L Ax.inl(x) =q05 F(h1Gnl()) N = oy T28' W)
g'(y): A e i mg'(y) =a mg'(V)) o .
e P e premmne il O)) =aum (57 nl)) VM, g :i(w:M,)— va|. . B (il]
. mg'(y): A o inl(a) =a0p f(h™ (inl(w))) .
AWB: type pis(e, m2g'(y) g0 a:A
: Hinl(m1g'(v)) =aem f(h™\(inl(y))) inl(m1g"(y")) =aws f(h~1(nl(y)))
e — T -sym SEq
S inlG)) : 4w B Pi3(P1s(e, m2g'(y)) n2g'(y') ¢
H f(N () =awp inl(m1g() inl(r18°(y)) =aws f(h7(inl())
inl(n1g"(y) : AW B
S inl) : AW B
" N F LG o =Trans
PuP13(Pise, mag'(¥)), mag’(v) : f(h™ (il (1)) =aup f(h~ (inl()))

Now, injection (f) holds according to the assumption. As bijection (&)
holds, injection (h~!) holds by Theorem 24. By Lemma 20, injection (1x.inl(x))
also holds. Hence, by Lemma 22, it follows that injection (Ax.f(h~1(inl(x)))).
Therefore, y =nm,, y'.

w: M,

(ii) surjection (Aw.m, g’(w)) We prove by assuming a : A.
a=amg w)

a:A B:type
YP! Wl

z:A
1. g - e uz -
: 'AUB;‘I\(/Ii:I(a)I)M(a)‘AUB 2P My — ([f(x) =avp i"'(Z)D he) =wem, inl(w)
S Mg

z:B w:M,
Uug @ b
U = @][0 2w, i)
TE

w: M, }

(u' z:A)_} w:M,,
o C o)) - * | A @) =4 inl(2) h(F(inl(@))) =w, o, inl0)
g (x 1 AWB) - f(f1(x)) =aup X inl(@) : Aw B e et z:B N w:M,
a:A to4(inl(@)) : F(f~(inl(@))) =awp inl(a) 1 * F(FNGnl(@))) =awp inr(z) h(f~Y(inl())) =m,,em, inr(w)
(@, a(inl(@)) 1 Toa oM, X
z:A mC(f(inl(a))) : | us : -
: FUELEI(@)) =asp inl(2) g mln (: [f(f’l(inl(u))) =a0p inl(2)]) [h(f*%inl(a))) =m,,oM, inl(w) } .
w:M,,
(MO Gl @)@ tag(inl(@))) : [h i) inl()]
inl(a))) =m,,um, inl(w.
Let Z stand for the constructed term,
—1,- . w : My,
(O Gl @)@, atinl(@))) s | 7 |
h(f~(inl(a))) =m,,um, inl(w)
From this, We have
mZ M, (5.135)
moZ : h(f~(inl(@))) =m,,um, inl(T12). (5.136)

Nowwe proveinl(a) =aup f(h~1(inl(r1.2))) and f(h~1(inl(112))) =wp inl(m1 8" (712)).

166

5.3. Proofs of right monotonicity

First we prove inl(a) =avp f(h~(inl(112))). By =1,

reflaws (F (R (R(F 7 (inl(@))))) : F(R (h(F~(inl(@))))) =awp F(R (R(f 7 (inl(@)))))

By =Sub with (5.136),

P15(m2Z, reflaws (F (R (h(F 1 (inl(@)))))))
: F(hHh(F L (inl(@))))) =awp f(R(inl(m12))) (5.137)

Aswe have ty4 : (x : My) — h~!(h(x)) =m, x (Theorem 24),
t2a(f 7 (inl(@))) : k™ (h(F 7 (inl(@)))) =m, £ (inl(a))

holds for f~1(inl(a)). Hence, by =Sub with (5.137),

P15 (124 (F L (inl(@))), P15 (22, reflawp (F (R (R(F(inl(@))))))))
F(FHN(@))) =awp f(R71(I(M12))) (5.138)

Similarly, as we have fo4 : (x : AW B) — f(f~}(x)) =aws x (Theorem 24),

t24(inl(@)) : £(f1(inl(@))) =awp inl(a)

holds for inl(a). Hnce, by =Sub with (5.138),

P15 (t24(inl(@)), P15 (t24(f " (inl(@))), P15 (22, reflaws (F (R~ (R(F~1(inl(@))))))))
Linl(a) =aup f(h7'(inl(112))).
(5.139)

Next, we prove f(h_l(inl(zrlZ))) =awp inl(m g’(m2)). By applying IE
a:.A

with (5.135)and g’ : (w : M,;,) —)
inl(a) =aup f(h~1(inl(w)))

a:.A

gmz):| .
inl(a) =aus f(h~1(inl(m12)))

167

QUANTIFIER AND INFERENCE

By XEp,

nog’(m1Z) 1 inl(m1g' (M1 2)) =aws f(h_l(inl(an)))
By =Sym,
p13(m2g'(m12)) : f(h™L(inl(m12))) =awp inl(718"(712)) (5.140)

By =Trans with (5.139) and (5.140),

P14(P15 (224 (inl(@)), P15 (12a(f ' (inl(@))), P15 (w22, reflaws (f (h ' (h(f~ (inl(@))))))),
p13(m2g’(m12)))
sinl(a) =aup inl(m1 g’ (m12)).

(5.141)

LetW stand for the proof term of (5.141). According to Lemma 20, we have
I : (A B:type) — (y,y : A) = inl(y) =pup inl(y") = y =1). (5.142)

By the lemma and (5.141), we obtain
Lo(A)(B)(a)(m g (mZ)(W) : a =4 mg'(mZ) (5.143)

Thus, by applying £ with (5.135) and (5.143), we finally get

w:M,,
(m1Z, bo(A)(B)(a)(m1g8' (m1 Z))(W)) :
a=4mg(w)

End of proof.
We can rephrase Theorem 10 as follows.

I', A: type, B : type, a : Finite (A v B) + Finite (A) true

168

5.4. Right monotonicity

5.4 Right monotonicity

We show that, amon e Q7 quantifiers in Table 5.1, Q2 . and Q2
g typ q most atLeast

are right upward monotone.

Theorem 11: Right upward Monotonicity (Q7 ., and Q2)

atLeast
_ n : Nat
— n>N
T, a : Finite, ((x : entity) x A(x)), p: x : entity
h:Mp— | | u:Ax)
B(x)
bijection, (1)
» [m : Nat
[m >N
t: (x:entity) — (u: A(x)) — B(x) — B'(x) + x : entity e
g§:Mp = | | u:Ax)
B'(x)]
i bijection, (g)

holds, where N is a natural number and

I' - A: entity — type
[, x : entity, u : A(x) + B : entity — type
[, x : entity, u : A(x) + B’ : entity — type

Proof. The proof will be devided into two steps.
In the first step, we construct a number that corresponds to m in the
righthand side. The number m is obtained by proving Finite,, ((x : entity) x (u : A(x)) x B'(x))
from a : Finite,, ((x : entity) x A(x)). We then show that m > A holds in
the second step.

For the preparation, we apply XE to a and p several times and obtain

169

QUANTIFIER AND INFERENCE

the following proof terms. For abbreviation, we use k, r, f, and by.

k = ma: Nat
f =mma: M — (x: entity) X A(x) (5.144)

by = momy : bijection, (f)

n =mp: Nat
r =mmp:n>2N

172p (5.145)
h =mmrp M, — (x: entity) X (u : A(x)) X B(x)

by, = mommapy :bijectionm(h)

(1) From f and by, we can obtain the following along the process we have

shown in Figure 5.1.

m : Nat (5.146)
x : entity
g§:Mpy — | | u:Ax) (5.147)
B'(x)
b : bijectionm(g) (5.148)

In the step (2), the following have to hold in order to apply Theorem 4.

v:A(x) v:A(x)
(x rentity) > A(x) > | | u:AKx) | | W u: A(x) (5.149)
B) | e
v:A(x) v:A(x)
(x:entity) > | | u:AKx) | | W u:Ax) || —Ax) (5.150)

—_

B(x) B(x)

(5.150) obviously holds. (5.149) is derived as follows, where d is a proof
that (u : A(x)) X B(x) is a decidable predicate.

170

5.4. Right monotonicity

u:A(x)2 z: Ui A u:A()c)2 z:n i AR
B(x) B(x)
Izl II
d: v A(x) v A(x)
CE Twia] e w2 | [u:ac) w2~ [u:aw]
i Y- B(x) B(x)
B(x) B(x) wI oI
E v A(x) v A(x) v A(x) v A(x)
u: A(x) u: A(x) X .
d(x) : W - inl((v,2)) 1| |u:Ax) | |W u: Ax) inrf((v,2)) 1 | | u:A®x) | |¥ u: A(x)
B(x) B(x) - -
B(x) B(x) B(x) B(x)
WE, 1
v Ax) v Ax)
case d(x) of (Az.inl({v, z)), Az.inr({v, z))) : u:Ax) | |w u: Ax)
B(x) B(x)
1,2
v A(x) v A(x)
Av.case d(x) of (1z.inl((v, 2)), Az.inr((v,2))) 1 A(x) > | | u:A®x) | |@ u: A(x)
B(x) B(x)
11,3
v A(x) v A(x)
Ax.Av.case d(x) of (Az.inl({v, 2)), Az.inr((v, 2))) : (x : entity) — A(x) — u: Ax)] u: A(x)
B(x) A B(x)

(2) Next, we show that m > N holds. We prove m > n, where n is the
number that satisfy n > N given in the premise p. It suffices to show that
there exists an injection from M,, to M,,,.°
First, we have h : M,, — (x: entity) x (u : A(x)) x B(x). We can also
construct
X : entity x : entity
Az.(m1z, (mymoz, t(m12)(m1M22) (M2 M22))) © u: A(x) — u: A(x)
B(x) B'(x)
with the second premise 7 : (x : entity) — (u : A(x)) — B(x) — B'(x). We
write the term gq.

By applying2E; to b, : bijection, (g), we obtain b, : surjection, (g),

x : entity
. . . y. M,,
where sur]ectlonm(g) is|z: u: A(x) — by
12 =entity mg(y)
B'(x)

SWe have provided the semantic representations based on the assumption that an
injection corresponds to the small/large relation of numbers, which was also treated as
given in Sundholm’s original formulation. We assume that we can obtain the following
theorem for free: For any natural number » and r’, if there is an injection from M,, to

M,,, thenn < n’.

171

QUANTIFIER AND INFERENCE

definition. We write this term s.

By combining £, g, and sg, we can construct the following function.
mposgoqgoh: M, —> M,.
Next, we show that 7y o sg 0o g o h : M, = M,, is an injection, i.e.,
(y: M) — (v :My) > mosgogoh(y) =m, mosgoqoh(y)—y=m,y.

By assumingy : M,, y’ : M,,and v : ry osg o g o h(y) =m,, m105g0qoh(y’),
we provey =y, y'.

By sequentially applying I1E with sg, g, h, and y, we obtain

w:M,
sg(q(h(y))) :)
¢ 11G(h(y)) =entity T18(w)

from which, by E;, we get

m25g(q(h(y))) : m1q(M(y)) =entity T18(m1(sg(q(R(y)))))- (5.151)

Similarly, from s,, g, h, and y’, we obtain

m25g(q(h(y") : 11g(h(y")) =entity m18(m1(sg(q(h(y")))),

from which, by =Sym, we have

P13(m2sg(q(h(y"))) : m18(m1(sg(q(h(y"))))) =entity m1q(h(y")). (5.152)

By applying =Sub with assumptionv : myosgogoh(y) =m,, T10sgoqoh(y’)
and (5.151), we get

P15 (v, m25g(q(h(y))) : mq(h(y)) =entity 118(m1(sg(q(h(y")))). (5.153)
By applying =Trans with (5.152) and (5.153), we get
P14(P15(v, m254(q(1(¥)))), P13 (w25 (q(h(y))))) (5.154)
: m1g(h(y)) =entity m1q(h(y"))

172

5.4. Right monotonicity

As qis Az.(m1z, (m1722, p2(m12)(M2722))), Ax.m1q(x) =g Ax.m1(x). Therefore,

P14 (P15 (v, w255 (q(h(¥)))), P13 (w25 (q(h(y"))))) (5.155)

: m(h(y)) =entity m1(h(y"))

Now, as there exists proof i, of injection, (1), we obtain the following with

y:M,andy : M,.

i)Y : 11 (h(Y)) =entity T1(h(Y) = ¥ =m, ¥’ (5.156)

Thus, by applying I1E with (5.155) and (5.156), we finally get

in(¥)(y) (P1a(P15 @, m254(q(R()))), P13 (w254 (q(h(y')))))) (5.157)

‘Y =M,y

Therefore, we conclude that there exists an injection M,, — M,,,.

End of proof.

Here is aremark on step (2), where we applied Theorem 4. In the above
proof, we transformed A(x) to (v : A(x)) X (u : A(x)) X B(x) W (v : A(x)) X
= (u : A(x)) x B(x), which are mutually deducible. One might think that
A(x) to (u : A(x)) X B(x) W (u : A(x)) X =B(x) also works. Although A(x) and
(u : A(x)) X B(x) W (u : A(x)) X =B(x) are also mutually deducible, this is not
the case because (v : A(x)) x B(x) and (u : A(x)) X =B(x) are not contradic-
tory when u is appearing in B as a free variable: for a : (u : A(x)) X B(x)
and a’ : (u : A(x)) X =B(x), we only get maa : Biy,q/u) and m2a’ : =Bz, a7 /u)»
which are apparently different propositions. In other words, when there
is an anaphoric dependency between A and B, there may exist an entity x
that satisfies (u : A(x)) x B(x) on one hand and satisfies (v : A(x)) X =B(x)
on the other hand. Thus, we cannot apply Theorem 5 to split the entities

into two groups, {x | (u : A(x)) X B(x)} and {x | (u : A(x)) X =B(x)}.

173

QUANTIFIER AND INFERENCE

We are familiar with such a situation in the interpretation of donkey

sentences. We repeat an example below.
(5.3) Most farmers who own a donkey beat it.

Recall that, since farmers can have multiple donkeys, there are two ways
of counting that has been taken into account in the literature. One is to
consider farmers that beat every donkey they own (universal reading, or
strong reading). The other is to consider farmers that beat some donkey
they own (existential reading, or weak reading). In our proof above, we
splitentities into two groups, where the first group, {x | (v : A(x)) X (u : A(x)) X B(x)},

consists of entities considered in the existential reading.

3

Right downward monotonicity of QZ.,, ..

can be proved in an analo-
gous way: when n < N, one can prove m < N from m < n, which is sim-
ilarly proved by using the assumption (x : entity) — (u : A(x)) — B'(x) —

B(x).

5.5 Left monotonicity

It is, in fact, not possible to give proofs of left monotonicity following a
similar strategy. In this section, we describe the problem.
We repeat the model-theoretic definition of left upward monotonicity

below.

Quantifier Q is Left upward monotone (T MoN) if and only if, for all M,

BC M,and A C A’ C M, Qu(A, B) implies Qp(A’, B).

If we write this definition as a theorem of dependent type theory using the

same idea, we get the following.

174

5.5. Left monotonicity

A quantifier Q is left upward monotone if the judgement

[, p:Q(A B), g: (x: entity) — (v : A(x)) — A'(x) +
Q(A’, B) true

holds, where

I+ A: entity — type
[, x : entity, u : A(x) + B : entity — type
[, x : entity, u’ : A'(x) + B : entity — type
I' - Q(A, B) : type

The inclusion relation between A and A’ is again represented as a propo-
sition about entities. Here, unlike right upward monotonicity, we do not
have the elements to the left of A.

This formulation, however, works only when B on the left-hand side
does not depend on the proof of A. That is, we can account for (5.4) but

neither (5.5), (5.6), nor (5.7).
(5.4) Some young man who owns a donkey is happy.
= Some man who owns a donkey is happy.

(5.5) Some young man who owns a' donkey loves it;.

= Some man who owns a? donkey loves it,.

(5.6) Some man who owns a! female donkey loves it;.

= Some man who owns a! donkey loves it;.

(5.7) Some man who owns a’ garden sprinkles it;.

= Some man who owns a' house sprinkles it;.

To make the illustration simpler, let us consider the classical some which

is represented by X-type. Since the problem we encounter here comes

175

QUANTIFIER AND INFERENCE

from the nature of dependent types, we can still observe the same prob-

lem in such a simplified case.

The entailment exemplified in (5.4) corresponds to the following in-
ference, which is straightforwardly provable. In this case, the formulation

we had above captures the left upward monotone inference.

[X : entity
man(x)
" | young(x)
Ip:if|lu:||y:entity)
donkey(y)
own(x, y)
| | happy(x) R _
man(x) r
z: z : man(x)
young(x) .
- : : enti
g:(x:entity) - |u:| | y:entity N v
; donkey(y)
donkey(y)
own(x, y)
own(x, y)
x : entity
z : man(x)
y : entity
L u: true
donkey(y)
own(x, y)
| | happy(x)

However, itisnot the case in (5.5), which contains the donkey anaphora.

The following inference corresponding to (5.5) does not hold in general.

176

5.5. Left monotonicity

x : entity

man(x)

young(x)
Iopi||ut]|y:entity)
donkey(y)

own(x,y) |

love(x, mymou)

[man(x)

z: [z : man(x)
young(x)
. - - y : entity
g:(x:entity) > |u:| | y:entity -
; donkey(y)
donkey(y)
own(x,y)
own(x,y)
x : entity
z : man(x)
y : entity
Flw true
donkey(y)
own(x, y)
love(x, mymou’)

This is because the consequence of the assumption g introduces a new
existentially-quantified entity, which is a donkey, for the given proof of
young man who owns a donkey. It is not easy to prove that the newly in-

troduced donkey also satisfies the predicate love.

In case of (5.5), since it is provable that young man is a man without
any additional assumption, we can prove the entailment without using
the assumption g. If we can ignore using the assumption g, it becomes
easy to prove the left upward monotone inference in (5.5). The similar

applies to (5.6).

This observation suggests that interpreting the inclusion A ¢ A’ as

(x : entity) — (u : A(x)) — A'(x) is not sufficient to account for left mono-

177

QUANTIFIER AND INFERENCE

tone inference involving donkey anaphora. We need to take into account
the inner structure of A and A’, which are possibly referred in the nuclear

scope B.

This point has been discussed in Kanazawa (1994). The study consid-
ers the difference in dynamic effects between man who owns a garden and
man who owns a house in the framework of DPL. In the analysis, the is-
sue was how to block the entailment such as (5.7) among the positive ex-
amples involving donkey anaphora. Here, however, it is the opposite: the
naive formalization blocks the entailmentlike (5.5), (5.6), and (5.7) involv-
ing donkey anaphora in principle, as the assumption introduces different
proofterms. Thus, it is necessary to account for the case such as (5.5) and
(5.6), where the entailment is valid. The analysis of left monotonicity in

DTS and the comparison with DPL are left for our future work.

5.6 Anaphora and inference

We have proved conservativity and right monotonicity of quantifiers as
theorems in dependent type theory. The theorems also take into account
the cases where an anaphoric dependency is involved between restrictor
and scope. By using those theorems, we can show that the following en-

tailment holds in a proof-theoretic manner.

(5.8) P; Mostfarmers who own al donkey love it;.

P, Every farmer who loves a donkey are kind.

H Most farmers who own a donkey are kind.

We sketch how to prove the entailment relation.

178

5.6. Anaphora and inference

Step 1. Obtaining semantic representations. We first obtain semantic

representations of Py, P2, and H by semantic composition.

(P1)

(P2)

n : Nat
a : Finite,,
n > majorityOf| mm; | @, ::
m(a) > 1
x : entity
farmer(x)
y : entity

bijection, (1)

— x : entity
farmer(x)

z: y : entity

u : donkey(y)

own(x, y)

u : donkey(y)

love(x, y)

love(x, @, :: entity)

179

[X : entity
farmer(x)
y : entity
u : donkey(y)

own(x, y)

— kind(r; 2)

QUANTIFIER AND INFERENCE

m : Nat
- EE entity
farmer(x)
m > majorityOf| r1m, | @; - a : Finite,, y : entity
u : donkey(y)
own(x,y)
(H)] - | mia) 2 1
x : entity
[farmer(x)
y : entity

u : donkey(y)

own(x, y)

I kind(x)

L] bijection, (g)

For the quantifier every in (P,), we adopt the universal quantifier in de-
pendent type theory, I1-type, for simplicity. P; and H is underspecified

semantic representation involving @-terms.

Step 2. Type checking, Proofsearch, and @-elimination. Next, anaphora
resolution takes place. In order for the entailment relation in (5.8) to hold,
we need to assume that P; and H consider the same domain of farmers
who own a donkey. This is an admissible assumption in entailment re-
lations in general, as we interpret the hypothesis under the condition of
premises. Thus, @, in (P;) and @3 in (H) is resolved by the same proof
term, say a”* in the global context. Let us abbreviate 174" : Natto a’. @,

is replaced with 71w (see Section 4.3).

Step 3. Conservativity inference of most. After the anaphora resolu-

tion, we obtain the following fully-specified semantic representation of

(P1).

180

5.6. Anaphora and inference

n : Nat

[n > majorityOf (a’)

X : entity
farmer(x)
(P1) : entit
h:M, — w: Y ¥

u : donkey(y)

own(x, y)

love(x, 7T17T2w)

| bijection, (h)
By Theorem 2 of conservativity inference, we obtain the following for-

mula, where we highlight the additional conjunct.

[n : Nat
[n > majorityOf (a’)
[[X : entity
farmer(x)
y : entity
u : donkey(y)
(5.9)

own(x, y)

farmer(x)
y : entity
u : donkey(y)

own(x, y)

love(x, mymow)

| bijection,,;(iz)
This roughly corresponds to Most farmers who own a donkey are farmers

who own a' donkey and love if;. Thus, the inference step can be expressed

as follows in natural language.

(5.10) CONSERVATIVITY INFERENCE
P; Most farmers who own a! donkey love it;.

Most farmers who own a donkey are farmers who own

a! donkey and love it.

181

QUANTIFIER AND INFERENCE

Step 4. General inference of conjunction. From (5.9), we can obtain

the following formula.

- n : Nat
_ n > majorityOf (a’)
— — x : entity
[farmer(x)
. y : entity
5.11) u : donkey(y)
h:M, — own(x, y)
farmer(x)
y : entity
u : donkey(y)
love(x, y)
| bijectionﬂ;(;z)

The predicate own is eliminated from the highlighted part. The proof
term of (5.11) can be constructed from a proof of (5.9) straightforwardly
because it only eliminates the conjunct.®

The formula (5.11) can be interpreted as Most farmers who own a don-
key are farmers who love a donkey. Thus, the inference step is expressed

as follows.

(5.12) GENERAL INFERENCE
Most farmers who own a donkey are farmers who own

a! donkey and love it.

Most farmers who own a donkey are farmers who love

a donkey.

Step 5. Monotonicity inference of most. With (5.11) and (5.6), by The-

orem 11 we obtain the following formula.

6 The proof is very similar to the right-to-left direction of Theorem 2.

182

5.6. Anaphora and inference

[m : Nat

— m > majorityOf(a’)

[- x : entity

[farmer(x)
(5.13) | | v : entity

' u : donkey(y)

own(x, y)

kind(x)
| bijection, (g)

It corresponding to the fully-specified semantic representation of H, after
eliminating @-term in the formula (5.6).
This final step corresponds to the following natural language infer-

ence.

(5.14) MONOTONICITY INFERENCE
Most farmers who own a donkey are farmers who love

a donkey.

P, Every farmer who loves a donkey are kind.

H Most farmer who own a donkey are kind.

In this way, we can account for a natural language inference involving the
interaction of quantifiers and anaphora.

One drawback of our analysis is that we have assumed the non-standard
elimination rule of subset type that has not yet been fully examined. We
could have avoided using this rule if we had used injection instead of bi-
jection in the definition. It is straightforward to prove that Sundholm’s
original definition of most is right upward monotone. However, as we
have mentioned earlier, it becomes difficult to generalize the definition
to downward entailing quantifiers. The exact cardinal number can also
be used for the anaphora resolution of the subsequent discourse, espe-

cially in complement anaphora.

183

QUANTIFIER AND INFERENCE

One may think that another possibility is to get rid of the bijection rel-
ativized to entity and investigate the other solutions to the proportion
problem. For instance, as Ranta (1994) mentioned, we can use subset
types in the semantic representation of most. The subset type counter-
part of the semantic representation is given as follows.

[k : Nat
- a : Finite, ({x : entity | A})

k > majorityOf | my7; [@ ::
mi(a) > 1

L

The alternative is to introduce the notion of a mere proposition as is

(5.15)
f:Mk—>{x:entity|

bijection (f)

proposed by Luo (2020) and represent the indefinite in the restrictor by
the weak version of existential quantifier, 3. With a notion of mere propo-
sition, one can adopt the principle of proof irrelevance stating that any
two proofs of the same logical proposition should be the same. Using the
logical operator 3 can thus prevent the multiple-donkey problem. Ac-
cording to their proposal, the donkey sentence in existential reading is

represented as follows.

(5.16) Mostz : [Zx : Farmer Jy : Donkey. own(x, y)].
3y’ : [Zy : Donkey. own(n; z, y)]. beat(r z, 71y’)

Here, Jin the firstline ensures the correct counting, while X in the second
line provides an antecedent to the donkey pronoun.

Analyses in this direction can avoid using Theorem 3, as bijection,
becomes unnecessary. They cannot, however, immediately getrid of The-
orem 5. We used the theorem to show (x : entity) x (u : A) x B’’s finiteness
from (x : entity) x A4, not from (x : entity) x (u : A) x B. The reason we pre-

ferred this direction is related to the difficulties of constructing bijection,

184

5.6. Anaphora and inference

which requires one to care about the newly involved elements.

Moreover, while these analyses can ignore the indefinite of restrictor
when counting, they also block an anaphoric link from subsequent sen-
tences, which is crucially needed in plural anaphora. In (5.15), one can
obtain f(z) of type {x : entity | (u : A) x B} by applying some z : M to f,
but an entity appearing in the specification is not accessible. In (5.16),
the donkey introduced by a Z-type is only accessible from the scope of
the variable y’, which is merely logical operator.

Here, the tension between the two aspects of quantificational expres-
sions, i.e., logical and linguistic characteristics, is highlighted again. If we
focus on the role of "counting” in quantifier, indefinite information be-
comes something that wants to be hidden. On the other hand, this infor-
mation is essential for the anaphora of natural language, which requires

a counting method that can maintain it.

185

Chapter 6

Concluding Summary

This thesis aimed to provide an analysis of quantifiers in natural language
in the framework of DTS. We have tried to account for the interaction of
quantifier meaning and dynamic linguistic phenomena, which has been
discussed in model-theoretic semantics, from the viewpoint of proof-theoretic

semantics based on dependent type theory.

We adopted the explicit approach based on Sundholm (1989)’s previ-
ous study to give a semantic representation of the quantifier most. The
operation of counting, which plays a central role in quantifiers’ meaning,
was defined as a function. By representing the quantified objects using
a X-type, the semantic representation retained the quantifier’s internally
dynamic nature. On the other hand, to avoid the proportion problem
caused by pair quantification, we adopt injections and bijections differ-
ent from the standard one as Sundholm’s proposal. One of the major up-
dates from the previous proposal is that the quantifier's meaning is de-
fined by bijection. It enables maximizing the cardinal number and in-
troducing the desired antecedent for the plural pronoun. Furthermore,

it allows generalization to other quantifiers such as at most n and exactly

187

CONCLUDING SUMMARY

n. We also proposed a semantic representation that accounts for the am-
biguity between existential and universal readings in donkey sentences.
The two readings are derived from the ambiguity of proof construction

for the donkey pronoun.

Furthermore, these quantifiers’ semantic representation became the
source of the dependent interpretation observed in plural anaphora and
quantificational subordination. The plural pronounitself was defined sim-
ply as a pronoun whose antecedent is a plural object, i.e., more than one
entity. Then, the function introduced by the quantifier can be the an-
tecedent of the plural pronoun by the proof search procedure of DTS. The
function introduced by the quantifier represents a dependency relation
between antecedent objects in terms of the structure of dependent types.
This function contributes to the anaphora resolution of the singular pro-

noun, which can account for its dependent interpretation.

In Chapter 5, we showed that the quantifiers we defined satisfy the in-
ferential properties. From a proof-theoretic perspective, we formulated
conservativity and right monotonicity as theorems in dependent type the-
ory. As the theorems also consider anaphoric dependency, they can ac-

count for natural language inference involving anaphora.

The property of right monotonicity was proved in two steps. In the
first step, we showed the existence of cardinal numbers. In the second
step, we proved the right upward monotonicity for quantifiers whose car-
dinal number is defined as greater than or equal to some natural num-
ber N. Similarly, the right downward monotone property is proved for
quantifiers whose cardinal number is less than or equal to N. For the left
monotonicity, the same definition as conservativity and right monotonic-

ityisnot sufficient to account for anaphoric dependency in the quantified

188

sentence. Instead of defining the left argument’s inclusion relation as a
logical entailment, a possible direction is to consider the type’s nature in

dependent type theory. The full analysis is left for future work.

One contribution of this study is that it extended the empirical cov-
erage of DTS by analyzing quantifiers in the framework. However, it also
shows that this framework provides a basis for a unified analysis of quan-
tifiers’ basic meaning, interaction with dynamic linguistic phenomena,
and inferential properties, suggesting that DTS offers a powerful mecha-
nism for analyzing the natural language meaning. Furthermore, this study
provided new evidence that DTS, and possibly other proof-theoretic se-
mantics based on dependent type theory, can give an alternative view on

various linguistic phenomena discussed in model-theoretic semantics.

One of the future directions is to make the semantic representation of
the quantifier given here even richer. For example, the meaning of the
quantifier most adopted here was a classical one, defined by the majority
of restrictor cardinal numbers. This static definition could be improved
to a context-dependent definition or a proportion-based definition. It
is also possible to give an analysis that takes domain restriction into ac-
count. Furthermore, the analysis of quantifiers other than type (1, 1) and

the extension of the analysis to plural are future tasks.

One of the future works concerning DTS is a detailed study on the na-
ture of proof search. DTS’s proof search is a powerful mechanism that
contributes significantly to the analysis of intra-sentential and discourse
anaphora. It has also been observed that there are cases where inference
is necessary for anaphora resolution and presupposition binding. On the
other hand, to prevent excessive inferences and account for unaccessible

cases, we need a more systematic analysis of how the proof search can

189

CONCLUDING SUMMARY

be restricted. Furthermore, investigating the relationship of inference in
anaphora resolution procedure and inference in entailment and general

inference is left for future work.

190

Appendices

Appendix A: Formal system.

Definition 16 (Alphabet for Apy). An alphabet for Apy is a (Var, Con),
where Var is a set of variables, and Con is a set of constants. Dependent

type semantics employs an alphabet as follows:

Q
&

Var {x, v, 2, u, v, ...}

QA
&

Con {entity, book, arrive, ... john, mary, ...}

Definition 17 (Preterms). The collection of preterms is recursively de-

fined as follows (where x € Varandc € Con,i =0,1,2,...).

A=x|c|@;|type|kind| Az A| (x:A) = A|Ax.A|AA
| (x 2 A) XA (A A) [mi(A) [ma(A) [{A, ..., A}| casep (A, ..., A)
[L]T]O|AWAInI(A)]inr(A)| case A of (A, A)

| A =p A|refla(A) | idpeel(A, A)| Nat| O] suc(A)| natrec(A, A, A)
Definition 18 (Signature). A signature o is defined recursively as follows.
oc:=0|o,c:A

where () is an empty signature, ¢ € Con, A € As.t. -, A : type.

191

APPENDICES

Definition 19 (Context). A context is defined recursively as follows.
r:=0|lLx:A
where () is an empty context, x € Var, A € As.t. T +, A : type.

Definition 20 (Constant symbol rule). Forany (c: A) € o,

con
c.A

Definition 21 (Type rules).

—_— F
type : kind pe
Definition 22 (IT-type). Foranyi € N,

(s1,s2) € {(type, type), (type, kind), (kind, type), (kind, kind)},
and s € {type, kind}

x:.Ai x:‘Ai

A:sy B:sp F i A:s M:B
, 1
(x:A) > B:sp Ax.M :(x:A) —> B

I17, i

M:(x:A)—B N:A
MN : B[N/x]
A—p A B —g B
(x:A) > B—pg(x:A)—>B (x:A) > B—p(x:A) > B

M —g M’

Ax.M —p Ax.M’

M —g M’ N —g N’
MN —g M'N MN —g MN’

(Ax.M)N —p M[N /x]
Definition 23 (Implication).
def
A— B = (x:A) > B wherex ¢ fv(B)

192

Derived rule 24. Foranyi € N,

A
A:s MB ST M:A—B N:A_)E
Ax.M:A— B " wherex ¢ fv(B) MN : B
Definition 25 (Z-type). Foranyi € N
and (s}, s;,) € {(type, type), (type, kind), (kind, kind)},
X :_Ai
A:s) B:s, , M:A N:B[M/x]
—— = YF,i
(x :A)X B s, (M,N):(x:A)XB
M:(x:A)XB M:(x:A)XB
ZE 2E
mM):A T ma(M) : B[y (M)/x] ="
A —>/3 A B —>/g B’
(x :A)XB —p (x: A')XB (x:A)XB =g (x 1 A)x B’
M —>/g M’ N —>/3 N’
(M,N) —p (M’,N) (M,N) = (M,N")
M _)ﬂ M’
mM —g miM’
ni((M1, Mz)) —g M; wherei € {1,2}
Definition 26 (Conjunction).
(A ><B) (x A)X B wherex ¢ fv(B)
Derived rule 27.
M:A N:B M : (AXB) M : (AX B)
-~ @7 -~ @7 E
(M, N): (axB) ! M)A M) :B F

Definition 28 (Enumeration type). Foranyn € N, eachisuchthatl <i <

n,ands € {type, kind}

(}F

{1

{a1, ..., a,} : type a; : {ay,...,a,}

193

APPENDICES

M :{ay,..,a,} C:{ai,..,a,} —>s Np:C(a1) .. N,:C(ap) E
casep(Ny, ..., Ny) : C(M) {

caseq (N1, ..., Nj, ..., Ny) =g N; wherea; : {ay, ..., a;,...a,}

Bottom type and Top type is defined as follows:

def

1L = {}

def

T = {0}

Definition 29 (Bottom type). Fors € {type, kind},

LF M:1 C:.:1—>s
1 : type casey () : C(M)

1E

Definition 30 (Negation).

di
AY A

Definition 31 (Top type). Fors € {type, kind},

Tigpe T et !

M:T C:T—-os N:C{)
casey (N) : C(M)

TE

Definition 32 (Disjoint union of two types). Foranyi € Nands € {type, kind},

A:s B:s
AwB:s °F
M:A B:s A:s N:B
M:A Bis A:s NiB
inl(M):AwB " inf(N) : AwB ©
x:.Ai x:.Bi

L:AWB C:AWB—s M:C(nl(x) N;C(’inr(x))w

E,i
case L of (Ax.M, Ax.N) : C(L) !

case inl(a) of (1x.M, Ax.N) -5 M(a)

case inr(b) of (1x.M, Ax.N) »g N(b)

194

Definition 33 (Intentional equality). Fors € {type, kind},
Ais M:A N:A_, Ais M:A _,
M=4N :s h reflA(M):M:AM
E:Mi=xMy C:(x:A)>(y:A)—>x=ay)—s R:(x:A)— Cxx(refla(x))
idpeel(E,R) : CM1MyE -

idpeel(refl,(M), R) —p R(M)

Definition 34 (Natural numbers). Fors € {type, kind},
n : Nat Nat/,

Natlo suc(n) : Nat

Nat : type Natr 0 : Nat
n:Nat C:Nat—s e:C(0) f:(k:Nat)— C(k)— C(suc(k))
N
natrec(n, e, f) : C(n)

atE

natrec(0,e,f) —p e

natrec(suc(n), e, f) —p f(n)(natrec(n,e, f))

Definition 35 (Addition).
def
natrec(m, n, AxAy.suc(y))

m+n =

m : Nat n:Nat
m + n : Nat +F

Definition 36 (>).)
k : Nat

3

\Y

N
Ik

m=Nat n + k

k : Nat

[N
&

S
IA
3

m:Natn+k

Definition 37 (Multiplication).

d
m-n éf natrec(m, 0, AxAy.(y + n))

m:Nat n:Nat .
m - n : Nat

195

APPENDICES

Definition 38 (@-rule). Foranyi € N,

A:type A true
(@;::A): A

Definition 39 (a-conversion). Foranyx,y € Var and A, B, M € A,

(x:A)—> B = (y:A) — Bly/x] wherey ¢ fv(B)
(x:A)xB = (y:A)xB|y/x] wherey ¢ fv(B)
Ax.M = Ay.M[y/x] wherey ¢ fv(M)

Definition 40 (More-than-zero-steps reduction -»p).

L—gM M-»gN

Derived rule 41.
L »pg M M »g N

L—»ﬁN

Definition 42 (Subject Reduction).
F'rM:AM-gM = TrM:A

Definition 43 (=p).

MEBM LEBN LEBN
Derived rule 44.
L=s N L= N
Derived rule 45.
M Eﬁ N L E,B M M Eﬁ N
N=s M L=s N

196

Definition 46 (Conversion Rule).

M:A A=gB
M : B

conv

Definition 47 (Weakening).

M:

X:Bwk

A
M :
Definition 48 (Notation).

d x. A
(x:A)xB g

d
(AxB) Y

d
(x0, X1, ooy Xp : A) > B éf (xp:A) > (x1:A) > ..>((x,:A) > B

def

idy = Ax.x wherex: A

197

APPENDICES

Appendix B: Theorems.

Theorem 12

A:type B:type C:type M :AWYB
p12(M) : (AWC)WB

Theorem 13: Symmetry law for =

A:s Q:M=4N
p13(Q): N =4 M

=Sym

Theorem 14: Transitivity law for =

A:s L:A M:A N:A Q:L=4M R:M=;4N
P14(Q;R) :L=4 N

=Trans

Theorem 15: Substitution by =

A:s M:A N:A P:A—-s Q: M=, N R:.:PM
P15(Q;R) : PN

=Sub

Theorem 16

Ais M:A N:A M=gN
reﬂA(M) M =4 N

A:s, M:A N:A +rM=4Nlrue = M=gN

Theorem 17

O+n =g n

suc(m) +n =g suc(m + n)

Theorem 18

m :Nat n:Nat
pis(m;n) :m+n=Natn+m

198

[Theorem 19]

n:Nat m:Nat M :suc(n) <m
plg(M)Il’lS m

Proof. We prove that we have p19(M).
p19(M) ¢ (suc(m1(M)), p14(m2(M); p14(q; P1g(suc(m1(M)); n))))
q = p1a(reflnae(suc(n) + 71(M)); 1)
r Y 15 (p1s(n; 11 (M)); reflya(suc(n + 11 (M))))

k : Nat

m =nNat suc(n) + k)
71(M) : Nat 2B T
socOr (M) : Nat V3t PLalm(M); Pua(q prs(suctn (M));) :
m =nNat 1 + suc(my(M))

21
n’ : Nat
(suc(m1(M)), pra(m2(M); P14(q; pis(suc(mi(M)); n)))) :
/
M =Nat B + 1
1)1 .
.| k:Nat .
: : m =nat suc(n) + k i D2
Nat - tvpe NatF . ; . i . p— TEx pua(g; prslsuc(m(M)); n)) :
Nat : :N : N +N; * M =Nat
at : type m:Nat suc(n) +m(M):Nat n+suc(r(M)): Nat ma(M): m =na suc(n) + 11 (M) suc(n) + 11 (M) =nag 11+ suc(rs (M)
P1a(m2(M); pra(q; prs(suc(mi(M)); 7)) : m =nat n + suc(r1(M)) =Trans
Dz:
: : : , suc(ry(M)) : Nat n: Nat (Th18)
Nat : type NatF suc(n) + ﬂi(M) : Nat suc(rrl(M)-) +n:Nat n+ suc(rr{(M)] :Nat q:suc(n) + m1(M) =Nat suc(m (M) +n :"f((suff\:;)(i/[:l); '2 : 1+ suclr (M)
uclmy =Nat 7
=Trans

P14(g; prs(suc(mi(M)); n)) = suc(n) + x1(M) =Nat 1 + suc(m1(M))

suc(n) + (M) : Nat suc(n +m (M) suclri (M) +)

Pralrefiac(suc(n) + mi(M)); 1) = suc(n) +

Pralrefinasuctn + i (M)); 1) & suc(n) + m1(M) =Nac suclr (M) + 1

HV n:Nat m;(M): Nat Nat : type suc(n + 71(M)) : Nat _

H H (Th18)
Nat: type NatF ”1(1;/[) Nat m(M) + : Nat Ax.suc(n + m1(M)) =Nac suc(x) : pig(n;m(M)) : reflnat(suc(n + m(M))) :
Nat — type n+m (M) =Nat 71 (M) + n suc(n + m1(M)) =nat suc(n + m1(M))

P15(p18(n; m1(M)); reflnac(suc(n + 1(M)))) : suc(n + m1(M)) =Nat suc(m (M) + n) =Sub

199

APPENDICES

Lemma 20: Az.inl(z) is an injection, that is, the following holds.

(A, B :type) — (y,y’ : A) = inl(y) =awp nl(y)) > y =2y’

Proof. Weprovey =, y’byassumingA, B : type, y,y’ : A,andu : inl(y) =aup
inl(y). The following derivation holds.

1 51

y:A B:type a Al aiA b:B" y:A
: : Wl) - wk : wk
inl(y) : A®w B A : type a:A y:A

case inl(y) of (1a.a, Ab.y) : A

WE, 1

Here,

case inl(y) of (1a.a, Ab.y) =g y

holds, from which we have
refl4(case inl(y) of (1a.a, Ab.y)) : case inl(y) of (1a.a, Ab.y) =4 y (6.1)
by Theorem 16. By applying =Sub with the assumptions u : inl(y) = inl(y’),
p15(u, refly(case inl(y) of (1a.a, Ab.y))) : caseinl(y’) of (1a.a, Ab.y) =4 y.
By =Sym,

P13(P15(u, refls(case inl(y) of (1a.a, 1b.y))))
.y =a case inl(y’) of (1a.a, Ab.y). (6.2)

200

On the other hand, we also have

/. . —1

y.A B.typewl a:Al a:Alk ‘B J/-A .

inl())) : Aw B A type a:A w ViAo 1w
caseinl(y’) of (1a.a, Ab.y) : A S

which yields to
refls(case inl(y’) of (Aa.a, Ab.y)) : caseinl(y’) of (1a.a, Ab.y) =4y’ (6.3)

in the same way as the above. Thus, by applying =Trans with (6.2) and (6.3),
we get
P1a(P13(P15(u, refly(case inl(y) of (1a.a, 1b.y)))),
refl4(case inl(y’) of (1a.a, Ab.y)))

ty=ay
O
Lemma 21: Az.inr(z) is an injection, that is, the following holds.
(A,B : type) — (v, : B) = inr(y) =auwp inr(y’) > y =p y’
Proof. The proofis given in the same manner as Lemma 20. O

r

Lemma 22: For any injection fi, f>, the composition f, o fj is an

injection, that is, the following holds.

fi:A—>B hL:B—>C . .
(A,B,C : type) — |u; : —|uy: — injection (71 (u2) o m1(u1))
injection (f}) injection (f>)
Proof.
l/, tA- B
1t | p:BoC
% Loy “ :ME yiA B .linjection(fg) ug : (myuz o mu)(y) 1 (myuz o mun)(y) o2 (myug o mu)(y')
mui(y): B e mu(y):B Tz (y:B) = (7 1 B) o muny) =c) > ¥ =5 ¥ ‘E’i = (mug o mu)(y') = (mu)((mu)(y)) = (muz)((mu)(y")) i
() En () - E) =c @@ o) - @) =5 @) us) (@u)0) = M@y _ "
(

moup)(miun () () (us) = (mun)(y) =p (mun)(y’)

201

APPENDICES

Thus,
) ! . wl w2yt ome
YA VAL mui A= A > mn®) =) > ¥ =y ﬁ;“ :
(mu)W)) : (mu)y) =5 (mu)) =y =4y (rau)mn)(mn)(ws) : (Mu)y) =p (Mu)Q) .
(mu) @D ((r2uz) (T (y)mu () (ws)) y =1 y" L3
) L L Auz. (1)) (D ((r2u2) (i () (mu () (w3) = (m1(u2) o ;))y) =c (muz) o m))y) =y =2y’ I, 2*
A:type B:type C:type Ay Ay Aus((mu) ()N (mau)(mm () ()Nws)) = (v 2 A) > (2 A) = (mi(u) o m@))(y) =c (m2) o m@))0) >y =2y’ '

1"
AAABACAu1 duz. Ay Ay Auz.((myun)(y) () ((mzu2)(miuy () (mun (y'))(us))

:(A,B,C:type)ﬂ(ulz[ﬁ:AﬂB)ﬂ(uzz
By the above derivation, we have
AAABACAuy dug. Ay Ay" Auz.((m1u1)(y)(y)N (wzuz)(wru (y)) (1w (y')(us))

fi:A—>B) (
— Uz

Lemma 23 (injection (Ax.inl(inr(x)))): Ax.inl(inr(x)) is an injection,

that is, the following holds.

pL:B—>C

) — injection (m (u2) o m1(u1))

injection (f1) injection (f2)

:B—>C
: (A B, C : type) — (u1 : fo:B =

) — injection (71 (u2) o m1(u1))

injection (f;) injection (f>)

(A, B,C : type) — (y,y’ : B) — inl(inr(y)) =(awp)c inllinr(y")) = y =p ¥’

Proof. Ttimmediately follows from Lemma 20, Lemma 21, and Lemma 22.

O

Theorem 24

Assume that there exists f : A — B such that injection (f) and
surjection (f) are true, where A and B are arbitrary elements of type.

That is, the following proof term i and s exist.
it YA A>f=f0)—>oy=ay
yiA
z =g f(y)

s: (z:B)—>

Then, for m1s : B — A:
(1) injection (r;s) and surjection (1) are true

(2) Ax.f(mys(x)) : B — Band Ax.(ms(f(x))) : A — A are identity

functions

202

Proof. (1) We prove that injection (;s) and surjection (r;s) are true.

o o o
injection (71 s)
si@imo |V 77B°
z2=f()
A —, TE
siz:iB - Zz:B° L s(z)
2= f(7) " yiA
nE A type p o, ,
s(z) : imis(2) =4 ms() 2 =5 f()
: : =Sym L
A Artype ms@)iaA ms(ia AVE=O) P ma(s(2)
2= f(y) 1 A — type 1mys(z) =4 mis(z) 1z =p f(ms(2')
4 : 52 msz) i Pi5(P13 (W), ma(s(2)) : 27 =p f(m15(2)) _sym =Sub
Biope T Jousl):n TE TN) PP @), x @M Fs@) =1 ?
« < =B 1
P14(m2(s(2)), P13 (P15 (P13 (1), ma(s(2)))) : z =p 2’ i =Trans
Aupra(m2(s(2), P13P15 (P13 (W), m2(s(z))) : mis(z) =a ms(z) > z=p 2 ' 2
A2 AuPra(ra(s(2), P13 (P15(P13(0), ma(sIN) £ (22 B) o mis(@) =ams(@) > z=p2” "7
Az.22" Au.pia(ma(s(2)), Pr3@P15P13@), ma(s(z)N) : (z: B) = (2 : B) = mis(z) =a ms(z) = z=p 2 "
N o
surjection (71 s)
. f:A—>B y:A . f:A—>B y:A
y:iA ———— — —EFE y ———V—— —E
s:(z:B)—> f(y):B s:(z:B)—> fy):B
z=f) z=f(y)
IE IE
Py |yA R
i) S : , () : ,
, F») =5 G F») =5 Q")
-4 . - TE; - SEg
LoyiA m(s(f(r) - A m(s(F))) = f() = fri(s(F()))
- f) = f)
—y=ay
ME*

imGCTONEETEDD) ¥ =2 mGF)
Thus, a proof term of surjection (71 s) can be obtained by the following

delivation.

. i, St fr. y:A1
f:A—>B y:A :

T0B iGN v =m0 |

(F@), i) (s(fFMNm2(s(fFN)) :
y =a m1(s(2)) -

Ay Lf@), i@)mi(s(F@MN(m(s(F))) : (v A) —
y =4 m1(s(2))

(2) We prove that Ax.f(m1s(x)) : B — Band Ax.(ms(f(x))) : A — Aare
identity functions, namely, (x : B) —» x = f(ms(x)) and (x : A) — x =4
m1s(f(x)).

(x : B) - x =g f(ms(x))

203

APPENDICES

s:(z:B)— y:A x:B!
z=p f(y)
= = I1E
s(x) : y:a
x:Bf(J’)_

72(()) : x =5 fas@x) ot
Lxra(s) ¢ (x 1 B) — x =5 f(m1s@)

(x:A) > x =p mis(f(x))

. fiA>B xiA!
s:(z:B)—> yid WHE
Z =B f(y)

nE -

N T R "
£ =5 £ sy |V
— ———————— = YFp
Ao (Ao W = f) oy =ay XA UILIUCI REC [z 7o)
i@msF@) : £ () =5 FEsF @) — x =2 msF)

ras () £ =3 s -
SN (@) 5 =2 iU @) o
L@ msFNm2sF @) : (x: A) = x =3 msF@)

Theorem 25: Identity in Canonical form

A:type B:type z:A zZ':B
=(inl(z) =awp inr(z’)) true

d _ _
Proof. LetisLeft éf Ac.case x of (1y.T, Ay.L). We have

isLeft(inl(z)) =T

isLeft(inr(z)) = L.

Now we have the following derivation ((1x.1y.1e.isLeft(x) — isLeft(y))xx(refl yup(x)) =
isLeft(x) — isLeft(x)).

X:AUB y:iAYB
isLeft(A:) : type isLef((y‘) : type TTAUBS
isLeft(x) — isLeft()) : type . o
TedsLeft(x) — isLeft(y) : x = y — type '

: p : isLeft(x) 2 p : isLeft(x) 2 "
isLeft(x) : type p : isLeft(x) b

Ty dedsLeft(x) > IsLeft(y) : (y : AUB) Sx =y = type | T isLeft) = Bleftx) 2
2:A 2B i) =inrz) | Ay edsLeftx) — iskefily) : (x: AU B) — (y:AUB) sx=y > iype " Ardpp:(x:AuB) — iskefics) - iskefi) 0 QT oo
i idpeel(e, Lx.Ap.p) - isLeft(nl(z)) — isLeft(inr(2)) B o z"E
inl(2) = inr(2) : type idpecl(e, AxAp)0: L |
Te.dpeel(e, Lx.Ap.p)) : (inl(z) = inr(2)) — L ’
O

204

Lemma 26:

d
Let v’ éf

Ay.case y of (Ax.case h(x) of (Az.inl(inl(z)), Az.inr(z)), Ax.inl(inr(x)))
. Msuc(l) - Msuc(m) W M,,.

Then,
I[:Nat m:Nat n:Nat a:M; b:M;, h:M;,—->M,, M,
K (inl(a)) =Mayc(m WM, K (inl(b)) — h(a) =M,,wM,, h(b) true

Proof.
h'(inl(a)) =g case h(a) of (1z.inl(inl(2)), Az.inr(z)) (6.4)

R (inl(b)) =p case h(b) of (1z.inl(inl(2)), Az.inr(2)) (6.5)

1 (inl(a)) 1 (inl(b))
=g case h(a) of (Az.inl(inl(2)), Az.inr(z)) =g case h(b) of (Az.inl(inl(2)), Az.inr(z))

'D :
W (inl(@)) =Mycqmem, ' (inl(B)) — h(a) =m,,sm, h(b)

XXX :
= case h(a) of (Az.inl(inl(2)), Az.inr(2))

case h(a) of (1z.inl(inl(2)), Az.inr(z))
=MaucomeM, case h(b) of (1z.inl(inl(2)), Az.inr(z))

=MyycmeM, case h(b) of (1z.inl(inl(2)), Az.inr(z))
— h(a) =m,,um, h(b) — h(a) =m,,em, h(b)
XXX : WGnl(@)) =myyom, FGnI(B)) = h(a@) =wi, om, h(D) conv

u’:M,,,3 b’:M,,,l a’:M,,,3 b’:M,,1 u’:M,,3 b’:M,,,2 u’:M,,3 b’:M,,2
i Dy (D i Ds (D4
h:.. b:M; XXX yyy: hio. b:M; XXX D yyy:
SE ——— —E
h(b) : case inl(a’) of (..., ...) caseinl(a’) of (..., ...) h(b): caseinr(a’) of (..., ...) caseinr(a’) of (...,...)
M,, ¥ M, = case inl(b’) of (..., ...) = caseinr(b’) of (..., ...) M, u M, = case inl(b’) of (..., ...) = caseinr(b’) of (..., ...)
— inl(a’) =m,,um, inl(0") — inl(@’) =m,,um, inr(b’) — inr(a’) =m,,um, inl(b’) — inr(a’) =m,,um, inr(b’)
WE, 1 WE, 2
hi.. a:M ui: rrr:
T O Lk
h(a): case inl(a’) of (Az.inl(inl(2)), Az.inr(z)) case inr(a’) of (Az.inl(inl(2)), Az.inr(z))
M, uM, =Maye(meM, €ase h(b) of (1z.inl(inl(2)), 1z.inr(2)) =Maye(meM, €ase h(b) of (1z.inl(inl(2)), 1z.inr(2))
— inl(a’) =m,,um, h(D) — inr(a’) =m,om, H(b)
WE, 3

XXX :
case hi(a) of (1z.inl(inl(2)), 1z.inr(2)) =m,,(,yeM, case h(b) of (1z.inl(inl(2)), 1z.inr(2))

— h(a) =m,,om, h(b)

205

APPENDICES

(Lm20)
b :
(A, B : type) a My, b :My,
-0y 4 :
— inl(y) =aup inl(y") M,, :'type T type TE
wr— ! @M, b:M, —y=ay
i D] MEe*
: Lo(My)(T)(@)(b') 2
L20(Msucm) (M) (inl (@) (inl (B))(u) : . .
inl(@) =My inl(B") ,
o inl(@) =My inl(®)) X __a:My
—a =m, b EM.,, WM, : type inl(a): M, &M, o
Ax.inl(a@) =m,em, inl(x) : (L2oML)(T)(@)(B")) (T20(Msucmy) (M) (inl (@))(inl () () = reflu, wm, (inl(a)) :
M, :type a' :M, b :M, .
M,, — type a =m, b inl(@) =, um, inl(@)
- - =Sub
XXX : inl(@) =w, om, inl(0) IS
AuXXX :
case nl(@’) of (1z.inl(inl(2)), Az.inr(2)) =my,.yom, case inl(B’) of (Az.inl(inl(2)), Az.inr(z))
— inl(@) =m,om, inl(b")
/.
(Lm20)
bo
a':M b M,
A,B: type, el]
caseinl(a’) of (Az.inl(inl(2)), Az.inr(z)) { typ’ A) @) Mascy 010 Masery
wi caseinll@) of AzinlGnl(e)), Azinr(z) = il RGN .
= inl(y) =ap inl(y) My : type M, : type
=My oM,
case inl(b) of (Az.inl(inl(2)), Az.inr(2)) case inl(b) of (Az.inl(inl(2)), 1z.inr(2)) oY=y —
=g inl(inl (") L20(Msuc(m)) (M,)(inl (@))(inl (7)) :
w2 inlGnl(@)) =Myeqom, inlnl(B7) conv inl(inl(@)) =Mycpom,, inlCinl(B)
= inl(@) =y, inlB)
- —E
120 (M) (ML)l (@) (nl(B)) (1) + inl(@) =M,y inl(B)
1)22
| caseinl(@) of (z.inl(inl(2)), Az.inr(2))
u: caseinl(@) of (Az.inl(inl(2)), Az.inr(2)) =4 inl(inl(@))
=Mauci oM
case inr(b') of (Az.inl(inl(2)), Az.inr(2))) L : : &M,
case inr(b) of (Az.inl(inl(2)), Az.inr(2)) Mucor - type My -type W) Moy ® 1+ M,
o (Th25)
=4 inr(v) o _
w2 inl(inl(@") =M,,(,yom, inr(b) conv b," - o :
~(inl(inl(@)) =Myepom, inr(b) oE Aq.inl(@) =m,om, inr(B)) :
fs(u): L
1 — type
st 0 1 @) =y, 00 - F
Au.case 0 :
case inl(@) of (Az.inl(inl(2)), 12.inr(2)) =Myycqmem, case inr(b) of (Az.inl(inl(2)), 1z.inr(2))
= inl(a’) =m,om, inr(b)
@32
1 caseinr(a’) of (Az.inl(inl(2)), Az.inr(2))
u: caseinr(@) of (Az.inl(inl(2)), Az.inr(2)) = inr(a)
MM
case inl(b") of (Az.inl(inl(2)), Az.inr(2)) :
case inl(b") of (Az.inl(inl(2)), Az.inr(z)) beM
= inlGnl () My type M, :type l0) Mugm ' @ :M,
B s conv* (Th25)
w2 inr(@) =Myyegyont, NIGNIEY) . I
— s —Sym 25t
wx 2 inl(inl(5")) =Mg, (oM, inr(a’) inl(inl (b)) = inr(@) :
2 (nlGnlD) Moo, @)) ey, i)
tos(u*) 1 L
1 — type
case;,;(u) () : inr(a@’) =m,om, inl(b) L —E

Au.casey,yus) () ©
caseinr(a’) of (Az.inl(inl(2)), 12.inr(2)) =M,.(,yom, case inl(h’) of (Az.inl(inl(2)), Az.inr(2))

— inr(a’) =m,,um, inl(b))

206

_ i @M, b:M, .
: o, : M,
; " — ; . N1 . M,, ¥ M, : type inr(a’) :M,,u M,
M,Tgpe «:M, ¥:M, Ax.inr(@’) =m,em, inr(x) © 1 (Mp)Msycem @) (b)(w) : el om, (nr(@)) : (@) =yt om, 107(@) =1
M, — type a =m, b’
XXX : inr(a’) =m,,um, inr(b) —-1,1 e
Au XXX : '
case inr(a’) of (Az.inl(inl(2)), Az.inr(2)) =My 6M,, CS€ inr(b’) of (Az.inl(inl(2)), Az.inr(2))
— inr(a’) =m,,um, inr(b’)
7.
D;:
(Lm21)
Iy :
case inr(a’) of (1z.inl(inl(2)), Az.inr(z)) (s ‘ntE) @M M
Wi caseind(@) of (Lzinlnl(), Azt @) 2 jnetar) -y : :
=Maycm M,y — inr(y) =pwa inr(y’) M, :'type Mgcin © type
caseinr(b') of (Az.inl(inl(2)), Az.inr(2)) case inr(b) of (Az.inl(inl(2)), Az.inr(2)) oy=Y —_—
=g inr(b)) X L1(M,)(Msucm)(@')(B') :
w2 in0(@) =Mayogyont, 1) conv inr(@) =Moo, inr(B)
—a =, b]
11(M)(Msucom)(@) (b)) = @’ =m, b’ -
O
Lemma 27: Let
i= Ak./lk’./lu.natrec(nl(u), (ide,, I,'de/ >, An'./lq.(/lx.inl((nq)(x)), I/lx.inl((nq)(x))>)
f o Mk/ ad Mk
:(k,k’ :Nat) - (u: k' <k)—
injection (i)
The following holds.
(k,l,n:Nat) > (p1 : k =suc() +n) —» (y : M;) —»
(1 (i(k)(suc(D)((n, pr))inl(y)) =m, (m1@(K)(D(P19((n, pY))(Y) true

Proof. By Theorem 19, pig({n, p1)) =g suc(m1({n, p1))) =p suc(n). Let CX déf

natrec(X, (idmy, liay,), An".1q.(Ax.inl((mq)(x)), Lixini((xq)x)))- We have:

i(k)(sucD)((n, p1)) =p Clcqy
i(k)(D(P1o(m, p1))) =p C.

The proof is by induction on n.

207

APPENDICES

(1) For the case n = 0, we prove:

(k,1:Nat) > (p1:k=suc() +0) > (y : M)) —

(1 (i(k)(suc(D)(0, pr)))(inl(y)) =m;, (r1{(K)(D(P19(0, p1)I(Y)
(6.6)

Assume k, [: Nat, p; : k =suc(l) +0,and y : M;.

(1 (i(k)(sucD)({0, p1)))(inl (1))
=5 (m1CQ,y)inl(1))
=p (mlidmycqy liaw,, ,)(inl()
=AMy (inl(y))

=g inl(y)

(m @) (D)(P19 (0, pr))))(¥)
=5 (mCM"O)y)
=g (m{Axinl((T1C))(X)), Livinioruyen))(Y)
=g (m(Ax.inl((m1{idm,, Tiaw, 2)(*)), Lixint(ru)n (V)
=g (Ax.inl((m1(idm,, Liay,))(X)))(¥)
=g inl(idw,(y))
=g inl(y)

Hence, we have (71 (i(k)(suc(1))(0, p1))))(inl(¥)) =m, (m1(i(k)(D)(P19({0, p1))))(¥)
and (6.6) holds.

(2) Assume that the formula holds for n = m (IH).

IH : (k,l:Nat) - (p; : k =suc(l) + m) - (y : M;) —
(m1(i(k)(suc(D))((m, pi)))(inl(¥)) =m, (m1 @) (D(P19(m, p1))))(¥)

208

We will prove the formula for suc(m):
(k,1:Nat) — (py : k = suc(l) +suc(m)) — (y : M;) —
(1 (i(k)(suc())((suc(m), p1y)))(inl(y)) =m, (m1(i(k)(D)(P19((suc(m), p1))))(¥)
(6.7)

Assume k, [: Nat, p; : k = suc(l) + suc(m) and y : M;. From IH,

TH(suc(l) + m)(I)(reflyac(suc(l) + m))(y) :
(m1(i(suc(l) + m)(suc(D))({m, reflnac(suc(l) + m)))))(inl(¥)) =m, (m1(i(suc(l) + m)(D)(P19((m, reflnat(suc(l) + m))))))(y)

holds, namely,

(MCL)0l (1) =Mypeyim (mCU)(y)

has a proof. Now,

(1 (k) (suc(D)(suc(m), pr))(inl (7))

= i)

=p (m(Ax.inl((m1CZ ()]s Laxini(mrgpen))inl (1)
=5 (Ax.inl((T1CLl())(X))(inl ()

=p inl(m1Cl())(Inl(1)))

=5 inl(m1CU)(y)

(m1(i(k)(D (P19 ((suc(m), p1))))(y)
=p (mC)y)
=g (7T1</1x-in|((7T1CISUC(M))(x))»IAx.inl((mq)(x))))(.V)
=5 (Ax.inl(m C*U)(xD))(y)

=5 inl((m1C*)(y)

209

APPENDICES

Hence (71 (i(k)(suc(1))((suc(m), p1))))(inl(y)) =m, (r1(i(k)(1)(p19({suc(m), p1))))(¥)
and (6.7) holds.

From (1) and (2), we conclude that
(k,l,n:Nat) —» (p1 : k =suc(l)+n) —» (y : M;) —

(1 (i(k)(suc(D)((n, pY)))inl(y)) =m, (m11K)D(P19 (1, pI(Y) true

i
Theorem 28
M:{x:A|Bx)} N:{x:A|Bx)} ip(os(M))=(uapx)} ip(0(N))
M =(xapey N
Proof. Fromig (op(M)) : {x:A| B'(x)}, we obtain
op (i (0p(M))) : A (6.8)
by {|}E. We also obtain
2(M) : B(og(M)) (6.9)
from M by {|}E;, which is equivalent to
?(M) : B(op(ip (05(M)))) (6.10)
as op (ip’ (0p(M))) = op(M) holds. Hence, from (6.8) and (6.10), we get
ip(op (i (0p(M)))) : {x : A| B(x)}, (6.11)
which gives
refl 2 ip(op (ip' (05 (M)))) =(x:a(x)} iB(0p (ip(05(M)))). (6.12)

Now, i/ (0(M)) =(x.ap(x)} ip’(0p(N)) holds by the assumption. Hence

we get

refl : ig(op (ip'(03(M)))) =(x:a(x)} iB(0p (i3 (08 (N)))) (6.13)

210

by substitution. As iB(OB’(iB’(OB(M)))) =p M and iB(OB'(iB'(OB(N)))) =p N
hold, we get M ={x:A|B(x)} N-

End of proof.

211

APPENDICES

Appendix C: Lexical entries.

Expression CCG Category Semantic Representation
Anom (S/(S\NP))/N Andv.(x :e) X (u : nx) X vx
SOMe,om (S/(S\NP))/N Andv.(x :e) X (u : nx) X vx
everynom (S/(S\NP))/N AnAv.(u : (x : €) X nx) — v(miu)
Most ,om (S/(S\NP))/N AnAv.Most(n, v)

the,om (S/(S\NP))/N An.Av.w(m(@; i (x : entity) X nx))
Aace ((S\NP)\((S\NP)/NP))/N Andvax.(y:e)X (u:ny)Xvyx
if S/S/S Aplqg.(u:p)—gq

who (N\N)/(S\NP) AvAndx.(nx X vx)

man N Ax.man(x)

boy N Ax.boy(x)

present N Ax.present(x)

farmer N Ax.farmer(x)

donkey N Ax.donkey(x)

sister RN Ay Ax.sisterOf(x, y)

enter S\NP Ax.enter(x)

beat (S\NP)/NP Ay Ax.beat(x, y)

own (S\NP)/NP AyAx.own(x, y)

receive (S\NP)/NP AyAx.receive(x, y)

open (S\NP)/NP AyAx.open(x,y)

he, she,it NP @; ::e

his, her NP/RN Arm(@; : (x :e) xr(x, @; :: e))
young N/N AnAx. (nx X young(x))

212

CCG Category

Semantic Type

(S/(S\NP))/N
((S\NP)\((S\NP)/NP))/N
S/S/S

(N\N)/(S\NP)

NP

N

S\NP

(S\NP)/NP

RN

NP/RN

e—>t)—o(e—>t) ot
(e—t)— (e —>type) e —t
t—ot—t

(e —>t) > (erot) > e >t

e

e—t

e—t

e—e—t

e—e—t

(e—e—ot)—e

213

Bibliography

Lasha Abzianidze. LangPro: Natural language theorem prover. In

Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing: System Demonstrations, pages 115-120, Copen-

hagen, Denmark, September 2017. Association for Computational Lin-

guistics.

Peter Aczel. The type theoretic interpretation of constructive set theory.

In Logic Colloquium ’77, pages 55-66. North-Holland Publishing Com-

pany, 1978.

Peter Aczel. The Type Theoretic Interpretation of Constructive Set Theory:
Choice Principles. In A. S. Troelstra and D. van Dalen, editors, The L.E.]

Brouwer Centenary Symbosium, Amsterdam, 1982.

Peter Aczel. The type theoretic interpretation of constructive set the-
ory: Inductive definitions. In Barcan Marcus et al., editor, Logic,

Methodology and Philosophy of Science, volume VII, pages 17-49. El-

sevier, 1986.

Gabor Angeli and Christopher D. Manning. NaturalLl: Natural logic in-

ference for common sense reasoning. In Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing

215

BIBLIOGRAPHY

(EMNLP), pages 534-545, Doha, Qatar, October 2014. Association for

Computational Linguistics.

Nicholas Asher and Zhaohui Luo. Formalisation of coercions in lexical

semantics. In Sinn und Bedeutung 17, pages 63-80, 2012.

Nicholas Asher and Sylvain Pogodalla. A Montagovian Treatment of

Modal Subordination. In Proceedings of SALT, volume 20, 2011.

H. P. Barendregt. Lambda Calculi with Types. In Handbook of logic in

computer science, volume II, pages 117-309. Oxford University Press,

1992.

Jon Barwise and Robin Cooper. Barwise and Cooper 1981.pdf. In

Linguistics and philosophy, Vol. 4, No. 2, pages 159-219. Springer, 1981.

David lan Beaver. Presupposition. In Johan van Benthem and Alice ter
Meulen, editors, Handbook of Logic and Language, pages 939-1008.
North-Holland, Amsterdam, 1997.

Daisuke Bekki. Representing Anaphora with Dependent Types.

In Nicholas Asher and S Soloviev, editors, Logical Aspects of

Computational Linguistics, pages 14-29. Springer Berling Heidel-
berg, 2014.

Daisuke Bekki and Nicholas Asher. Logical polysemy and subtyping.
In Yoichi Motomura, Alastair Butler, and Daisuke Bekki, editors, New

Frontiers in Artificial Intelligence, volume 7856 of Lecture Notes in

Computer Science, pages 17-24. Springer, 2013.

Daisuke Bekki and Elin McCready. CI via DTS. In Tsuyoshi Murata,

Koji Mineshima, and Daisuke Bekki, editors, New Frontiers in Artificial

216

BIBLIOGRAPHY

Intelligence: JSAI-isAl 2014 Workshops, LENLS, JURISIN, and GABA,

Kanagawa, Japan, October 27-28, 2014, Revised Selected Papers, vol-

ume 9067, pages 23-36. Springer, 2015.

Daisuke Bekki and Koji Mineshima. Context-passing and under-
specification in Dependent Type Semantics. In Stergios Chatzikyr-

iakidis and Zhaohui Luo, editors, Modern Perspectives in Type

Theoretical Semantics, Studies in Linguistics and Philosophy, pages 11—

41. Springer, 2017.

Daisuke Bekki and Miho Satoh. Calculating projections via type check-
ing. In Proceedings of TYpe Theory and LExical Semantics (TYTLES) in
ESSLLI2015, Barcelona, Spain, 2015.

Johan Van Benthem. Meaning: Interpretation and inference. Synthese,

73(3):451-470, 1987.

Pascal Boldini. The reference of mass terms from a type theoretical

point of view. In Proceedings of Forth International Workshop on

Computational Semantics, 2001.

Adrian Brasoveanu. Donkey pluralities: plural information states ver-
susnon-atomic individuals. Linguistics and Philosophy, 31(2):129-209,
2008.

Lucas Champollion, Dylan Bumford, and Robert Henderson. Donkeys

under discussion. Semantics and Pragmatics, 12:1-50, 2019.

Stergios Chatzikyriakidis and Zhaohui Luo. An account of natural
language coordination in type theory with coercive subtyping. In

Constraint Solving and Language Processing, LNCS 8114, pages 31-51.

Springer, 2013.

217

BIBLIOGRAPHY

Stergios Chatzikyriakidis and Zhaohui Luo. Natural Language Reason-
ing Using Proof-assistant Technology : Rich Typing and Beyond. In
Proceedings of the EACL 2014 Workshop on Type Theory and Natural

Language Semantics (TTNLS), pages 37-45, Gothenburg, Sweden,
2014.

Stergios Chatzikyriakidis and Zhaohui Luo. On the Interpretation of

Common Nouns: Types Versus Predicates, pages 43-70. Springer, 2017.

Stergios Chatzikyriakidis and Zhaohui Luo. Identity criteria of common

nouns and dot-types for copredication. Approaches to Coercion and

Polysemy, Oslo Studies in Language, 10(2), 2018.

Gennaro Chierchia. Anaphora and Dynamic Binding. Linguistics and

philosophy, 15:111-183, 1992.

Herbert H. Clark. Bridging. In R. C. Schank and B. L. Nash-Webber, edi-

tors, Theoretical issues in natural language processing, pages 169-174.

New York: Association for Computing Machinery, 1975.

Robin Cooper. Type theory and semantics in flux. Handbook of the
Philosophy of Science, 14(2012):271-323, 2012.

Thierry Coquand and Gérard Huet. The calculus of constructions.

Information and Computation, 76(2-3):95-120, 1988.

G Evans. Pronouns. Linguistic Inquiry, 11(2):337-362, 1980.

N. Francez and G. Ben-Avi. Proof-Theoretic Reconstruction of General-

ized Quantifiers. Journal of Semantics, pages 1-59, 2014.

218

BIBLIOGRAPHY

Peter Thomas Geach. Reference and Generality: An Examination of Some

Medieval and Modern Theories. Ithaca, NY: Cornell University Press,

1962.

Bart Geurts. Presuppositions and Pronouns. Elsevier, 1999. ISBN

1865843830.

Bart Geurts. Donkey business. Linguistics and Philosophy, 25:129-156,
2002.

Jeroen Groenendijk and Martin Stokhof. — Dynamic predicate logic.

Linguistics and Philosophy, 14(1):39-100, 1991.

Justyna Grudzinska and Marek Zawadowski. Generalized Quantifiers on

Dependent Types: A System for Anaphora, pages 95-131. Springer In-

ternational Publishing, Cham, 2017.

Martin Hackl. On the grammar and processing of proportional quanti-
fiers: most versus more than half. Natural Language Semantics, 17:63—

98, 2009.

Irene Heim. The Semantics of Definite and Indefinite Noun Phrases. PhD

thesis, University of Massachusetts, Amherst, 1982.

Irene Heim. On the projection problem for presuppositions. In M. Barlow,
D. Flickinger, and M. Wescoat, editors, Proceedings of WCCFL 2, pages
114-125. Stanford University, Stanford, CA, 1983.

Irene Heim. E-type pronouns and donkey anaphora. Linguistics and

Philosophy, 13(2):137-177, 1990.

219

BIBLIOGRAPHY

Jaakko Hintikka and Lauri Carlson. Conditionals, generic quanti-
fiers, and other applications of subgames. In Esa Saarinen, editor,

Game-Theoretical Semantics, pages 179-214. Springer, 1979.

Tim Hunter, Justin Halberda, Jeffrey Lidz, and Paul Pietroski. Beyond

truth conditions: The semantics of “most”. In Semantics and Linguistic

Theory, volume 18, pages 447-464, 2008.

Thomas E Icard and Lawrence S. Moss. Recent progress on monotonic-

ity. In Linguistic Issues in Language Technology, Volume 9, 2014 -

Perspectives on Semantic Representations for Textual Inference. CSLI

Publications, 2014.

Bart Jacobs. Categorical logic and type theory, volume 141 of Studies in

Logic and the Foundations of Mathematics. Elsevier, 1998.

Nirit Kadmon. On Unique and Non-unique Reference and Asymmetric

Quantification, 1987.

Nirit Kadmon. Uniqueness. Linguistics and Philosophy, 13:273-324,
1990.

Hans Kamp and Uwe Reyle. From Discourse to Logic: Introduction

to Modeltheoretic Semantics of Natural Language, Formal Logic and

Discourse Representation Theory, volume 1. Kluwer Academic Pub-

lisher, 1993. ISBN 0792310284.

Hans Kamp, Josef van Genabith, and Uwe Reyle. Discourse representa-
tion theory. In Handbook of Philosophical Logic, volume 15, pages 125-
394. Springer, 2011.

220

BIBLIOGRAPHY

Makoto Kanazawa. Dynamic generalized quantifiers and monotonic-
ity. In Makoto Kanazawa and Christopher J. Pi n6n, editors, Dynamics,
Polarity, and Quantification. CSLI publication, 1993.

Makoto Kanazawa. Weak vs. strong readings of donkey sentences
and monotonicity inference in a dynamic setting. Linguistics and

Philosophy, 2(17):109-158, 1994.

Makoto Kanazawa. Singular donkey pronouns are semantically singular.

Linguistics and Philosophy, 24:383-403, 2001.

Lauri Karttunen. Discourse referents. In J. D. McCawley, editor, Syntax

and Semantics Vol. 7, pages 363-386. Academic Press, 1976.

Jeffrey C King. Context dependent quantifiers and donkey anaphora.
Canadian Journal of Philosophy, 34(sup1):97-127, 2004.

Eriko Kinoshita, Koji Mineshima, and Daisuke Bekki. An analysis of selec-

tional restrictions with Dependent Type Semantics. In Proceedings of

the 13th International Workshop on Logic and Engineering of Natural

Language Semantics (LENLS13), pages 100-113, 2016.

Eriko Kinoshita, Koji Mineshima, and Daisuke Bekki. An analysis of se-
lectional restrictions with Dependent Type Semantics. In Setsuya Kura-
hashi, Yuiko Ohta, Sachiyo Arai, Ken Satoh, and Daisuke Bekki, editors,
New Frontiers in Artificial Intelligence: JSAI-isAI 2016. Lecture Notes in

Computer Science, volume 10247, pages 19-32. Springer, 2017.

Eriko Kinoshita, Koji Mineshima, and Daisuke Bekki. Coercion as proof
search in dependent type semantics. Approaches to Coercion and

Polysemy, Oslo Studies in Language, 10(2):143-162, 2018.

221

BIBLIOGRAPHY

Emiel Krahmer and Paul Piwek. Presupposition projection as proof con-
struction. In Harry Bunt and Reinhard Muskens, editors, Computing
Meaning, Studies in Linguistics & Philosophy, pages 281-300. Kluwer
Academic Publishers, 1999.

Manfred Krifka. Parametrized sum individuals for plural anaphora.

Linguistics and Philosophy, 19(6):555-598, 1996.

Yusuke Kubota and Robert Levine. Scope parallelism in coordina-

tion in Dependent Type Semantics. In Proceedings of the Twelfth

International Workshop of Logic and Engineering of Natural Language

Semantics (LENLS12), pages 149-162, 2015.

Yusuke Kubota, Koji Mineshima, Bob Levine, and Daisuke Bekki. Under-
specification and interpretive parallelism in dependent type semantics.

In Proceedings of the IWCS 2019 Workshop on Computing Semantics

with Types, Frames and Related Structures, pages 1-9, 2019.

David Lewis. Adverbs of quantification, pages 34AS-15. Cambridge Uni-

versity Press, 1975.

Per Lindstrom. First order predicate logic with generalized quantifiers.

Theoria, 32(3):186-195, 1966.

Godehard Link. The Logical Analysis of Plurals and Mass Terms: A

Lattice-Theoretical Approach. de Gruyter, 1983.

Godehard Link. Generalized Quantifiers and Plurals, pages 151-180.

Springer, 1987.

Georgiana E. Lungu and Zhaohui Luo. Monotonicity reasoning in formal

semantics based on modern type theories. In Nicholas Asher and Sergei

222

BIBLIOGRAPHY

Soloviev, editors, Logical Aspects of Computational Linguistics, pages

138-148. Springer, 2014.

Zhaohui Luo. Common nouns as types. In Denis Béchet and Alexan-

der Dikovsky, editors, Logical Aspects of Computational Linguistics,

volume 7351 of Lecture Notes in Computer Science, pages 173-185.

Springer, 2012a.

Zhaohui Luo. Formal semantics in modern type theories with coercive

subtyping. Linguistics and Philosophy, 35(6):491-513, 2012b.

Zhaohui Luo. Proof Irrelevance in Type-Theoretical Semantics, pages 1-

15. Springer, 2020.

Bill MacCartney and Christopher D. Manning. Modeling semantic con-
tainment and exclusion in natural language inference. In Proceedings
of the 22nd International Conference on Computational Linguistics

(COLING 2008), pages 521-528, Manchester, UK, August 2008. COLING

2008 Organizing Committee.

Per Martin-Lof. Constructive mathematics and computer program-
ming. In L. Jonathan Cohen, Jerzy L.o§, Helmut Pfeiffer, and Klaus-Peter

Podewski, editors, Logic, Methodology and Philosophy of Science VI,

volume 104 of Studies in Logic and the Foundations of Mathematics,

pages 153-175. Elsevier, 1982.

Per Martin-Lof. Intuitionistic Type Theory. Bibliopolis Naples, 1984.
ISBN 8870881059.

Gary Lee Milsark. Toward an explanation of certain peculiarities of the

existential construction in English. PhD thesis, MIT, 1977.

223

BIBLIOGRAPHY

Koji Mineshima. A presuppositional analysis of definite descriptions
in proof theory. In Ken Satoh, Akihiro Inokuchi, Katashi Nagao, and

Takahiro Kawamura, editors, New Frontiers in Artificial Intelligence:

JSAI 2007 Conference and Workshops, Revised Selected Papers, volume

4914 of Lecture Notes in Computer Science, pages 214-227. Springer,
2008.

Koji Mineshima. Aspects of Inference in Natural Language. PhD thesis,

Keio University, 2013.

Lawrence Moss. Natural Logic and Semantics. In Logic, Language and

Meaning, pages 84-93. Springer Berling Heidelberg, 2010.

Andrzej Mostowski. On a generalization of quantifiers. Fundamenta

Mathematicae, 44(2):12-36, 1957.

Bengt Nordstrom, Kent Petersson, and Jan M. Smith.

Programming in Martin-Lof’s Type Theory: An Introduction. Ox-

ford University Press, 1990.

Rick Nouwen. Plural Pronominal Anaphora in Context : Dynamic Aspects

of Quantification. PhD thesis, Utrecht Institute for Linguistics OTS,
2003.

Terence Parsons. Pronouns as paraphrases, 1978.

Rogelio Dévila Pérez. Semantics and Parsing in Intuitionistic Categorial

Grammar. PhD thesis, University of Essex, 1995.

Stanley Peters and Dag Westerstahl. Quantifiers in Language and Logic.

Clarendon Press, 2006.

224

BIBLIOGRAPHY

Aarne Ranta. Type-theoretical Grammar. Oxford University Press, 1994.

Christian Retoré. The montagovian generative lexicon ATy,: A type the-
oretical framework for natural language semantics. In Proceedings of

TYPES 2013, pages 202-229, 2013.

Craige Roberts. Modal Subordination and Pronominal Anaphora in Dis-

course. Linguistics and Philosophy, 12:683-721, 1989.

Mark Steedman. The Syntactic Process. MIT Press/Bradford Books, 2000.

Goran Sundholm. Proof Theory and Meaning. In Handbook of

Philosophical Logic, pages 471-506. Springer Netherlands, 1986.

Goran Sundholm. Constructive Generalized Quantifiers. Synthese, 79(1):
1-12, 1989.

Anna Szabolcsi. Quantification. Research Surveys in Linguistics. Cam-

bridge University Press, 2010.

Mieszko Talasiewicz. Donkey Philosophy. Evidence and Explanation in

Theorizing about Semantics, pages 51-81. Peter Lang, Bern, Switzer-

land, 2018.

Ribeka Tanaka, Koji Mineshima, and Daisuke Bekki. Resolving modal
anaphora in dependent type semantics. In Tsuyoshi Murata, Koji
Mineshima, and Daisuke Bekki, editors, New Frontiers in Artificial

Intelligence: JSAI-isAl 2014 Workshops, LENLS, JURISIN, and GABA,

Kanagawa, Japan, October 27-28, 2014, Revised Selected Papers, vol-

ume 9067, pages 83-98. Springer, 2015.

Ribeka Tanaka, Koji Mineshima, and Daisuke Bekki. On the interpreta-
tion of dependent plural anaphora in a dependently-typed setting. In

225

BIBLIOGRAPHY

Setsuya Kurahashi, Yuiko Ohta, Sachiyo Arai, Ken Satoh, and Daisuke
Bekki, editors, New Frontiers in Artificial Intelligence, pages 123-137.

Springer, 2017a.

Ribeka Tanaka, Koji Mineshima, and Daisuke Bekki. Factivity and pre-
supposition in Dependent Type Semantics. Journal of Language

Modelling, 5(2):385-420, 2017b.

Ribeka Tanaka, Koji Mineshima, and Daisuke Bekki. Paychecks, presup-
position, and dependent types. In Proceedings of the Fifth Workshop

on Natural Language and Computer Science (NLCS2018), Preprint
no.215, Oxford, UK, 2018.

Selcuk Topal and Ahmet Cevik. Natural density and the quantifier “most”.
Journal of Logic, Language and Information, 29:511-523, 2020.

Johan van Benthem. A brief history of natural logic. In M Chakraborty,
B Lowe, and M Nath Mitra, editors, Logic, Navya-Nyaya & Applications,

Homage to Bimal Krishna Matilal. College Publications, London, 2008.

Martin van den Berg. Dynamic generalized quantifiers. In Jaap van
Der Does and Jan van Eijck, editors, Quantifiers, Logic, and Language,

pages 63-94. CSLI publications, 1996a.

Martin van den Berg. Some Aspects of the Internal Structure of Discourse:

The Dynamics of Nominal Anaphora. PhD thesis, University of Amster-

dam, 1996b.

Rob A. van der Sandt. Presupposition projection as anaphora resolution.

Journal of Semantics, 9:333-377, 1992.

226

BIBLIOGRAPHY

Rob A. van der Sandt and Bart Geurts. Presupposition, anaphora, and

lexical content, pages 259-296. Springer, 1991.

Kazuki Watanabe, Koji Mineshima, and Daisuke Bekki. Questions in

dependent type semantics. In Proceedings of the Sixth Workshop

on Natural Language and Computer Science (NLCS’19), pages 23-33,
Gothenburg, Sweden, 2019.

Narumi Watanabe, Daisuke Bekki, and Elin McCready. Japanese hon-
orification: compositionality and expressivity. In S. Kawahara and

M. Igarashi, editors, Proceedings of FAJL7: Formal Approaches to

Japanese Linguistics, the MIT Working Papers in Linguistics 73, pages
265-276.2014.

Yukiko Yana, Koji Mineshima, and Daisuke Bekki. Variable handling and
compositionality: Comparing drt and dts. Journal of Logic, Language,

and Information, 28:261-285, 2019.

Youngeun Yoon. Weak and Strong Interpretations of Quantifiers and

Definite NPs in English and Korean. PhD thesis, University of Texas at
Austin, 1994.

Youngeun Yoon. Total and partial predicates and the weak and strong in-

terpretations. Natural Language Semantics, 4:217-236, 1996.

227

	Acknowledgements
	1 Introduction
	2 Dependent Type Semantics
	2.1 Dependent type theory
	2.1.1 Types depending on terms
	2.1.2 Formal system

	2.2 Dependent types and natural language
	2.2.1 Donkey sentence
	2.2.2 Toward compositional analysis

	2.3 DTS: an overview
	2.4 Semantic representation in DTS
	2.5 Analysis of anaphora
	2.5.1 Sigma-type anaphora
	2.5.2 Pi-type anaphora

	2.6 Analysis of presupposition
	2.6.1 Definite description
	2.6.2 Possessives

	2.7 Anaphora resolution and inference
	2.8 Entailment and meaning

	3 Quantifier in Natural Language
	3.1 Quantification and determiners
	3.2 Intra-sentential anaphora
	3.3 Inter-sentential anaphora
	3.4 Inferential property
	3.5 Previous approaches

	4 Quantifier and Anaphora
	4.1 Constructive generalized quantifier
	4.1.1 Cardinality
	4.1.2 Notion of more than half
	4.1.3 Definition of Most
	4.1.4 Proportion problem
	4.1.5 Counting entities

	4.2 Analysis of most in DTS
	4.3 Donkey sentence
	4.4 Other quantifiers
	4.5 Plural anaphora
	4.5.1 Plural anaphora and dependent interpretation
	4.5.2 Dependency relation
	4.5.3 Plural pronoun

	5 Quantifier and Inference
	5.1 Entailment of quantified sentences
	5.1.1 Inferential properties

	5.2 Conservativity
	5.3 Proofs of right monotonicity
	5.3.1 Overview of the proofs
	5.3.2 Theorem: convertibility of bijection and bijection1
	5.3.3 Theorem: subset types with equivalent specification
	5.3.4 Theorem: subset types with disjoint specification
	5.3.5 Lemma: segmentation of a type
	5.3.6 Theorem: Finiteness of a part

	5.4 Right monotonicity
	5.5 Left monotonicity
	5.6 Anaphora and inference

	6 Concluding Summary
	Appendices
	Appendix A: Formal system.
	Appendix B: Theorems.
	Appendix C: Lexical entries.

	Bibliography

