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Abstract

The Standard Model (SM) of elementary particles was once completed with the discov-

ery of the Higgs boson in 2012. The SM has demonstrated some success in providing

experimental predictions, but there are several phenomena that cannot be explained by

the SM. Example includes the origin of baryon asymmetry, identity of dark matter (DM).

Therefore, the SM needs to be extended. On the other hand, it is also true that the SM

accurately describes the behavior of elementary particles at the present time, so I treat

the extended scalar (Higgs) model on the basis of ”minimality,” which is the smallest

extension to the SM.

Various possible scenarios have been considered to explain baryon asymmetry, includ-

ing leptogenesis and neutrino oscillations. Among many scenarios, I now attempt to

generate baryon numbers using electroweak baryogenesis (EWBG), which is closely re-

lated to Higgs physics, in order to use the extended Higgs model. This scenario is the

most testable and attractive because, as the name suggests, the energy scale is on the

electroweak scale. Since the CP violation (CPV) that the SM contains is not sufficient to

drive EWBG, the introduction of new sources of CPV is needed for models beyond the

SM.

Possible DM candidates include warm DM, which has small mass and relativistic

motion, and cold DM, which has relatively large mass and non-relativistic motion. Among

cold DM, weekly interacting massive particle (WIMP), which can thermally explain the

observed DM relic density, is a representative candidate. This study deals withWIMP-DM

with a mass of O(10-100) GeV. WIMP-DM search experiments include direct detection

experiments in which scattering with nucleons is observed. However, no DM signal has

yet been found, and strong constraints have been placed on the scattering cross section.

Thus, constructing a model that includes WIMP-DM without violating this bound is a

major challenge.

We consider the extension of the SM by adding one complex singlet scalar field (com-

plex singlet extension of the SM : CxSM). This series of studies can be divided into two

main parts: the CP-conserving CxSM and the CP-violating CxSM. First, In the CP-

conserving CxSM, the imaginary part of the newly introduced scalar field behaves as a

DM. In addition, the SM Higgs and the real part of the singlet scalar mix and two Higgs

bosons appear. When the masses of these two Higgs bosons are degenerate, the strong

constraints from the direct detection experiment can be satisfied, which we call the degen-

erate scalar scenario. On the other hand, a strong first-order electroweak phase transition
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(EWPT) is essential for the realization of EWBG, and we investigate its feasibility in the

degenerate scalar region.

Next, we consider the CP-violating CxSM for the completion of EWBG. In this case,

there are three Higgs bosons and the imaginary part of the singlet scalar no longer behaves

as a DM. We first investigate the effect of the CPV phase of the scalar potential on

EWPT and estimate the gravitational waves originating from EWPT. We then introduce

higher dimensional operators to propagate the CPV phase to the SM sector and check its

consistency with electric dipole moment experiments which is sensitive to CPV. Finally,

the generated baryon number is estimated.
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Chapter 1

Introduction

The Standard Model (SM) in particle physics is a successful theory and can explain many results

in various experiments/observations, including collider experiments and cosmological observations.

On the other hand, several phenomena have been observed that cannot be explained by the SM,

such as the baryon asymmetry of the universe (BAU) and the identity of dark matter (DM). Thus,

despite its success, the SM has been forced to expand. The construction of models involving

physics beyond the SM (BSM) that can explain the unsolved problems and the scrutiny of the

testability for them is an important challenge for particle physics.

The Higgs boson was discovered by the Large Hadron Collider (LHC) experiment in 2012 [1, 2].

The SM contains one isospin doublet scalar field, which is the Higgs field. However, there is no

principle that limits the number of Higgs fields or their structure, and the existence of one Higgs

doublet in the SM is only an assumption. Therefore, in considering the BSM model, it is a natural

procedure to extend the Higgs sector. Extended Higgs models include the two Higgs doublet model

and models that add a singlet scalar field to the SM.

Of the outstanding issues that I focus on in this study, I first discuss the BAU. Every elementary

particle has an antiparticle, as the antiparticle of a quark is an antiquark. The baryon number is

one of the quantum numbers, and is assigned 1/3 for quarks and −1/3 for antiquarks. The universe

began with the Big Bang, and the hot and dense universe cooled and expanded rapidly. At the

beginning of the universe, there were equal amounts of particles and antiparticles and the overall

baryon number was zero. But at some point, particles became a little more abundant. Then, as the

universe cooled, particles and antiparticles were annihilated, and now only particles remain. The

process from zero baryon number to positive baryon number is called baryogenesis. Evidence for

the BAU comes from two observations. One is Big Bang Nucleosynthesis (BBN), which represents

the formation of nuclei of light elements [3]. The physical quantity used to describe the degree

of the BAU is the ratio of the baryon number density nB to the photon density nγ. ηB is given

by the ratio of nB to nγ as ηBBN
B = (5.8 − 6.5) × 10−10 (95% CL). nB is also determined by the

7
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Cosmic Microwave Background (CMB) observations [4]. The baryon-to-photon ratios are given

as ηCMB
B = (6.105 ± 0.055) × 10−10 (95% CL). It can be seen that the two observations provide

consistent values and baryogenesis is the correct explanation for these values.

There are three necessary conditions to realize baryon asymmetry which are called Sakharov’s

conditions [5] and consist of (1) Baryon number violation, (2) C and CP symmetry violation, and

(3) Out of thermal equilibrium. Many scenarios have been proposed that satisfy these conditions,

e.g., GUT baryogenesis [6, 7], Electroweak Baryogenesis (EWBG)[8], Leptogenesis [9]. Of these

scenarios, EWBG is the most testable because it produces baryon numbers at relatively low energy

scales. Furthermore, EWBG is closely related to the Higgs boson and thus holds the key to the

elucidation of Higgs physics. In the framework of the SM, each of the Sakharov’s conditions is

explained by the following phenomena; (1) Baryon number violation : sphaleron process, (2) C and

CP symmetry violation : chiral gauge interaction, the Cabibbo-Kobayashi-Maskawa (CKM) ma-

trix, and (3) Out of thermal equilibrium : strong first-order electroweak phase transition (EWPT).

However, EWBG cannot be achieved using the SM for two reasons. First, CP violation (CPV)

introduced by the complex phase of the CKM matrix is too small [10, 11, 12, 13]. The second

problem is the inability to achieve a strong firs-order EWPT in the SM with the observed 125 GeV

Higgs boson [14, 15, 16, 17]. Therefore, since EWBG cannot be realized in the SM, it is necessary

to consider BSM model that extends the Higgs sector and has new CPV phases.

Next, a brief review of DM is provided. DM has been suggested to exist by cosmological

observations, but is impossible to observe optically. DM accounts for about 26.8 % of all matter

and energy in the universe. In addition, several properties of DM are known from cosmological

observations; (1) massive, (2) not interact electromagnetically, and (3) stable. The SM does not

contain particles that satisfy all of these properties, so the SM expansion is necessary in terms

of DM. Among the various DM candidates, weakly interacting large particle (WIMP) is one of

the most attractive candidates. It is known to be in good agreement with data on the thermal

abundance of DM from the CMB observations (the so-called ”WIMP miracle”).

One of the WIMP-DM search experiments is a direct detection experiment. DM from space

collides with liquid Xe stored in an underground laboratory, and the signal emitted when the

nucleus recoils is detected. Direct detection experiments are currently being attempted around the

world. Despite improvements in measurement accuracy, no DM signal has so far been observed,

and in particular, the recent LUX-ZEPLIN (LZ) experiment provides strict upper bounds on the

spin-independent cross section between DM and nucleons [18]. Thus, Constructing a model that

includes DM without violating this bound is a major challenge.

In order to satisfy the severe constraints of direct detection experiments, it has been assumed

that either (1) the mass scale of DM is too large to be reached experimentally, or (2) the coupling

constants for the interactions between DM and the SM particles are too small to detect with
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current experimental facilities. Both of these assumptions imply decoupling from the SM sector.

Here, it is quite natural to ask about the possibilities other than (1) and (2) as conditions for a

BSM model that is consistent with current experimental and observational results. In other words,

we consider a BSM model in which the DM mass scale is within the range reachable by current

experiments and the interactions are not suppressed.

In this study, complex singlet extension of the SM (CxSM) is used as a minimal extended

Higgs mode [19, 20, 21]. As the name implies, the CxSM is the extension of the SM by adding

the complex SU(2) gauge singlet scalar field S. Depending on whether the scalar potential of

the CxSM is invariant or not under CP transformation, the discussion of DM and EWPT would

change; since CPV is essential for the realization of EWBG, I discuss the CP-conserving CxSM as

a first step and then evaluate the CP-violating CxSM.

When the CP-conserving CxSM is taken into account, the imaginary parts of S do not mix with

the real part of S and the SM Higgs, and the stability of the imaginary parts of S is guaranteed,

making it a DM candidate. On the other hand, the real part of S and the SM Higgs mix to form

the mass eigenstates and two Higgs bosons appear. The scattering of DM and quarks in this model

occurs with two Higgs bosons as mediator particles. It is known that when the masses of Higgs

bosons are equal, this scattering is suppressed, which is consistent with the direct detection bound.

This is called a degenerate scalar scenario.

The addition of the new scalar field would be beneficial to EWPT. In general, thermal loops

make a significant contribution to EWPT, but in the CxSM, the structure of the tree-level potential,

represented by the mixing of the scalar singlet and doublet, is more important rather than this.

However, the suppression mechanism of the degenerate scalar scenario and the strong first-order

EWPT provide conflicting conditions for the parameters. Thus, we study the feasibility of strong

first-order EWPT in a degenerate-scalar scenario in the CxSM.

In addition, two studies on the degenerate scalar scenarios will be presented. One is the

application of the Multi-critical Point Principle (MPP) to the CxSM. The MPP discussed in this

study chooses model parameters so that the two low-energy vacua realized by the scalar field are

degenerate. We investigate the possibility that this predicts the degenerate Higgs. The other

concerns the origin of the degenerate scalar scenario. We study the origin of the cancellation

mechanism of the degenerate scalar scenario and show that the operators describing the Higgs-

singlet scalar mixing play essential role.

Next, for the BAU realization, the CPV phase is introduced into the scalar potential of the

CxSM. In this case, there are three Higgs bosons and the imaginary part of S no longer behaves

as a DM. We examine CPV effects on EWPT, and then find that the strength of the first-order

EWPT would get weaker as the CPV effect becomes larger. Furthermore, as a phenomenological

consequence of the first-order EWPT, we also evaluate gravitational waves (GWs). As a result,
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GW amplitudes are diminished by the size of the CPV. Future GW experiments may shed light

on CPV in the singlet scalar sector as well as the experimental blind spot due to the degenerate

Higgs.

Finally we study the possibility of EWBG in the CxSM. In our setup, CPV is provided by

dimensional-5 Yukawa interactions involving the complex scalar field. In contrast to previous

studies in the literature, we exemplify a case in which a complex phase in the singlet scalar

potential is transmitted to the fermion sector via the higher-dimensional operators and drives

BAU. Experimental searches for CPV are essential for probing the EWBG possibility. This study

focuses on an electric dipole moment (EDM) of the electron because the electron EDM are currently

the most sensitive to CPV. We point out that the electron EDM can be suppressed due to the Higgs

mass degeneracy and the presence of a new electron Yukawa coupling. Thus, viable parameter space

for EWBG is still wide open for the latest experimental bound set by recent EDM experiments.

Here, BAU is generated by using the Boltzmann equations which are based on the semi-classical

force mechanism.

The CP-conserving CxSM study is based on [22, 23, 24] and that of the CP-violating CxSM is

based on [25, 26]. The five papers I have submitted to the journal are a series of studies examining

and validating the CxSM in terms of DM and EWBG, and this doctoral thesis includes quoted and

reprinted portions of these. The structure of this thesis is as follows. Chapter 2 gives an overview

of the SM. Chapters 3 and 4 discuss BAU and DM, phenomena that cannot be explained by SM.

Chapter 5 presents the study of the CP-conserving CxSM, and Chapter 6 extends the previous

model and presents the study of the CP-violating CxSM. Chapter 7 summarizes this thesis.



Chapter 2

Overview of the standard model

In this chapter, a review of the standard model (SM) is presented. First, I explain the particles

included in the SM and the SM Lagrangian. Then, the Higgs mechanism and the electroweak

symmetry breaking caused by it are described, and the masses of gauge bosons and fermions are

expressed. Lastly, I describe the CKM matrix including the CP symmetry violating phases.

2.1 Components and Lagrangian

Four interactions, gravitational interaction, electromagnetic interaction, weak interaction, and

strong interaction, are known to exist in nature. The SM of elementary particles describes the three

interactions other than gravity. Glashow, Weinberg and Salam proposed a model that integrates

the electromagnetic and weak forces (The unified model of electroweak interactions), and the

addition of quantum chromodynamics describing strong force to it is called the SM.

The SM is a gauge theory that describes strong, electromagnetic, and weak interactions based

on SU(3)C×SU(2)L×U(1)Y gauge symmetry. As a consequence of gauge symmetry, there are gauge

bosons mediating forces on quarks, leptons and Higgs bosons. SU(3)C represents the symmetry

corresponding to strong interactions and the gauge bosons are gluons. The electromagnetic and

weak interactions are described by SU(2)L×U(1)Y . This gauge symmetry is spontaneously broken

by the Higgs field, leaving only U(1)EM . Three of the three gauge bosons in SU(2)L and one in

U(1)Y become massive and mediate the weak interaction as W±, Z bosons. Furthermore, U(1)EM

represents the symmetry corresponding to the electromagnetic interaction and the gauge bosons

are photons.

All particles that make up the SM are summarized in Fig. 2.1. The horizontal direction of

quarks and leptons represents generations, and in the SM, the number of generations of quarks

and leptons is 3. The vertical direction of quarks and leptons represents the difference in electric

charge. For quarks, up (u), charm (c),top (t) have charge 2/3, down (d), strange (s), bottom (b)

11
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quarks leptons Higgs boson

u c t νe νµ ντ
h

d s b e µ τ

gauge bosons

(electromagnetic) (weak) (strong)

γ W±, Z g

Table 2.1: Particles included in the SM.

Q =

(
uL

dL

)
uR dR L =

(
νL

eL

)
eR φ =

(
ϕ+

ϕ0

)
spin 1

2
1
2

1
2

1
2

1
2

0

SU(3)C 3 3 3 1 1 1

SU(2)L 2 1 1 2 1 2

U(1)Y
1
6

2
3

−1
3

−1
2

-1 1
2

Table 2.2: Quantum numbers for quarks, leptons, and Higgs field in the SM.

have charge -1/3. For leptons, electron neutrino (νe), muon neutrino (νµ), tauon neutrino (ντ )

have no charge, electron (e), muon (µ), tauon (τ) have charge -1. In addition, gauge bosons

mediating electromagnetic interactions is photon (γ), weak interactions are W±, Z bosons, and

strong interactions is gluon (g).

In the SM, left-handed fermions are treated as SU(2)L doublet and right-handed fermions as

singlet. Furthermore, the Higgs field is an SU(2)L doublet; the SU(3)C symmetry is characterized

by color charge, the SU(2)L symmetry by weak isospin, and the U(1)Y symmetry by weak hyper-

charge. Furthermore, the generator of U(1)EM symmetry is charge Q and it is known that the

following relation holds;

Q = I3 + Y, (2.1)

where I3 is the third component of weak isospin, the generator of SU(2)L. Assignments of quantum

numbers to quarks, leptons, and Higgs field are shown in Table. 2.2.

The Lagrangian of the SM consists of the following elements;

L = Lkin + LYukawa − VHiggs, (2.2)

where Lkin is kinetic terms for gauge fields, fermions and Higgs field, LYukawa is Yukawa interaction

terms and VHiggs is Higgs potential. Here, the Yukawa interaction terms and the Higgs potential

are discussed in detail.
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The interaction between quarks, leptons and the Higgs field is called the Yukawa interaction

and is given by

−LYukawa = fuQ̄uRϕ
c + fdQ̄dRϕ+ feL̄eRϕ+ h.c. . (2.3)

fu, fd and fe is Yukawa coupling constants of up-type quark, down-type quark and electron. The

introduction of ϕc ≡ iσ2ϕ
∗ preserves the U(1)Y gauge invariance, where ϕ∗ is complex conjugate

of the Higgs field ϕ and σ2 is the second component of Pauli matrices.

The term given by the self-interaction of the Higgs field is called the Higgs potential, which

takes the form;

V = µ2ϕ†ϕ+ λ(ϕ†ϕ)2. (2.4)

For the potential to have a finite minimum, λ > 0 is required. If µ2 > 0, the potential takes

minimum value at ϕ = 0. On the other hand, if µ2 < 0, the potential has extrema other than

V = 0. When one such vacuum is chosen, SU(2)L symmetry that the potential had is broken.

This is called spontaneous symmetry breaking and will be explained in detail in the next section.

2.2 Higgs mechanism and spontaneous symmetry breaking

I consider the following U(1)EM invariant Lagrangian;

L = −1

4
FµνF

µν + |Dµϕ|2 − V (ϕ). (2.5)

The strength of the gauge field Fµν is given by Fµν = ∂µAν−∂νAµ, where Aµ is the electromagnetic

field. The covariant derivative is Dµϕ = (∂µ − igAµ)ϕ. The Higgs potential V (ϕ) is given by

Eq. (2.4). If µ2 < 0, when the scalar field takes the vacuum expectation value (VEV) as follows,

the potential is minimized and spontaneously breaks the gauge symmetry;

⟨ϕ⟩ ≡ v√
2

where v2 = −µ
2

λ
. (2.6)

The fluctuations of the scalar field from the VEV can be expressed as

ϕ =
v√
2
+

1√
2
(ϕ1 + iϕ2) , (2.7)

where ϕ1, ϕ2 are real scalar fields. Then Eq. (2.5) eventually takes the form

L =− 1

4
FµνF

µν +
1

2
(∂µϕ1)

2 +
1

2
µ2ϕ2

1 +
1

2
(gv)2

(
Aµ −

1

gv
∂µϕ2

)2

+ · · · . (2.8)

Here, by redefinition of the gauge field as follows, a new gauge field with mass gv appears;

Ãµ ≡ Aµ −
1

gv
∂µϕ2 (2.9)
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Thus, the gauge symmetry is spontaneously broken when the scalar field takes VEV and, ac-

cordingly, massless particle (Nambu-Goldstone boson) appears. Furthermore, this particle (ϕ2) is

absorbed as a longitudinal wave component of the redefined gauge field (Ãµ), and the gauge field

acquires mass. This is called the Higgs mechanism.

2.3 Masses of gauge bosons and fermions

In the SM, when SU(2)L×U(1)Y is spontaneously broken to U(1)EM , the Higgs field is generally

represented by four real fields and VEV as

ϕ =

(
ρ+ iξ

1√
2
(v + h+ iη)

)
. (2.10)

Here, h, v reapresent the Higgs boson and its VEV, respectively. ρ, ξ and η are Nambu-Goldstone

bosons and absorbed into W±, Z bosons by the Higgs mechanism and photon A remains as a

massless gauge boson.

The interaction between the Higgs field and gauge bosons is given by the kinetic term |Dµϕ|2,
which gives the mass terms of W±, Z bosons. The covariate derivative Dµ in the SM is written as

Dµ = ∂µ + igs
λa

2
Ga
µ + ig

σa

2
W a
µ + igY Y Bµ, (2.11)

where gS, g and gY are gauge coupling constants for SU(3)C , SU(2)L and U(1)Y , respectively. λ
a

represents Gell-Mann matrices. Here, for convenience, I define the linear combination of the Pauli

matrices σ1, σ2 as follows;

T± ≡ σ1 ± iσ2

2
, T+ =

(
0 1

0 0

)
, T− =

(
0 0

1 0

)
. (2.12)

The charged gauge bosons are defined by the following equation;

W± ≡ W 1 ± iW 2

√
2

. (2.13)

Then, one finds

σa

2
W a
µ =

1√
2
(T+W+

µ + T−W−
µ ) +

σ3
2
W 3
µ . (2.14)

Therefore, the mass term of W± boson becomes

Lmass =

∣∣∣∣∣i g√2

(
T+W+

µ + T−W−
µ

)( 0
v√
2

)∣∣∣∣∣
2

=
g2v2

4
W+
µ W

µ−, (2.15)
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where only the Higgs VEV is extracted, i.e., ϕ =

(
0
v√
2

)
. Thus, W± boson mass is given by

mW =
gv

2
. (2.16)

Next, I discuss Z boson mass. I define the relation between two electrically neutral gauge

bosons B,W 3 and photon A, Z boson as follows;(
B

W 3

)
=

(
cos θW − sin θW

sin θW cos θW

)(
A

Z

)
, (2.17)

where θW is called Weinberg angle. Then one finds

σ3
2
W 3
µ + gY Y Bµ = eQAµ + gZ(I3 −Q sin2 θW )Zµ, (2.18)

where gZ ≡ g/ cos θW . Therefore, the mass term of Z± boson becomes

Lmass =

∣∣∣∣igZ (I3 −Q sin2 θW
)
Zµ

v√
2

∣∣∣∣2 = ( gZv2
√
2

)2

ZµZ
µ. (2.19)

Thus, Z boson mass is given by

mZ =
gZv

2
. (2.20)

The fermion masses are obtained by the Higgs field taking VEV in the Yukawa interaction (2.3).

−LYukawa = fu
(
ūL d̄L

)
uR

(
v√
2

0

)
+ fd

(
ūL d̄L

)
dR

(
0
v√
2

)
+ fe (ν̄e ēL) eR

(
0
v√
2

)
+ h.c..

(2.21)

Therefore,

mu = fu
v√
2
, md = fu

v√
2
, me = fe

v√
2
. (2.22)

2.4 CKM matrix

Generalizing the Yukawa interaction of quark fields to account for generations, I can write

−LYukawa = f iju ūLuR
v√
2
+ f ijd d̄LdR

v√
2
+ h.c. ≡ ūLM

ij
u uR + d̄LM

ij
d dR + h.c., (2.23)

where i, j are indices that distinguish the quark generations andM ij
u ,M

ij
d are called mass matrices.

The mass matrix is diagonalized by unitary matrices to obtain the mass eigenvalues. Therefore,

expressing Eq. (2.23) in terms of the mass eigenstates, we get

−LYukawa = = ū′L


mu 0 0

0 mc 0

0 0 mt

u′R + d̄′L


md 0 0

0 ms 0

0 0 mb

 d′R + h.c. , (2.24)
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where the prime symbol represents the mass eigenstates and by using unitary matrices, the fol-

lowing relationship holds;

uL = Uu
Lu

′
L, uR = Uu

Ru
′
R, dL = Ud

Ld
′
L, dR = Ud

Rd
′
R. (2.25)

Flavor-Changing interactions of quarks occur via W± bosons;

L = − g√
2
ūLγ

µdLW
−
µ + h.c. = − g√

2
ū′Lγ

µ
(
Uu†
L U

d
L

)
d′LW

−
µ + h.c.

≡ − g√
2
ū′Lγ

µVCKMd
′
LW

−
µ + h.c.. (2.26)

VCKM is called the CKM matrix and is a unitary matrix representing the strength of the flavor-

changing weak interaction.

The CKM matrix is a 3× 3 matrix, but I first discuss why CP symmetry cannot be broken in

the two-generation model. Considering an N × N unitary matrix U , it has N2 complex matrix

elements, so it is described by 2N2 real parameters. Here, the condition to be satisfied by the

unitary matrix is

(UU †)ij = δij. (2.27)

When i = j, N real conditionals and when i ̸= j, NC2 × 2 real conditionals are given. Therefore,

the degree of freedom of an N ×N unitary matrix U is

2N2 −N − N(N − 1)

2
× 2 = N2. (2.28)

Next, I consider an N ×N orthogonal matrix. Since an orthogonal matrix can be treated as a

unitary matrix restricted to real numbers, its degree of freedom is

N2 −N − N(N − 1)

2
× 2 =

N(N − 1)

2
. (2.29)

In fact, among the N2 parameters, there are N(N − 1)/2 rotation angles, so the number of phases

is N(N + 1)/2. Note here that the quark retains a degree of freedom in the transformation, called

re-phasing. By considering the following phase transformation for each quark q;

q → eiϕqq, (2.30)

the number of degrees of freedom to eliminate the phase is 2N − 1. Thus, the number of physical

CP-violating (CPV) phases is

N(N + 1)

2
− (2N − 1) =

(N − 1)(N − 2)

2
. (2.31)

As can be seen from this, CP symmetry is not broken when the number of generations is 1 or 2,

while the symmetry is broken when the number of generations is 3 or more.
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The CKM matrix is expressed using the three mixing angles θ12, θ23, θ13 and CPV phases δ as

follows;

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.32)

where cij = cos θij and sij = sin θij (i, j = 1− 3).



Chapter 3

Baryon asymmetry of the universe

According to cosmic inflation, inflation results in a rapid decrease in the energy density of matter,

regardless of the initial conditions at the birth of the universe. Therefore, in such a universe, matter

and antimatter must have existed in equal amounts. However, in the present universe, there is

extremely little antimatter relative to matter. This problem is called the baryon asymmetry of

the universe and there is interest in how and at what point this asymmetry occurred. The process

that can generate baryon number is called baryogenesis.

Evidence for the baryon asymmetry of the universe (BAU) comes from two observations. One

is Big Bang Nucleosynthesis (BBN), which represents the formation of nuclei of elements such as

helium and lithium. The physical quantity used to describe the degree of the BAU is the ratio of

the baryon number density nB to the photon density nγ. ηB calculated from BBN can be expressed

as [3]

ηBBN
B = (5.8− 6.5)× 10−10 (95% CL). (3.1)

nB is also determined by the Cosmic Microwave Background (CMB) observations [4]. The

baryon density parameter observed by Planck ΩBh
2 is

ΩBh
2 = 0.0224± 0.0001 (95% CL). (3.2)

Using this, the baryon-to-photon ratios are given as

ηCMB
B = (6.105± 0.055)× 10−10 (95% CL). (3.3)

Therefore, baryogenesis is the process by which such ηB can be generated.

To explain the baryon asymmetry, the following Sakharov conditions must be satisfied [5];

• Baryon number violation

• C and CP symmetry violation

18
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• Out of thermal equilibrium

The reasons why each of these conditions is necessary are described below. First, since the baryon

number should have been zero in the early universe, if the interactions of particles are all baryon

number conserving, the present baryon number should also be zero. Therefore, the baryon number

must be violated. Next, consider C,CP symmetry violation. Suppose reactions occur that produce

positive baryon number. Since C symmetry is a symmetry that exchanges particles and antipar-

ticles, the reverse reactions occur at the same probability. In other words, the reverse reactions

would produce negative baryon number and the total baryon number would be zero. Therefore,

the C symmetry must be broken. When CP symmetry exists, quarks and antiquarks that have

opposite chirality are equivalent and the total baryon number cannot be generated. Therefore,

CP symmetry violation is also necessary. Furthermore, even if the baryon number is produced

by reactions that violate the baryon number, when thermal equilibrium is realized in the early

universe, the reverse reactions occur at the same rate, which would wash out the baryon number

produced. Therefore, departure from thermal equilibrium is also needed.

The BAU is considered to have been realized after inflation and before BBN. Various hypotheses

have been considered to generate baryon numbers during this period such as electroweak baryo-

genesis (EWBG) [8], leptogenesis [9] and Affleck-Dine baryogenesis [27]. Among these scenarios,

EWBG is related to electroweak scale physics, which is expected to be tested by experiment. Ex-

periments that can be used for verification range from colliders to cosmological observations. From

this perspective, I focused on EWBG and the following sections describe the mechanism in more

detail.

3.1 Sphaleron process

In the standard model (SM), baryon number B and lepton number L are conserved respectively

in the classical level, i.e., [28]

∂µj
µ
B = ∂µ

{
1

3
(ūL,Rγ

µuL,R + d̄L,Rγ
µdL,R)

}
= 0,

∂µj
µ
L = ∂µ (ēL,Rγ

µeL,R + ν̄e,Lγ
µνe,L) = 0, (3.4)

where jµB, j
µ
L is the four-vector currents corresponding to these conserved quantities. uL,R, dL,R, eL,R, νL,R

represent three generations of quarks and leptons. However, these currents do not conserve at the

quantum level because the SM is a chiral theory and the electroweak gauge interactions of quarks
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and leptons vary with chirality. Therefore one gets

∂µj
µ
B =

Ng

32π2
g2F a

µνF̃
a,µν ,

∂µj
µ
L =

Ng

32π2
g2F a

µνF̃
a,µν , (3.5)

where the strength tensor is defined as F̃µν =
1
2
ϵµνρσFρσ and Ng is the number of generations. Note

that B − L has no quantum anomaly and is strictly conserved;

∂µ(j
µ
B − jµL) = 0. (3.6)

On the other hand, B + L is not conserved;

∂µ(j
µ
B + jµL) =

Ng

16π2
g2F a

µνF̃
a,µν =

Ng

16π2

[
g22 Tr

(
FµνF̃

µν
)
− g21BµνB̃

µν
]
. (3.7)

It is known that integrating both sides over the entire space-time interval yields

∆(B + L) = 2Ngn, (3.8)

where n is an integer called topological charge. In this way, B+L varies with the effect of quantum

anomaly and the configuration of the gauge field that causes this change is called instanton. When

n = 1, instanton represents the tunneling effect between degenerate vacua, whose transition rate

is

Γinstanton ∝ e−2Sinstanton = e−4π/αW ≃ 10−162. (3.9)

where Sinstanton is the substitution of the instanton solution for the action of SU(2) gauge fields

and αW = g22/4π. Thus, B + L is not conserved, but such a transition rate is very small.

Looking a little closer at Eq. (3.8), the infinitely degenerate vacua is characterized by an integer

called the Chern-Simons number NCS, which is given by

NCS(t) =
1

32π2

∫
d3xϵijk

[
g22

(
F a
ijA

a
k +

g2
3
ϵabcAaiA

b
jA

c
k

)
− g21BijBk

]
t
. (3.10)

Note that in vacua, the Hamiltonian is zero, and ”pure gauge” is employed such that the field

strength is zero. With pure gauge configuration, one gets

Aµ =
i

g2
(∂µU)U

−1 Bµ =
2i

g1
(∂µU1)U

−1
1 F a

ij = Bij = 0, (3.11)

where U and U1 are unitary matrices that are elements of SU(2) and U(1), respectively. Therefore,

the amount of change in B + L when the Euclideanized time τ = −it changes from −∞ to ∞ is

represented by

∆(B + L) = Ng∆NCS. (3.12)
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Figure 3.1: Degenerate vacua labeled by Chern-Simons number. Transitions due to instanton

occur at zero temperature, but the rate is very small. On the other hand, at high temperature,

transitions due to sphaleron processes occur.

Thus, when the gauge field transitions from one classical vacuum to a different vacuum, the fermion

number changes due to quantum anomalies.

As mentioned earlier, the transition rate between two vacua by instantons is very small. On

the other hand, in the 1980s, F.R.Klinkhammner and N.S.Manton discovered an unstable classical

solution in the SU(2) gauge-Higgs system and found that its energy gives the height of the energy

barrier between the classical vacua. This classical solution is called a sphaleron, and transitions

across the barrier occur at high temperature, such as in the early universe. This classical solution

is called sphaleron, and transitions across the barrier occur at high temperature, such as in the

early universe. Fig. 3.1 shows the transitions between the degenerate vacua due to instanton and

sphaleron.

Note that Γsph in the symmetric phase is different from that in the broken phase. When

Γsym
sph /T

3 > H, the sphaleron process is in chemical equilibrium, where T represents temperature.

Here, H is the Hubble parameter and Γsym
sph ∼ α5

WT
4. In view of the above, baryogenesis through the

sphaleron process must occur at T ≲ 1012 GeV. On the other hand, in order for the baryon number

created in the symmetric phase not to be washed out in the broken phase, the sphaleron transition

rate must be small around T ∼ 100 GeV, where the electroweak phase transition (EWPT) occurs

(see below for details). Therefore, baryogenesis must be realized at 100 GeV≲ T ≲ 1012 GeV.

3.2 Electroweak baryogenesis

From here, I focus on EWBG among the various baryogenesis scenarios. First, I discuss EWBG

in the SM. In this case, each of the Sakharov conditions is explained by the following phenomena;

• Baryon number violation : sphaleron process
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• C and CP symmetry violation : chiral gauge interaction, CKM matrix

• Out of thermal equilibrium : strong first-order EWPT with expanding bubbles

In practice, however, EWBG is not realized in the SM for two reasons. First, CP symmetry

violation introduced by the complex phase of the CKM matrix is too small. The second problem

is the inability to achieve a strong first-order EWPT in the SM with the 125 GeV Higgs boson.

In order for strong first-order EWPT to occur, there must be an upper limit on the Higgs mass,

which is about 70 GeV. This is inconsistent with the Higgs mass observed in the Large Hadron

Collider (LHC) experiment. Therefore, since EWBG cannot be realized in the SM, it is necessary

to consider new physics beyond the SM that extends the Higgs sector and has new CP-violating

(CPV) phases.

3.2.1 Electroweak phase transition

As discussed above, strong first-order EWPT is needed for departure from thermal equilibrium. In

this section, I see how first-order EWPT is realized and how the strength of EWPT is evaluated.

In the SM, the electroweak symmetry is spontaneously broken when the Higgs field takes

vacuum expectation value (VEV), i.e., ⟨ϕ⟩ = v = 246 GeV. The behavior of the effective potential

with temperature is as follows. First, at high temperature, the Higgs field does not take VEV,

and the effective potential takes a minimum value at ⟨ϕ⟩ = 0. When a certain temperature is

reached, the effective potential takes two degenerate minima. This temperature is called critical

temperature TC and the nonzero Higgs VEV at this time is denoted vC . As the temperature then

decreases, this nonzero Higgs VEV becomes the global minimum.

Figure 3.2: The behavior of the effective potential (left panel) and Higgs VEV (right panel) during

first-order EWPT.

Such behavior of the effective potential and Higgs VEV is shown in Fig. 3.2. Looking at the right

panel, Higgs VEV at TC changes discontinuously. This discontinuous change from symmetric phase
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Figure 3.3: The behavior of the effective potential (left panel) and Higgs VEV (right panel) during

second-order EWPT.

to broken phase is called first-order EWPT. In addition, the right panel shows that a potential

barrier exists between the two degenerate vacua at T = TC . This is what causes tfirst-order

EWPT. On the other hand, during second-order EWPT, the behavior of the effective potential

and Higgs VEV is as shown in Fig. 3.3. In second-order EWPT, the origin ϕ = 0 becomes the

inflection point when T = TC . Since no potential barrier is created, v(T ) varies continuously as

shown in the right panel.

Therefore, it is necessary to create a potential barrier at T = TC for first-order EWPT required

for departure from thermal equilibrium. In order to create the barrier, the potential must be

lowered once, i.e., negative contributions to the potential are needed. There are two main possible

origins of this negative contributions. One is thermal boson-loop, which can occur in both the SM

and beyond the SM (BSM). The other is the origin of the tree-level potential, which can occur

only in the BSM. Before discussing thermal boson-loop-derived first-order EWPT using the SM, I

see how strong first-order EWPT can be defined quantitatively.

In EWBG, the baryon number is generated by an expanding bubble created during first-order

EWPT. As shown in Fig. 3.4, outside the bubble is the symmetry phase, in which the Higgs field

has no VEV in the high-temperature and inside is the broken phase, in which the Higgs field

has VEV in the low-temperature. Considering quarks that pass through or reflect off the bubble

wall, left-handed (right-handed) quarks and their antiparticles have different transmissivities and

reflectivities. However, right-handed quarks and their antiparticles have the same transmission

and reflection rates as left-handed quark antiparticles and left-handed quarks, respectively.

On the bubble wall, the net baryon number nB becomes zero, i.e.,

nB = nLb − nLb̄ + nRb − nRb̄ = 0. (3.13)

The index b (b̄) represents particles (antiparticles) and the index L (R) represents left-handed (right-



24 CHAPTER 3. BARYON ASYMMETRY OF THE UNIVERSE

Figure 3.4: Expanding bubble associated EWPT. Outside the bubble is the symmetry phase with

no Higgs VEV and inside is the broken phase with nonzero Higgs VEV. z represents the radial

axis of the bubble and vwall represents the expansion velocity of the bubble.

handed). On the other hand, in the symmetric phase, since B + L is broken by the sphaleron

process, one finds

nB = nLb − nLb̄ + nRb − nRb̄ ̸= 0. (3.14)

At this time, the B-changing rate in the symmetric phase is larger than the Hubble constant

Γsym
B > H. However, in the broken phase, if the same sphaleron process is activated, the opposite

reaction to that in the symmetric phase occurs, and the generated baryon number is washed away.

Therefore, the B-changing rate in the broken phase should be as follows;

Γbro
B < H. (3.15)

Although the broken phase is a low-temperature phase, the transition rate by instanton is very

small, so the B-changing rate is evaluated using the sphaleron transition rate. The phaleron

transition rate in the broken phase is expressed as

Γbro
B ∝ Γbro

sph ∝ e−Esph/T . (3.16)

Note here that the sphaleron energy is proportional to the Higgs VEV, i.e., Esph ∝ v(T ). Thus, a

large Higgs VEV is required to satisfy the sphaleron decoupling condition (3.15). Specifically, the

condition

vC
TC

≳ 1, (3.17)
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is derived from Γbro
B (T ) < H(T ). Thus, EWPT must be strong first-order, and Eq. (3.17) is the

most important condition for testing EWBG.

EWPT does not actually begin at the critical temperature TC , but at a slightly lower temper-

ature TN which is called nucleation temperature. Now let us define TN and study to what extent

this temperature deviates from TC .

A bubble nucleation rate ΓN(T ) per unit time and per unit volume may take the form [29]

ΓN(T ) ≃ T 4

(
S3(T )

2πT

)3/2

e−S3(T )/T , (3.18)

where S3(T ) is three-dimensional bounce action describing an energy of a bubble that has a critical

radius (critical bubble) at T . The nucleation temperature TN is defined by a relation

ΓN (TN)

H3 (TN)
= H (TN) ≃ 1.66

√
g∗(TN)

T 2
N

mP

, (3.19)

where H (TN) is the Hubble parameter, mP ≃ 1.22 × 10−19 GeV, g∗(TN) denotes the massless

degrees of freedom at TN , and we take g∗(TN) = 108.75 in the numerical analysis. With ΓN(T ) in

Eqs. (3.18) and (3.19) is recast into the form

S3 (TN)

TN
− 3

2
ln

(
S3 (TN)

TN

)
= 143.4− 2 ln

(
g∗ (TN)

100

)
− 4 ln

(
TN

100 GeV

)
, (3.20)

which implies that S3(TN)/TN ≲ 140 would be required for the occurrence of EWPT.

From here, I use the Higgs potential of the SM to focus on the thermal boson-loop, which

plays an important role in achieving a strong first-order EWPT. First, we consider the 1-loop level

effective potential. See App. A for definition and derivation of the effective potential. Note that

the following discussion will be based on the basic premise that Eq. (A.67) holds. The Higgs field

H with a real background field ϕc, Higgs boson h, and Nambu Goldstone bosons χa (a = 1, 2, 3)

is represented as

H =

(
χ1 + iχ2

ϕc+h+iχ3√
2

)
. (3.21)

The tree-level potential using the background field is

V0(ϕc) = −m
2

2
ϕ2
c +

λ

4
ϕ4
c . (3.22)

The effective potential at the 1-loop level takes the form

V1 (ϕc;T ) =
∑
i

ni

[
VCW

(
m̄2
i

)
+
T 4

2π2
IB,F

(
m̄2
i

T 2

)]
, (3.23)
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where i = h,W,Z and t, and degrees of freedom of each particle is respectively given by nh =

1, nW = 6, nZ = 3 and nt = −12. VCW is the zero temperature piece, the so-called Coleman-

Weinberg potential and is given by

VCW(ϕc) =
∑
i

ni
m̄4
i

64π2

(
ln
m̄2
i

µ̄2
− ci

)
. (3.24)

m̄i denote the field dependent masses of the species i and their values in the vacuum represent mi.

Also, µ denotes a renormalization scale and ci = 3/2 for scalars and fermions while ci = 5/6 for

gauge bosons. On the other hand, IB,F are the nonzero temperature pieces, which are given by1

IB,F
(
a2
)
=

∫ ∞

0

dxx2 ln
(
1∓ e−

√
x2+a2

)
. (3.25)

IB with the upper sign is the thermal function for bosons while IF with the lower one is that for

fermions.

At high temperature, where m̄2
i ≪ T 2, IB, IF can be expanded by a2;

IB
(
a2
)
= −π

4

45
+
π2

12
a2 − π

6

(
a2
)3/2 − a4

32

(
log

a2

αB
− 3

2

)
+O

(
a6
)
, (3.26)

IF
(
a2
)
=

7π4

360
− π2

24
a2 − a4

32

(
log

a2

αF
− 3

2

)
+O

(
a6
)
, (3.27)

where logαB = 2 log 4π − 2γE ≃ 3.91 and logαF = 2 log π − 2γE ≃ 1.14 with Euler’s constant

γE ≃ 0.577. Using this high-temperature expansion, the 1-loop effective potential in the SM takes

the following form;

Veff (ϕc;T ) = D
(
T 2 − T 2

0

)
ϕ2
c − ETϕ3

c +
λT
4
ϕ4
c , (3.28)

where

D =
2m2

W +m2
Z + 2m2

t

8v2
(3.29)

E =
2m3

W +m3
Z

4πv3
(3.30)

T 2
0 =

m2
h − 8Bv2

4D
(3.31)

B =
3

64π2v4
(
2m4

W +m4
Z − 4m4

t

)
(3.32)

λT =
m2
h

2v2

[
1− 3

8π2v2m2
h

{
2m4

W log
m2
W

αBT 2
+m4

Z log
m2
Z

αBT 2
− 4m4

t log
m2
t

αFT 2

}]
. (3.33)

Here, logαB ≃ 3.91 and logαF ≃ 1.14. Note that first-order EWPT occurs when E ̸= 0. In

other words, the negative cubic terms of the field make a negative contribution to the potential,

1For the derivation of finite temperature effective potential, see App. A.2
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thereby creating a potential barrier. This cubic terms arise from the gauge boson-loop at finite

temperature.

The critical temperature TC and the Higgs VEV vC are expressed as

TC =
T0√

1− E2/(λTCD)
, vC =

2ETC
λTC

. (3.34)

From the sphaleron decoupling condition (3.17), one gets

vC
TC

=
2E

λTC
≳ 1. (3.35)

It can be seen that the condition for a strong first-order EWPT is given by the ratio of the cubic

term coefficient to the quartic term one. Since T corrections to quartic coupling are logarithmic,

using the approximation λTC ≃ λ = m2
h/2v

2,

mh ≲ 48 GeV. (3.36)

This constraint is inconsistent with the Higgs mass observations at the LHC experiments, so we

need to consider physics beyond the SM.

3.2.2 Types of effective potential

Effective potential is essential to the evaluation of EWPT, and several methods exist to evaluate it.

Here, we employ two gauge-invariant calculation schemes on the scalar potential and two familiar

resummation methods in evaluating 1-loop (gauge dependent) effective potential.

First, a gauge-independent method is presented. The quadratic terms of the field extracted

from the finite temperature effective potential (the second term in Eq. (3.23)) makes the most

dominant contribution to the potential at high temperature and are called the thermal masses.

They correspond to the second terms in Eqs. (3.26) and (3.27). The effective potential composed

of thermal masses and tree-level potential is called the high-temperature (HT) potential, which

is useful for qualitatively evaluating EWPT originating from tree-level structures because it does

not include cubic terms of the field derived from thermal boson-loop. In Chapter 5, the specific

HT potential of the complex singlet extension of the SM (CxSM) is given. In Eq. (3.28), B,D and

T 2
0 are gauge-independent quantities. Thus, note that both thermal masses and high temperature

(HT) potential are gauge-invariant.

Even though the HT potential is of much use to discuss EWPT qualitatively, validity of the

high-temperature expansions of IB,F would not been guaranteed as temperature goes down. Fur-

thermore, 1-loop contributions at T = 0 would not be negligible for quantitative study. In order

to incorporate higher-order corrections in a gauge-invariant way, we employ Patal-Ramsey-Musolf
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(PRM) scheme [30]. In this formalism, TC and the corresponding VEVs at TC are determined sep-

arately, and the higher-order corrections can be taken into account based on the Nielsen-Fukuda-

Kugo (NFK) identity [31, 32]

∂Veff(φ, ξ)

∂ξ
= −C(φ, ξ)∂Veff(φ, ξ)

∂φ
, (3.37)

where C(φ, ξ) denotes some functional that is calculable order by order in perturbation theory.

One can obtain the NFK identity to given order by expanding each term in the both sides in

powers of ℏ. In the PRM scheme, TC is determined using some degeneracy condition [30] (Specific

examples are given in chapter 5) and after that vC is determined by use of V HT. It is noticed in

Refs. [33, 34] that the µ dependence is rather large in the O(ℏ) calculation, and O(ℏ2) contributions
are necessary for the quantitative study. In the current investigation, however, we confine ourselves

to the O(ℏ) calculation as a first step toward more complete analysis, and set µ = mt = 172.76

GeV as a reference point.

We have so far discussed two methods (HT and PRM) to evaluate the effective potential in the

gauge invariant manner. For comparisons, we also evaluate strength of EWPT using the 1-loop

Figure 3.5: 1-loop self-energy diagram.

potential (3.23) with the so-called daisy resummations. Using the ϕ4 theory, I confirm that the

perturbation theory is broken by higher-order diagram effects. The Lagrangian is given by

L =
1

2
∂µϕc∂

µϕc − V0(ϕc), V0(ϕc) = −m
2

2
ϕ2
c +

λ

4!
ϕ4
c , (3.38)

where λ > 0 and m2 > 0. The mass term receives temperature-dependent contributions and can

be expressed as

M̄2 = m2 + Σϕc (ϕc;T ) , (3.39)

where Σϕc (ϕc;T ) is a temperature-dependent self-energy and the overline corresponds field de-

pendent masses (See App. B for derivation of field dependent masses.). At 1-loop order, one

obtains

M̄2 = m2 +
λ

2
I(m2), (3.40)
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where

λ

2
I
(
m2
)
=
λ

2

∫ ∑
k

1

K2 +m2 −→
T>0

λ

2

I ′B (a2)

π2
=
λ

2

[
T 2

12
− Tm

4π
+ · · ·

]
. (3.41)

I(m2) is in Eqs. (3.26) and (3.27) and I ′B (a2) = ∂IB (a2) /∂a2. Eq. (3.40) can be represented by a

diagram as in Fig. 3.5.

Figure 3.6: The figure-8 diagram. Figure 3.7: Sunset diagram.

There are two possible two-loop diagrams: the figure-8 diagram (Fig. 3.6) and the sunset

diagram (Fig. 3.7). Dropping the coefficients, the self energies from the two diagrams in the

high-T limit are given as follows:

(the figure-8) ≈ λT 2

(
λT

m

)
, (3.42)

(sunset) ≈ λ2T 2 ln
m

T
. (3.43)

Therefore, the figure-8 diagram is more dominant at high temperature.

Figure 3.8: Mouse diagram. Figure 3.9: Cactus diagram.
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The figure-8 diagrams with one more loop added are called the mouse diagram (Fig. 3.8) and

the cactus diagram (Fig. 3.9). Dropping the coefficients, the self energies from the two diagrams

in the high temperature limit are given as follows:

(mouse) ≈
(
λT 2

)2(λT
m3

)
, (3.44)

(cactus) ≈ λT 2

(
λT

m

)2

, (3.45)

Therefore, the mouse diagram is more dominant at high temperature.

Figure 3.10: daisy diagram.

The figure-8 diagram plus n loops is called a daisy diagram and is shown in Fig. 3.10. The

self-energy of this diagram is

(daisy) ∼ λ2T 3

m

(
λT 2

m2

)n−2

. (3.46)

For the perturbation expansion to take place, λT 2/m2 < 1 must be obtained. Therefore, it is

necessary to review the effective potential in the high temperature region where temperature T is

considerably larger than the mass m. This treatment is also known as resummation.

As commonly done in the literature, Parwani [35] and Arnold-Espinosa (AE) [36] schemes are

used for the resummation. For the former, we replace m2
i appearing in IB and IF with thermally

corrected field dependent masses (See App. B for details.) denoted as M̄2
i . For the latter, on the

other hand, we add

Vdaisy(φ, φS;T ) =
∑

i=h1,2,χ

WL,ZL,γL

−ni
T

12π

[(
M̄2

i

)3/2 − (m2
i

)3/2]
(3.47)

to the 1-loop effective potential V0 + V1, where m
2
i in V1 remain intact. WL, ZL, and γL are the

longitudinal parts of the gauge fields whose degrees of freedom are nWL
/2 = nZL

= nγL = 1, respec-

tively. In principle, the transverse parts of the gauge fields also receive non-perturbative thermal

corrections. Since the first-order EWPT is predominantly induced by the tree-level potential in

our case, such a correction has little effect on vC/TC .
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3.2.3 WKB approximation for top transport scenario

WKB approximation and semiclassical force

This section describes the WKB method for calculating charge accumulation in top transport

scenario [37, 38, 39, 40, 41, 42]. The WKB approximation is valid when the bubble wall thickness

Lw separating broken and symmetric phases is larger than the typical interaction length. At

temperature T , the interaction length is expressed as l ≃ 1/T , so Lw > 1/T is required, which is

called a thick wall regime.

When a bubble expands in space, the Higgs VEV is not uniform. Outside the bubble, the Higgs

takes no VEV and has a finite value inside the bubble. Around the wall, the Higgs VEV varies

continuously (See Fig. 3.4). SM particles acquire mass by the Higgs mechanism as mentioned in

Sec. 2.3. In other words, local VEV means that the mass of the particle changes spatially. The

interaction of particles with the wall of an expanding bubble can be described using the local mass

of particles.

To consider the process by which the baryon number is generated, we begin with the Dirac

equation for fermion ψ with local mass. I solve the Dirac equation using the WKB method and

derive the forces acting on particles from bubble wall. I consider a system in which the wall is

stationary at z = 0. The positive direction of z corresponds to the symmetric phase, and the

negative direction to the broken phase. From here on, the calculations will be based primarily on

ref. [41].

The mass term of fermion ψ is expressed as

Lψ-mass = −M(z)ψ̄PRψ +M(z)∗ψ̄PLψ

= Re[M(z)]ψ̄ψ + i Im[M(z)]ψ̄γ5ψ. (3.48)

M(z) is local mass of fermion ψ. Since ψ̄γ5ψ is CP-odd, the imaginary part of local mass is the

source of CPV.

The Dirac equation for ψ is

(iγµ∂µ −M(z)PR −M∗(z)PL)ψ = 0. (3.49)

A wave function with positive energy can be written like

ψs = e−iω

(
Ls

Rs

)
⊗ χs, σ3χs = sχs, (3.50)

where s is spin along z-axis and ω is energy of ψ. Substituting ψs into the Dirac equation, then

one finds

(ω − is∂z)Ls =MRs, (3.51)

(ω + is∂z)Rs =M∗Ls. (3.52)
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Putting these two equations together, I derive the equation for Ls;(
(ω + is∂z)

1

M
(ω − is∂z)−M∗

)
Ls = 0. (3.53)

Assuming that the mass term varies sufficiently slowly along the z direction, under the WKB

approximation, the solution Ls is

Ls = ωei
∫ z pcz(z′)dz′ (3.54)

Here pcz is the canonical momentum along the z direction, not a physical momentum. Substituting

this equation into the equation for Ls (3.53) derives the formula for ω and pcz;{
ω2 −m2 − p2cz + (sω + pcz) θ

′ − m′

m
ω′

ω
+ ω′′

ω
= 0,

2pczω
′ + p′czω − m′

m
(sω + pcz)ω − θ′ω′ = 0,

(3.55)

where prime means to derivative with respect to z. In addition,

m(z) = |M(z)|, θ(z) = argM(z). (3.56)

The energy of ψ is given by

ω =

√
(pcz − αCP)

2 +m2 ∓ sθ′

2
. (3.57)

The sign of the third term of the right-hand side of Eq. (3.57) is + (-) for the particle (antiparticle).

This is the dispersion relation for frame where ψ has no momentum in the direction parallel to the

bubble wall; if ψ has momentum in the x, y direction, the dispersion relation is

ω = ω0 ∓
sθ′

2

ω0z

ω0

, (3.58)

where ω0 and ω0z is defined as

ω0 =

√
p2x + p2x + (pcz − αCP)

2 +m2, (3.59)

ω0z =

√
(pcz − αCP)

2 +m2, (3.60)

where px and py are physical momenta. The physical momentum in the z direction pz is calculated

as pz = ωvgz, where vgz = ∂ω/∂pcz is a group velocity.

Using only physical quantities, the energy and group velocity of particles can be expressed as

E = E0 ∓∆E, (3.61)

vgz =
pz
E0

(
1± sθ′

2

m2

E2
0E0z

)
, (3.62)



3.2. ELECTROWEAK BARYOGENESIS 33

where

∆E = − sm2θ′

2E0E0z

, (3.63)

E0 =
√
p2x + p2y + p2z +m2, (3.64)

E0z =
√
p2z +m2. (3.65)

From this, we derive the force acting on particles. The force in the z direction Fz is

Fz =
dpz
dt

= ωv̇gz = ω

{
vgz

(
∂vgz
∂z

)
pcz

−
(
∂ω

∂z

)
pcz

(
∂vgz
∂pcz

)
z

}
, (3.66)

where the energy conservation ω̇ = 0 and canonical equations of motion were used. Substituting

the equations of ω (3.58) and vgz (3.62), I obtain

Fz = −(m2)
′

2E0

± s (m2θ′)
′

2E0E0z

∓ sm2θ′ (m2)
′

4E3
0E0z

. (3.67)

This equation shows that the forces exerted on particles and antiparticles are different: the CP-

violating force is

FCP
z = ±s (m

2θ′)
′

2E0E0z

∓ sm2θ′ (m2)
′

4E3
0E0z

. (3.68)

This force causes a difference between the motion of the particle and the motion of the antiparticle.

Charge transport equation

The CP-violating force due to local mass causes a difference between the motion of the particles

and that of the antiparticles. This difference generates a current of hypercharge, which accumulates

around the bubble wall. This accumulation is described by the chemical potential of the particles.

Using the Boltzmann equation and the CP-violating force, I derive the transport equation for the

chemical potential. Solving this yields the distribution of current accumulation.

In interactions where the mean free path Γ−1is less than the wall thickness Lw, the fermion

state represented by Eq. (3.54) is assumed to behave like a particle with momentum (px, py, pz). In

other words, I now assume that momentum is conserved in the scattering process between WKB

states and behaves as a free particle at infinity. Under these assumptions, the thermal equilibrium

distribution function in the wall frame of the WKB state takes the form

f eqi (x,p) =
1

eβγw(Ei0±∆Ei+vwpiz) + 1
, (3.69)

where β = 1/T and γw = 1/
√

1− v2w. vw is the wall velocity in a frame where all plasma is

stationary. Each particle is labeled with i. The deviation from the thermal equilibrium caused by

the passage of wall can be expressed as

fi(x,p) =
1

eβ[γw(Ei0±∆Ei+vwpiz)−µi(x)] + 1
+ δfi(x). (3.70)
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The chemical potentials µi(x) represent local deviations from equilibrium. The perturbations

δfi(x) model a departure from kinetic equilibrium and allow the particles to move in response

to the force exerted by the bubble wall. This does not contribute to the particle density and is

therefore referred to as
∫
d3pδfi = 0.

Particles and antiparticles can be identified by equations like

µi = µi,1e + µi,2o + µi,2e, δfi = δfi,1e + δfi,2o + δfi,2e, (3.71)

Indices 1 and 2 denote the order of perturbation, and the CP-even (odd) part is denoted with

indices e (o). Also, the CP-violating effect appears only at the second order of perturbation. I

expand the distribution function to second order in derivatives as

fi ≃fi0,vw + f ′
i0,vw (γw∆Ei − µi,1e − µi,20 − µi,2e)

+
1

2
f ′′
i0,vw

(
γ2w(∆E)

2 − 2γw∆Eµ
2
i,1e

)
+ δfi,1e + δfi,20 + δfi,2e, (3.72)

where fi0,vw is the unperturbed distribution function expressed as

fi0,vw =
1

eβγw(Ei0+vwpiz) + 1
, (3.73)

and f ′
i0,vw = (d/dEi0) fi0,vw .

The Boltzmann equation for fi(x,p) is given by

L [fi] ≡
(
vgz

∂

∂z
+ Fiz

∂

∂piz

)
= C [fi] , (3.74)

where L [fi] and C [fi] are the Liouville operator and the collision term for fi, respectively. Sub-

stituting the expansion equation for fi (3.72), the force in the z direction (3.67), and the group

velocity (3.62) into the Boltzmann equation (3.74) and subtracting the particle and antiparticle

results in the CP-odd part;

L[f ]|CP− odd =
1

2

(
L [fi]− L

[
fi
])

=vωfi0,vw

(
s (m2θ′)

′

2Ei0Ei0z
− sθ′m2 (m2)

′

4E3
i0Ei0z

)
+ vωf

′′
i0,vω

(
sθ′m2 (m2)

′

4E2
i0Ei0z

)
+

(m2)
′
µio

2Ei0γw
vwf

′′
i0,vω − pizµ

′
io

Ei0γw
f ′
i0,vw +

piz
Ei0

(∂zδfio)

− (m2)
′

2Ei0
(∂pizδfio) . (3.75)

Assuming that the wall velocity is slow enough, expand fi0,vw to the linear order of vw;

fi0,vω = fi0 + vωpizf
′
i0 +O

(
v2w
)
, (3.76)
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where fi0 are defined as

fi0 =
1

eβEi0 + 1
. (3.77)

Integrating Eq. (3.75) by three-momentum pi yields

1

2

〈
L [fi]− L

[
f̄i
]〉

=µiovw
(
m2
)′〈 1

2Ei0
f ′′
i0

〉
− µ′

iovω

〈
p2iz
Ei0

f ′′
i0

〉
(3.78)

+

〈
piz
Ei0

(∂zδfio)

〉
−
(
m2
)′〈 1

2Ei0
(∂pizδfio)

〉
, (3.79)

where ⟨· · · ⟩ is defined as

⟨X⟩ =
∫
d3piX∫

d3pif ′
i0 (mi = 0)

. (3.80)

Eq. (3.79) includes δfio, and the plasma velocity ui can be expressed as

ui =

〈
piz
Ei0

δfio

〉
. (3.81)

Finally, we obtain the following result;

1

2

〈
L [fi]− L

[
f̄i
]〉

= vwKi1µ
′
io + vw

(
m2
)′
Ki2µio + u′i, (3.82)

where

Ki1 = ⟨f ′
i0⟩ , Ki2 =

〈
1

2Ei0
f ′′
i0

〉
. (3.83)

In the same way, we also obtain the following relation;

1

2

〈
piz
Ei0

(
L [fi0]− L

[
f̄i0
])〉

=λivw
(
m2θ′

)′
Ki8 − λivwθ

′m2
(
m2
)′
Ki9 (3.84)

− µ′
ioKi4 + vw

(
m2
)′
uiK̃i6 − vwu

′
i, (3.85)

where λi is the helicity of the particle i and

Ki4 =

〈
p2iz
E2
i0

f ′
i0

〉
, K̃i6 =

[
1

2Ei0
f ′
i0

]
, Ki8 =

〈
|piz| f ′

i0

2E2
i0Ei0z

〉
, (3.86)

Ki9 =

〈
|piz|

4E3
i0Ei0z

(
f ′
i0

Ei0
− f ′′

i0

)〉
. (3.87)

[· · · ] is defined as

[X] =

∫
d3piX∫

d3pifi0,vw
. (3.88)
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The results obtained from the integration of the collision terms are

1

2

〈
C [fi]− C

[
fi
]〉

= βKi0

∑
σ∈ inela

Γσ
∑
j

sσj µjo, (3.89)

1

2

〈
piz
Ei0

(
C [fi]− C

[
fi
])〉

= Γtot ui + vwβKi0

∑
σ∈ inela

Γσ
∑
j

sσj µjo, (3.90)

where Γσ is the thermally averaged reaction rate for an inelastic scattering σ and Γtot =
∑

σ∈ inela Γσ.

The symbol sσj is defined as sσj = 1 (sσj = −1) for j in the initial (final) state of the process σ. The

normalization factor is expressed as

Ki0 = −⟨fi0⟩ /Tn, (3.91)

where Tn is the bubble nucleation temperature. Substituting Eqs. (3.82),(3.85),(3.89) and (3.90)

into the Boltzmann equation results in the following transport equation;

{
u′i + vwKi1µ

′
io + vw (m

2)
′
Ki2µio − βKi0

∑
σ∈ inela Γσ

∑
j s

σ
j µj0 = 0

−µ′
ioKi4 − vwu

′
i + vw (m

2)
′
K̃i6ui + Γtot ui + vwβKi0

∑
σ∈inela Γσ

∑
j s

σ
j µjo = Si.

(3.92)

CK-shceme

The derivation of the transport equation presented in the previous section is based on ref [41].

This is a good approximation when vw is small, but ref. [42] points out that it is controversial when

the wall velocity is large. Cline and Kainulainen give a transport equation at high wall velocities,

which takes the form

{
−Di,1µ

′
i + u′i + γwvw (m

2
i )

′
Qi,1µi −Ki,0Γ̄i = Si,1

−Di,2µ
′
i − vwu

′
i + γwvw (m

2
i )

′
Qi,2µi + (m2

i )
′
R̄iui + Γi, tot ui + vwKi,0Γ̄i = Si,2,

(3.93)

where γ = 1/
√

1− v2w. The functions K,D,Q, R̄ can be expressed as

Ki,0 = −⟨fi0⟩/Tn, Di,1 = −vwKi,1 = ⟨f ′
i0⟩ , Qi,1 ≃ Ki,2 =

〈
1

2Ei0
f ′′
i0

〉
Di,2 ≃ K4,i =

〈
p2iz
E2
i0

f ′
i0

〉
, Qi,2 =

〈
piz
2E2

i0

f ′′
i0

〉
, R̄i =

[
1

2Ei0piz

]
̸= K̃i,6. (3.94)

Plasma velocity in the wall frame ui is defined by ui =
∫
d3pi (piz/Ei0) δfi0. The inelastic reaction
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rates for each particle is defined as [42]

Γ̄t =ΓSS ((1 + 9Dt,0)µt + 10µb + (1− 9Dt,0)µtc)

+ ΓW (µt − µb) + Γy (µt + µtc + µh) + 2Γm (µt + µtc) , (3.95)

Γ̄b =ΓSS ((1 + 9Dt,0)µt + 10µb + (1 + 9Dt,0)µtc)

+ ΓW (µb − µt) + Γy (µb + µtc + µh) , (3.96)

Γ̄tc =ΓSS ((1 + 9Dt,0)µt + 10µb + (1− 9Dt,0)µtc)

+ 2Γm (µtc + µt) + Γy (2µtc + µt + µb + 2µh) , (3.97)

Γ̄h =
3

4
Γy (2µh + µt + µb + 2µtc) + Γhµh, (3.98)

where

Di,0 = Ki,1 = ⟨f ′
i0⟩, Γss = 4.9× 10−4T, Γy = 4.2× 10−3T,

Γm = m2
t (z)/(63T ), Γh = m2

W (z)/(50T ), ΓW = Γh,tot. (3.99)

Furthermore the total interaction rate can be expressed by the diffusion constant, Γi,tot = Di,2/Di,0Di,

where the quark diffusion constant is given by Dq = 6/T and the Higgs diffusion constant by

Dh = 20/T .

From Eq. (3.93), the transport equations for the chemical potentials of the top quarks µt

and µtc , left-handed bottom quarks µb, Higgs doublets µh, and the relevant plasma velocities ui

(i = t, b, tc, h) are represented as

St,1 = −Dt,1µ
′
t + u′t + γwvw

(
m2
t

)′
Qt,1µt −Kt,0Γ̄t, (3.100)

0 = −Db,1µ
′
b + u′b −Kb,0Γ̄b, (3.101)

St,1 = −Dt,1µ
′
tc + u′tc + γwvw

(
m2
t

)′
Qt,1µtc −Kt,0Γ̄tc , (3.102)

0 = −Dh,1µ
′
h + u′h −Kh,0Γ̄h, (3.103)

St,2 = −Dt,2µ
′
t − vwu

′
t + γwvw

(
m2
t

)′
Qt,2µt +

(
m2
t

)′
R̄tut + Γt, tot ut + vwKt,0Γ̄t, (3.104)

0 = −Db,2µ
′
b − vwu

′
b + Γb, tot ub + vwKb,0Γ̄b, (3.105)

St,2 = −Dt,2µ
′
tc − vwu

′
tc + γwvw

(
m2
t

)′
Qt,2µtc +

(
m2
t

)′
R̄tutc + Γt, tot utc + vwKt,0Γ̄tc , (3.106)

0 = −Dh,2µ
′
h − vwu

′
h + Γh, tot uh + vwKh,0Γ̄h, (3.107)

with the source terms for the top quark,

St,l = −γwvw
(
m2
t θ

′
CP

)′
Q8
t,l + γwvwm

2
t θ

′
CP

(
m2
t

)′
Q9
t,l (l = 1, 2), (3.108)

where

Q8
i,l ≡

〈
spp

ℓ−1
z

2ElEz
f ′
0w

〉
(3.109)

Q9
i,l ≡

〈
spp

ℓ−1
z

4El+1Ez

(
1

E
f ′
0w − γwf

′′
0w

)〉
. (3.110)
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For large velocities, there is no hierarchy between St,1 and St,2 and one must include both sources [42].

One would take the masses of the bottom quarks and Higgs as massless because their impacts are

small [41].

First derivatives of Eqs. (3.104)-(3.107) with respect to z are respectively given by

µ′′
t =

∂zSt,2 + γwvw(m
2
t )

′Qt,2µ
′
t + (m2

t )
′R̄tu

′
t + Γt,totu

′
t + vwKt,0Γ̄

′
t

Dt,2

(3.111)

µ′′
b =

Γb,totu
′
b + vwKb,0Γ̄

′
b

Db,2

(3.112)

µ′′
tc =

∂zSt,2 + γwvw(m
2
t )

′Qt,2µ
′
tc + (m2

t )
′R̄tu

′
tc + Γt,totu

′
tc + vwKt,0Γ̄

′
tc

Dt,2

(3.113)

µ′′
h =

Γh,totu
′
h + vwKh,0Γ̄

′
h

Dh,2

. (3.114)

Substituting u′i obtained from Eqs. (3.100)-(3.103) and ∂zSt,l obtained from Eq. (3.108) into the

above equations, I obtain the second order differential equation for µi.

Solving the above transport equations yields distributions of chemical potentials. The boundary

conditions are as follows [43];

µi(z)|z→inf = 0, µ′
i(z)|z→inf = 0, (3.115)

where infinity z corresponds to the symmetric phase. Using these distributions, the baryon number

density normalized by the entropy density is evaluated as

ηB =
405Γsym

sph

4π2γwvwg∗T

∫ ∞

0

dzµBL
fsph exp

(
−
45Γsym

sph z

4γwvw

)
, (3.116)

where

µBL
=

1

2
(1 + 4D0t)µt +

1

2
(1 + 4D0b)µb − 2D0tµtc . (3.117)

The effective degrees of freedom of the plasma given by g∗ = 106.75 in the SM. Γsym
sph is evaluated

as Γsym
sph = 1.0 × 10−6T . The function fsph describes the suppression of the sphaleron rate outside

the bubble caused by the nonzero VEVs. This suppression factor is given by

fsph(z) = min

[
1,

2.4T

Γsym
sph

exp

(
−40ϕ(z)

T

)]
. (3.118)



Chapter 4

Dark matter

Dark matter (DM) is a general term for matter whose existence has been suggested astronomically

but which cannot be observed optically. In 1933, Fritz Zwicky postulated DM to explain the

missing mass in the orbital velocity of galaxies in a galaxy cluster. Other observations also suggest

the existence of DM, such as galaxy rotation speeds and gravitational lensing effects.

From these observations, DM is expected to have the properties of (1) being massive, (2) having

no electric charge, and (3) being stable (at least for a lifetime longer than the age of the universe).

Furthermore, Planck’s observations of the Cosmic microwave background (CMB) indicate that

DM, dark energy, and ordinary matter account for 26.8%, 68.3%, and 4.9%, respectively, of the

average energy density of the current universe. The observations are in agreement with DM values

predicted from simulations of the large-scale structure of the universe.

There are many possible candidates for DM, which can be divided into hot DM with relativistic

motion and cold DM with non-relativistic motion. Predictions of cold DM paradigm are generally

consistent with observations of cosmological large-scale structure. One of the most promising

candidates for cold DM is the weakly interacting massive particle (WIMP). They are known to

be in good agreement with data on the thermal abundance of DM obtained from observations

of the CMB (the so-called ”WIMP miracle”). In the following subsections, I discuss the thermal

abundance of DM, as well as the direct detection experiments that strongly constraint the scattering

of DM and nucleons.

4.1 Relic abundance of DM

The density parameter of DM Ωχ in the current universe (time: t = t0, temperature: T = T0),

according to the CMB observations, is given by [4]

Ωχ (t0)h
2 ≡ ρχ (T0)h

2

3M2
PlH

2
0

= 0.120± 0.001, (4.1)
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where ρχ is DM mass density and is given by ρχ(t) = mχnχ(t) with particle number density nχ. MPl

is Planck mass, H0 is the Hubble parameter that determines the current rate of cosmic expansion,

and h is Planck constant.

In a scenario using a freeze out mechanism, DM is stable and does not decay, but DM pair

annihilates into lighter arbitrary particles A(Ā), i.e.,

χ+ χ̄↔ A+ Ā. (4.2)

In the early universe, it was in thermal equilibrium where rightward and leftward reactions of the

process (4.2) were constantly taking place, but when the temperature decreases due to cosmic

expansion and the universe is not in thermal equilibrium, DM can no longer be produced from

light particles, and only rightward reactions of the process (4.2) occur. Then, at some point, the

reaction rate of annihilation becomes less than the expansion rate of the universe. In other words,

the annihilation process freezes out. The observed relic density is the frozen remnant.

The time variation of the particle number density n(t) follows Boltzmann’s equation as follows;

dn(t)

dt
+ 3

ȧ(t)

a(t)
n(t) = −⟨σvrel⟩

(
n(t)2 − neq(t)

2
)
, (4.3)

where ⟨σvrel⟩ is defined as the thermal average of the DM annihilation cross section. This equation

includes the contribution of the universe expansion. To solve Eq. (4.3), I introduce dimensionless

quantities;

Y =
n(t)

s
, z =

mχ

T
, (4.4)

where s is the entropy density, and Y is a constant as long as the baryon number is conserved

since both n(t) and s are proportional to a−3 (a: scale factor). Furthermore, the Hubble constant

H(t) and mass density ρrad are known to behave as follows;

H(t) ∼ 1

2t
, ρrad ∼ π2

30
g∗T 4, (4.5)

where g∗ is the sum of degrees of freedom of particles in thermal equilibrium. From the Friedman

equation for the radiation-dominant period, the relationship between H(t) and ρrad is obtained;

H(t)2 ∼ ρr(t)

3M2
Pl

=
1

3M2
Pl

π2

30
g∗T 4 =

(
π
√
g∗√
90

T 2

MPl

)2

. (4.6)

Thus, Boltzmann equation of (4.3) can be rewritten as

dY

dz
= −

√
8π2g∗

45
mχMPl ⟨σvrel⟩ ×

1

z2
(Y 2 − Y 2

eq). (4.7)

From Eq. (4.7), the relationship shown in Fig. 4.1 is derived. When z is small, Y decreases with
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Figure 4.1: The schematic illustration of the freeze out mechanism.

increasing z due to the contribution of Yeq, but at some point Yeq contribution cease to work and

the annihilation reaction freezes out. After the decoupling, Y is kept at approximately the same

value. Specifically, the following equation is obtained;

Y (z → ∞) ≃ 1

mχMpl ⟨σvrel⟩
. (4.8)

Therefore, the current DM density parameter is

Ωχ(t0) =
ρχ(t0)

ρcrit(t0)
=
mχn(t0)

ρcrit(t0)
= mχ

(
n(t0)

s(t0)

)
1

(ρcrit(t0)/s(t0))

≃ 1

Mpl ⟨σvrel⟩
1

1.8× 10−9 GeV
≃ 0.2

(
1 pb

⟨σvrel⟩

)
. (4.9)

Comparison with the current observed value (4.1) shows that ⟨σvrel⟩ ∼ 1 pb. Here, the anni-

hilation cross section of WIMP DM is approximately given by the ratio of the weak coupling and

the weak scale mass;

⟨σvrel⟩ ≃
O(α2)

m2
χ

≃ O(10−4)

O(102)
∼ 1 pb. (4.10)

Thus, considering the freeze out mechanism with WIMP DM naturally explains the currently

observed DM relic density. This is so-called ”WIMP miracle”.

4.2 DM direct detection experiment

The search for DM has been attempted in a variety of ways, yet no sign of DM has been detected.

Among them, I focus on direct detection experiments. In this experiment, a huge tank filled with
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liquid xenon is buried underground, and DM from space collides with xenon nuclei. Then the

signals emitted when the nuclei recoil are detected. In particular, the recent LUX-ZEPLIN (LZ)

experiment provides strict upper bounds on the spin-independent cross section between DM and

nucleons [18]. Therefore, an important task in the construction of DM models is to suppress the

scattering of DM and nucleons.

Here, I assume that DM χ is a gauge singlet scalar particle and derive spin-independent scat-

tering cross sections between DM and nucleons [44, 45]. Nucleons consist of quarks q and gluons

g. I first consider the scattering χq → χq. The effective Lagrangian is written as

Leff = Cqχ2mq q̄q, (4.11)

where Cq is the Wilson coefficient. The expectation values of the scalar bilinear operators of quarks

are parametrized as

⟨N |mq q̄q|N⟩ /mN = fNq , (4.12)

which are called mass fractions. |N⟩ (N = p, n) is the nucleon states at rest and mN is nucleon

mass. The mass fractions of nucleons fN are given by using the mass fractions of each quark as

follows;

fN/mN = Cq

{ ∑
q=u,d,s

fNq + 3× 2

27

(
1−

∑
q=u,d,s

fNq

)}

=

Cq × 0.286333 (N = p),

Cq × 0.288820 (N = n).
(4.13)

The effective Lagrangian describing the interaction between scalar DM χ and nucleons N is

written as

Leff = f ′
Nmχχ

2N̄N. (4.14)

The spin-independent cross section σNSI can be expressed as

σNSI =
1

π

(
mχmN

mχ +mN

)2

|f ′
N |

2
, (4.15)

where fN is dimension [M]−1 and f ′
N is dimension [M]−2, so replace f ′

Nmχ with fN . Then the cross

section is

σNSI =
1

π

(
mχmN

mχ +mN

)2
1

m2
χ

|fN |2 . (4.16)
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Therefore, the scattering cross section between DM and nuclei (mass number: A, proton number:

Z) can be written as

σSI =
1

π

(
mχmT

mχ +mT

)2
1

m2
χ

|Zfp + (A− Z)fn|2 , (4.17)

where mT represents mass of the target nucleus.

Defining the converted masses of DM-proton and DM-nucleus as µp and µN , respectively, the

scattering cross sections between DM and the protons in xenon nucleus (A = 131, Z = 54) σpSI are

obtained as follows;

σpSI = σSI
1

A2

µp
µN

=
1

π

(
mp

mχ +mp

)2
1

A2
|Zfp + (A− Z)fn|2

≃ 1

π

(
Cqm2

p

mχ +mp

)2
1

A2
|Z × 0.286333 + (A− Z)× 0.288820|2

∣∣∣∣∣
A=131,Z=54

≃ 1.026× 10−35 cm2 ·
(
Cqm2

p

0.1

)2(
100 GeV

mχ +mp

)2

, (4.18)

where Cq is the coefficient of χχq̄q as in Eq. (4.11) and is a model-dependent quantity. Thus,

by calculating Cq for each model, we can compare the cross section with the bounds of direct

detection experiments.
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CP-conserving CxSM

5.1 The Model

The CxSM is the extension of the SM by adding the complex SU(2) gauge singlet scalar field [19].

In our study, we adopt the following scalar potential:

V0(H,S) =
m2

2
H†H +

λ

4

(
H†H

)2
+
δ2
2
H†H|S|2 + b2

2
|S|2 + d2

4
|S|4 +

(
a1S +

b1
4
S2 +H.c.

)
,

(5.1)

where a global U(1) symmetry for S is softly broken by both a1 and b1. In the following, all

the couplings in (5.1) are assumed to be real. When the linear term of S is absent, there is a

Z2 symmetry (S → −S) in the scalar potential. Once the singlet S develops the VEV, the Z2

symmetry is spontaneously broken, and it causes the domain-wall problem [46]. Therefore, we add

the linear term of S to the scalar potential (5.1) because it explicitly breaks the Z2 symmetry, and

the model does not suffer from the domain-wall problem. Though various U(1) breaking terms

are present in the potential, not all of them must address the strong first-order EWPT and viable

DM, so we adopt a minimal set of operators that close under renormalization.

We parametrize the scalar fields as

H =

(
G+

1√
2
(v + h+ iG0)

)
, (5.2)

S =
1√
2
(vS + s+ iχ) , (5.3)

where v (≃ 246 GeV) and vS represent the VEVs of H and S, respectively. The Nambu-Goldstone

bosons G+ and G0 are eaten by W and Z bosons, respectively, after the electroweak symmetry

breaking. Since we assumed no complex parameters in (5.1), the scalar potential is invariant under

CP-transformation (S → S∗). Therefore, the real and imaginary parts of S do not mix, and the

stability of χ is guaranteed, making it a pseudoscalar DM candidate.
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First derivatives of V0 for h and s are respectively given by

1

v

〈
∂V0
∂h

〉
=
m2

2
+
λ

4
v2 +

δ2
4
v2S = 0, (5.4)

1

vS

〈
∂V0
∂s

〉
=
b2
2
+
δ2
4
v2 +

d2
4
v2S +

√
2a1
vS

+
b1
2

= 0, (5.5)

where ⟨· · · ⟩ is defined as taking all fluctuation fields to zero. Note that Nonzero vS is enforced by

a1 ̸= 0.

The mass matrix of the CP-even states (h, s) is expressed as

M2
S =

(
λv2/2 δ2vvS/2

δ2vvS/2 Λ2

)
, Λ2 ≡ d2

2
v2S −

√
2
a1
vS
. (5.6)

The mass matrix (6.7) is diagonalized by an orthogonal matrix O(α) as

O(α)⊤M2
SO(α) =

(
m2
h1

0

0 m2
h2

)
, O(α) =

(
cosα − sinα

sinα cosα

)
, (5.7)

where α is a mixing angle. The mass eigenstates (h1, h2) are given through the mixing angle α as(
h

s

)
=

(
cosα sinα

− sinα cosα

)(
h1

h2

)
. (5.8)

We emphasize that α → 0 corresponds to the SM-like limit (h1 → h, h2 → s). The mass

eigenvalues are expressed as

m2
h1,h2

=
1

2

(
λ

2
v2 + Λ2 ∓

λ
2
v2 − Λ2

cos 2α

)
(5.9)

=
1

2

λ
2
v2 + Λ2 ∓

√(
λ

2
v2 − Λ2

)2

+ 4

(
δ2
2
vvS

)2
 , (5.10)

cos 2α =
λ
2
v2 − Λ2

m2
h1

−m2
h2

(5.11)

We fix h1 as the Higgs boson observed in the LHC experiments, i.e., mh1 = 125 GeV. The mass of

CP-odd state χ is given by the soft breaking terms a1 and b1 as

m2
χ =

b2
2
− b1

2
+
δ2
4
v2 +

d2
4
v2S

= −
√
2a1
vS

− b1, (5.12)

where the tadpole condition (5.5) is used in the second equality.

For later convenience, we mention the relationship between input and output parameters. In the

following study, we adopt {v, vS,mh1 ,mh2 , α,mχ, a1} as inputs while the Lagrangian parameters
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{m2, b2, λ, d2, δ2, b1} can be expressed as functions of inputs. Among the Lagrangian parameters,

m2 and b2 are eliminated from the tadpole conditions (5.4) and (5.5),

m2 = −λ
2
v2 − δ2

2
v2S (5.13)

b2 = −δ2
2
v2 − d2

2
v2S −

√
2
a1
vS

− b1. (5.14)

The remaining four parameters in the six Lagrangian parameters are given as

λ =
2

v2
(
m2
h1
cos2 α +m2

h2
sin2 α

)
, (5.15)

δ2 =
1

vvS

(
m2
h1

−m2
h2

)
sin 2α, (5.16)

d2 = 2

(
mh1

vS

)2

sin2 α + 2

(
mh2

vS

)2

cos2 α + 2
√
2
a1
v3S
, (5.17)

b1 = −m2
χ −

√
2

vS
a1. (5.18)

Theoretical constraints on the quartic couplings in the scalar potential are summarized as

follows. (See App. C for details.) A requirement on the scalar potential that is bounded from

below is given by1

λ > 0, d2 > 0. (5.19)

The couplings λ and d2 should also satisfy the following conditions from the perturbative unitar-

ity [46]

λ <
16π

3
, d2 <

16π

3
. (5.20)

In addition, by requiring that eigenvalues of the mass matrix (5.10) be positive, the stability

condition of the tree-level potential follows as [19]

2λΛ2

v2s
= λ

(
d2 −

2
√
2a1
v3S

)
> δ22. (5.21)

5.2 Degenerate scalar scenario

As mentioned in Chapter. 4, the presence of DM offers direct proof of physics beyond the Standard

Model and one of the primary candidates for DM is WIMP. Despite cosmological observations af-

firming the existence of DM, no signal of WIMP has been detected either in high-energy accelerator

experiments like the LHC experiment or in the direct detection experiments. Notably, the recent

1For δ2 < 0, λd2 > δ22 is also needed. In this paper, we assume that δ2 is positive.
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LUX-ZEPLIN (LZ) experiment imposes stringent upper limits on the spin-independent cross sec-

tion between DM and nucleons. Consequently, a pivotal objective in the formulation of DM models

is to suppress the scattering of DM and nucleons.

Several ideas have been proposed to suppress the scattering of DM and nucleons. In general,

we consider the possibility that (1) the DM mass is very large or very small, and (2) the interaction

between DM and SM particles is very weak. Here, however, we consider other possibilities. That

is, both the DM mass and the strength of the interaction with the SM particles are in the experi-

mentally reachable range, but some built-in mechanism suppresses the scattering of the DM and

nucleons. In particular, the so-called pseudo Nambu-Goldstone (pNG) DM model, including our

model, is known to have this mechanism. This model extends the SM by introducing a complex

singlet scalar, denoted as S. The imaginary part of S gives rise to a pNG boson due to the breaking

of global U(1) symmetry in the scalar potential. The CP symmetry of the scalar potential prevents

the pNG boson from decaying, leading it to serve as DM. Conversely, the real component of S

undergoes mixing with the SM Higgs boson, resulting in two CP-even mass eigenstates, namely h1

and h2. Consequently, the DM-quark scattering can be described by two scattering amplitudes,

one mediated by h1 and the other by h2. In ref. [47], the global U(1) symmetry of the scalar

potential is softly broken by a dimension-2 operator S2. Then, the scattering amplitudes mediated

by h1 and h2 cancel independently of the DM coupling and mass in the limit of zero momentum

transfer.

On the other hand, in our model, we introduce a linear term of S in the scalar potential to

avoid the model suffering from the so-called domain-wall problem due to the discrete symmetry

of S (S → −S). As a result, the suppression mechanism in ref. [47] no longer works, and the

cancellation of the amplitudes could be achieved when masses of two mediator particles (h1, h2)

degenerate. This is called the degenerate scalar scenario and we will discuss this in detail in the

next subsection.

5.2.1 Cancellation mechanism of DM-quark scattering

In this section, we study a suppression mechanism of the scattering process of the DM χ off a

quark q, χq → χq, described by the Feynman diagram in Fig. 5.1. The interaction Lagrangian of

DM χ to the CP-even scalars h1, h2 is given by

LS = Cχχh1χ
2h1 + Cχχh2χ

2h2

= −
m2
h1

+
√
2a1
vS

2vS
sinα χ2h1 +

m2
h2

+
√
2a1
vS

2vS
cosα χ2h2, (5.22)
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χ χ

q q

h1,2

p1 p3

p2 p4

Figure 5.1: Feynman diagram of the scattering process χq → χq mediated by h1 and h2.

while that of a quark q to h1 or h2 is given by

LY = Cqqh1 q̄qh1 + Cqqh2 q̄qh2

=
mq

v
q̄q (h1 cosα− h2 sinα) , (5.23)

where mq denotes a mass of the quark q. Then, the scattering amplitude M is given by a sum of

two amplitudes M1 and M2 mediated by h1 and h2, respectively;

iM = i(M1 +M2), (5.24)

iM1 = −i2Cχχh1Cqqh1
1

t−m2
h1

ū(p3)u(p1)

= −i mq

vvS

m2
h1

+
√
2a1
vS

t−m2
h1

sinα cosαū (p3)u (p1) , (5.25)

iM2 = −i2Cχχh2Cqqh2
1

t−m2
h2

ū(p3)u(p1)

= −i mq

vvS

m2
h2

+
√
2a1
vS

t−m2
h2

sinα cosαū (p3)u (p1) , (5.26)

where t ≡ (p1 − p3)
2 is a momentum transfer and u(p) (ū(p)) represents an incoming (outgoing)

quark spinor with a momentum p. A factor 2 in the r.h.s of the first lines of (5.25) and (5.26) is a

symmetry factor for the χχhi vertex. When t≪ mh1 ,mh2 , the sum of the two amplitudes can be

expressed as

iM = i
mf

vvS
ū (p3)u (p1) sinα cosα

×

{(
−

m2
h1

t−m2
h1

+
m2
h2

t−m2
h2

)
+

√
2a1
vS

(
− 1

t−m2
h1

+
1

t−m2
h2

)}
. (5.27)

The first term in the brackets on the right-hand side becomes insignificant as t approaches zero, as

demonstrated in ref. [47]. Conversely, the second term disappears when the masses of two scalar
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particles are degenerate (mh1 = mh2). This cancellation by a degenerate scalar comes from the

orthogonality of the mixing matrix, OikOjk = δij. Consequently, in this model, to satisfy the

results of the direct detection experiment, the mass of the CP-even scalar h2 must be close to the

mass of h1 (mh1 = 125 GeV). It should also be emphasized that if the masses of the two Higgs

bosons are degenerate, this scattering can be suppressed without setting the momentum transfer

to zero.

5.2.2 Collider signals

The possibility for investigating the degenerate scalar scenario through collider experiments has

been studied by ref. [46]. The authors noted that while the mass difference |mh1 −mh2| ≲ 3 GeV

has not been conclusively ruled out by LHC experiments [48]. The mixing angle α is generally

constrained by the presence of an extra Higgs boson, but when the Higgs boson masses are degen-

erate, α is not limited and can take the maximum value α = π/4. Furthermore, ref. [46] indicates

that the narrow range of |mh1 −mh2| ≲ 1 GeV may soon be tested with an e+e− linear collider.

We mention that the degenerate scalar scenario is compatible with the Higgs search experiments

at the LHC. As shown in Eq. (5.23), the couplings between h1 (h2) and the SM particles are those

with the SM Higgs boson multiplied by cosα (− sinα). For example, decay rates from h1 and h2

to the SM particle X is expressed as follows;

Γh1→XX = cos2 α ΓSM
h→XX(mh1), (5.28)

Γh2→XX = sin2 α ΓSM
h→XX(mh2), (5.29)

where ΓSM
h→XX(mh1(2)) is the Higgs partial decay width in the SM as a function of mh1(2) . Exper-

imentally, when two scalar masses are degenerate, it is hard to distinguish the production and

decay processes of h2 from those of h1 so that the sum of two processes by h1 and h2 is to be

observed, i.e.,

Γh1→XX + Γh2→XX ≃ ΓSM
h→XX(mh), (5.30)

holds for any α. Therefore, the signal strength of Higgs bosons in the CxSM is identical to that

in the SM in the degenerate limit of two scalars.

Finally, some approximations should be briefly mentioned. For illustration, we consider the

process gg → hi → V V ∗ where g is gluon and V denotes gauge bosons (V = W±, Z). Since

|mh1 −mh2 | > (mh1Γh1 +mh2Γh2)/(mh1 +mh2) in our model, where Γhi are the total decay width

of hi, we can use a narrow decay width approximation [49, 50]. Then the interference terms could

be important if |mh1 −mh2 | ≲ Γh1 +Γh2 [49, 50] (for recent study, see ref. [51]). In our benchmark

points, however, the smallest mass differences is 500 MeV and the sum of the total decay widths
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are at most ΓSM
h = 4.1 MeV [52], so the interference terms can be neglected. We also note that the

total decay width of the Higgs boson is currently constrained as Γexp
h < 14.4 MeV (ATLAS [53]) and

Γexp
h = 3.2+2.4

−1.7 MeV (CMS [54]) and they are not precise enough to constrain Γhi in our scenario.

5.2.3 The sum rules for the cancellation mechanism

So far, the degenerate scalar scenario that suppress DM-quark scattering has been discussed using

the scalar potential (5.1). This potential is not in general form and employs some global U(1)

symmetry breaking terms. The general one takes the form [19]

V (H,S) =
m2

2
H†H +

λ

4

(
H†H

)2
+
δ2
2
H†H|S|2 + b2

2
|S|2 + d2

4
|S|4

+

(
|a1|eiϕa1S +

|b1|eiϕb1
4

S2 +
|δ3|eiϕδ3

4
H†HS2 +

|δ1|eiϕδ1
4

H†HS +
|c1|eiϕc1

6
S3

+
|c2|eiϕc2

6
S|S|2 + |d1|eiϕd1

8
S4 +

|d3|eiϕd3
8

S2|S|2 + c.c.

)
, (5.31)

where all terms in parentheses are global U(1) symmetry breaking terms. We now see if the

degenerate scalar scenario can be realized using the general potential, and if not, what constraints

are brought to the potential.

For the sake of general discussion, we start with the DM-quark scattering amplitudes as in the

first lines of Eqs. (5.25) and (5.26). The amplitude with t→ 0 becomes

iM = 2iū(p3)u(p1)

√
2mq

v

(
1

m2
h1

Cχχh1 cosα− 1

m2
h2

Cχχh2 sinα

)
, (5.32)

where the Yukawa couplings (5.23) are used instead of Cqqh1 and Cqqh2 .

The general scalar potential in the CxSM allows us to rewrite the trilinear couplings Cχχh and

Cχχs by the bilinear couplings Chs and Css as

Cχχh =
A

vs
(Chs +∆h), Cχχs =

A

vs
(Css +∆s), (5.33)

where parameters A,∆h and ∆s are given by parameters besides Chs and Css in the scalar potential.

Then, we summarize relations of coefficients Cij between the current and mass eigenstates:

Chh cosα + Chs sinα = C11 cosα, (5.34)

−Chh sinα + Chs cosα = −C22 sinα, (5.35)

Chs cosα + Css sinα = C11 sinα, (5.36)

−Chs sinα + Css cosα = C22 cosα. (5.37)
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Here, for simplicity, Ch1h1 is abbreviated as C11 and Ch2h2 as C22. Taking account of Eqs. (5.36),

(5.37) and (5.33), we find that the inside of parentheses in (5.32) can be written as

Ch1χχ
m2
h1

cosα− Ch2χχ
m2
h2

sinα

=
A

vs

[
sinα cosα

(
m2
h1

+∆s

m2
h1

−
m2
h2

+∆s

m2
h2

)
+∆h

(
cos2 α

m2
h1

+
sin2 α

m2
h2

)]
. (5.38)

Thus, the amplitude (5.32) vanishes in the degenerate scalar scenario when ∆h satisfies

∆h = 0. (5.39)

In other words, the DM-quark scattering amplitude is not suppressed in the degenerate limit of

the mediating mass in the general CxSM, and the coupling Cχχh must be given by Chs alone to

suppress DM-quark scattering. The origin of this condition (5.39) can be easily understood using

Feynman diagrams of the current eigenstates. Fig. 5.2 shows the Feynman diagram of DM-quark

scattering in the current eigenstate of the mediator. Since the singlet scalar s cannot couple

with the quark q, the scalar s emitted from DM χ is transformed into the SM Higgs h through the

coupling Chs and propagates DM-quark scattering (see right panel of Fig. 5.2). On the other hand,

the amplitude mediated by the SM Higgs h is proportional to the coupling Cχχh (middle panel of

Fig. 5.2). Thus, the two diagrams cancel only when Chs and Cχχh have a specific relationship.

Such a relationship is possible if the origin of the bilinear coupling (Chs) and the trilinear coupling

(Cχχh) is common, which is why the condition (5.39) is necessary.

Figure 5.2: Feynman diagrams of the DM-quark scattering in the current and mass eigenstates of

scalar mediators.

First, we use the minimal scalar potential (5.1) to confirm that the condition (5.39) is satisfied.

In this case, couplings Chs and Cχχh, which represent the mixing between the SM Higgs h and the
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singlet s or the DM χ are given by

V0(H,S) ⊃
δ2
2
|H|2|S|2

⊃ Cχχhhχ
2 + Chshs, (5.40)

where two couplings are given by

Cχχh =
δ2
4
v, (5.41)

Chs =
δ2
2
vsv. (5.42)

Comparing (5.41) and (5.42) with (5.33), one gets

A =
1

2
, ∆h = 0. (5.43)

We also evaluate another parameter ∆s (5.33) for completeness. The couplings Cχχs and Css are

similarly given by

V0(H,S) ⊃
δ2
2
|H|2|S|2 + b2

2
|S|2 + d2

4
|S|4 + b1

4

(
S2 + S∗2)

= Cχχssχ
2 +

1

2
Csss

2, (5.44)

where two couplings are given by

Cχχs =
d2
4
vs, (5.45)

Css =
3

4
d2v

2
S +

δ2
4
v2 +

b1
2
+
b2
2
. (5.46)

Since (5.43) requires A = 1
2
, ∆s is given as

∆s = −d2
4
v2s −

δ2
4
v2 − b1 + b2

2

=
√
2
a1
vS
, (5.47)

where we used a tadpole condition (5.5).

Next, we extend the above analysis to the general CxSM. The couplings Cχχh and Chs in the

scalar potential of the general CxSM (5.31) are given as follows:

V (H,S) ⊃ δ2
2
|H|2|S|2 +

(
δ1
4
|H|2S +

δ3
4
|H|2S2 + c.c.

)
= Cχχhhχ

2 + Chshs, (5.48)

where

Cχχh =
δ2 − δ3

4
v, (5.49)

Chs =
v

2

(
δ1√
2
+ δ2vS + δ3vS

)
. (5.50)
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Since δ1 appears only in Chs (5.50), non-zero δ1 conflicts with the proportionality between Eqs. (5.49)

and (5.50). Comparing (5.49) with (5.50), the condition ∆h = 0 (5.39) demands one of the follow-

ing conditions

(i) δ1 = δ2 = 0, (5.51)

(ii) δ1 = δ3 = 0. (5.52)

Note that δ2 preserves the global U(1) symmetry while δ1 and δ3 break it softly. Condition (ii)

corresponds to the minimal case. In terms of the symmetry, condition (i) is unnatural because

requiring δ2 = 0 does not recover any symmetry. For completeness, we give couplings Cχχs and

Css

Cχχs =
1

2
√
2

(
−c1 +

c2
3

)
+
d2 − 3d1

4
vS, (5.53)

Css =
b1 + b2

2
+
vS√
2
(c1 + c2) +

3

4
(d1 + d2 + d3)v

2
S +

δ2 + δ3
4

v2. (5.54)

Here, we explore the criteria for maintaining the cancellation mechanism within the context

of the CxSM with degenerate scalars. Our investigation reveals that the operators in the scalar

potential, which describe the mixing betweenH and S (H-S mixing), play a crucial role in achieving

the cancellation. Specifically, the relevant operators for H-S mixing in the general CxSM include

δ1, δ2, and δ3. However, we observe that the cancellation mechanism is effective when either

the coupling δ2 and δ3 is present, and the simultaneous existence of both couplings precludes

the cancellation. In contrast, the diverse operators governing the self-interaction of the singlet S

operate independently of the cancellation mechanism. Consequently, the scalar potential described

by Eq. 5.1 represents the minimal set that successfully realizes the cancellation mechanism.

Finally, we discuss the degenerate scalar scenario of the loop level. In our study [24], we

investigated the feasibility of the degenerate scalar scenario in the 1-loop level using the minimal

potential (5.1). The results showed that each 1-loop DM-quark scattering diagram was found to

cancel (See App. D for details.).

5.2.4 Multi-critical Point Principle

Before concluding the CPC CxSM discussion, a study of the guidelines that predict a degenerate

Higgs is conducted. Some parameters, which are introduced in new physics models, are adjusted

manually to match the experimental data at low-energy. The Multi-critical Point Principle (MPP)

has been proposed as a guiding principle for choosing the model parameters at a low-energy

scale[55, 56, 57]. The MPP was used by Froggatt and Nielsen to predict the mass of the SM Higgs

accurately, even before the Higgs boson was discovered [58].
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In ref. [58], the MPP requires two degenerate vacua in the SM, one at the electroweak scale and

the other near the Planck scale. On the other hand, in BSM models with extended scalar sectors,

such as the CxSM, there are multiple vacua at low energy scales. The authors of ref. [59] claim

that if the MPP is a fundamental principle, the MPP should be applied to all vacua, including

ones dominated by the tree-level potential in models with the extended scalar sector. We call this

tree-level MPP and we apply this tree-level MPP for the CxSM and study if the degenerate scalar

scenario is realized.

Before getting down to business, we review the two vacua in the CxSM. When (⟨H⟩, ⟨S⟩) =
(v, vS), the tadpole conditions are given by Eqs. (5.4) and　 (5.5). On the other hand, the tadpole

condition at (⟨H⟩, ⟨S⟩) = (0, v′S) is as follows;

1

v′S

〈
∂V0
∂s

〉
=
b2
2
+
d2
4
v′2S +

√
2a1
v′S

+
b1
2

= 0. (5.55)

Again, the vacuum (v, 0) does not appear in this model because the nonzero vS is enforced by

a1 ̸= 0.

We apply the tree-level MPP to the CxSM whose the tree-level scalar potential is given by

Eq. (5.1). The difference between the energy densities at these vacua is expressed as

∆V0 ≡ V0(v, vS)− V0(0, v
′
S)

=
m2

8
v2 +

3
√
2a1
4

(vS − v′S) +
b1 + b2

8
(v2S − v′2S ). (5.56)

When a1 = 0, ∆V0 is evaluated as

∆V0 =
m2

8
v2 +

b1 + b2
8

(v2S − v′2S )

∝ − 1

λd2 − δ22

1

d2
× [δ2 (b2 + b1)− d2b2]

2 < 0. (5.57)

If we consider the denominator in Eq. (5.57), it is always positive due to (5.21) with a1 = 0.

Consequently, ∆V0 consistently takes on negative values when the global U(1) symmetry is softly

broken solely through the S2 term, implying the absence of degenerate vacua in this case [59].

However, this outcome undergoes a modification when we introduce the linear term of S into the

scalar potential, as illustrated below.

To begin, let us provide a qualitative analysis of the model parameters within the context of

the tree-level MPP in the CxSM. It is apparent that the requirement for degenerating two vacua is

the non-equality of vS and v′S because the first term of the r.h.s. in (5.56) is nonzero and negative.

The two VEVs, vS and v′S, are determined through tadpole conditions given by (5.5) and (5.55),

respectively. The distinction lies in the existence of δ2 (5.16), representing the mixing between

SU(2)L doublet and singlet. Hence, in order to achieve ∆V0 = 0, it is necessary for both δ2 and
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Figure 5.3: The potential difference for vS = 0.1− 1 GeV (a) and vS = 100− 1000 GeV (b) in the

degenerate scalar scenario. The color bar represents the change in a1.

vS − v′S to be sizable. In the degenerate scalar scenario, since the mass difference (m2
h1

−m2
h2

in

(5.16) ) is small, vS should be small to make δ2 sizable as can be seen from Eq. (5.16). Large δ2 is

realized by small vS and large sin 2α.

We quantitatively discuss the parameter space in the CxSM with degenerate scalars chosen by

applying the tree-level MPP. We set mχ = 62.5 GeV and the second Higgs mass mh2 = 124 GeV.

While the degenerate scalar scenario imposes no constraints on the mixing angle α as discussed

in Section 5.1, a significant α is essential for enhancing the magnitude of δ2. Therefore, we

adopt the mixing angle α = π/4 here. Fig. 5.3 shows the potential difference scaled by the

energy density of the electroweak vacuum ∆V0/V0(v, vS) as a function of vS. The range of vS is

0.1−1 GeV (Fig. 5.3(a)) and 100−1000 GeV (Fig. 5.3(b)). Considering the theoretical constraints

for the scalar potential outlined in Eqs.(5.19)-(5.21), There was no parameter space allowed for

vS = 10 100 GeV. Consequently, this particular range is excluded from the figure. The color bar

represents the a1 dependence. In the case of small vS (Fig. 5.3(a)), ∆V0/V0(v, vS) can be either

positive or negative. Conversely, for large vS (Fig. 5.3(b)), ∆V0/V0(v, vS) approaches zero but does

not reach zero. Consequently, the realization of degenerate vacua occurs exclusively when vS is on

the order of O(0.1).

5.3 Electroweak phase transition

In this section, we discuss the feasibility of strong first-order EWPT in the CxSM. As noted in

Sec. 3.2.1, strong first-order EWPT is required to explain the departure from thermal equilibrium

in EWBG, which is expressed as vC/TC ≳ 1 (3.17). Our vacuum is such that H and S both

have VEVs, i.e., (⟨H⟩, ⟨S⟩) = (v, vS). We can also consider the case where only S takes a VEV

(⟨H⟩, ⟨S⟩) = (0, v′S). Note that since nonzero vS is enforced by a1 ̸= 0, the vacuum (v, 0) does not



56 CHAPTER 5. CP-CONSERVING CXSM

appear in this model. Therefore, the symmetry in the S-direction is broken from the beginning,

so this model follows the thermal history from (0, v′S(T )) to (v(T ), vS(T )).

In general, first-order EWPT requires cubic terms of the scalar fields brought about by finite-

temperature effects, but in the CxSM, the tree-level structure makes the most important con-

tribution to first-order EWPT. We first confirm contribution of the tree-level structure using a

simplified potential, called the High Temperature (HT) potential. This potential consists of a

tree-level potential and thermal masses which are the quadratic terms of the field extracted from

the finite temperature effective potential. Since the cubic terms of the field derived from the

finite-temperature effects do not appear here, the tree-level effects can be evaluated qualitatively.

Furthermore, by calculating TC and vC using the HT potential, we derive the conditions that

strong first-order EWPT imposes on the parameters.

The full effective potential is used for quantitative discussions. We use several calculation

schemes of the effective potential and mention their differences as well. In addition, we compare

the observed and experimental data with the DM relic density and spin-independent DM-quark

scattering cross section that the model predicts, and evaluate the parameter space that explains

both EWPT and DM without contradiction.

5.3.1 Qualitative study

Here, we denote the classical background fields of the Higgs doublet and singlet as

⟨H⟩ = (0 φ)T/
√
2, ⟨S⟩ = φS/

√
2, (5.58)

where we consider the Landau gauge ξ = 0 with ξ representing a gauge-fixing parameter. Because

of the presence of the singlet field in the CxSM, the potential barrier is induced by the doublet-

singlet mixing that exists in the tree-level2. To check this, we first examine EWPT using the HT

potential given by

V HT(φ, φS;T ) = V0(φ, φS) +
1

2

(
ΣHφ

2 + ΣSφ
2
S

)
T 2, (5.59)

where

ΣH =
λ

8
+
δ2
24

+
3g22 + g21

16
+
y2t
4
, ΣS =

δ2 + d2
12

. (5.60)

g2, g1 and yt are SU(2)L, U(1)Y and top Yukawa couplings, respectively. Note that V HT is gauge

dependence due to the gauge-invariant thermal masses as mentioned in Chapter. 5.

As can be seen from Eqs. (5.59),(5.60), although the HT potential does not include the cubic

terms of the field, the potential barrier is induced by the tree-level structure. To confirm this

2for classification of first-order phase transitions, see, e.g., ref. [60]
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origin, we first parametrize the two scalar fields using radial coordinates as

φ = z cos γ, φS = z sin γ + v′S, (5.61)

where v′S represents the minimum on the φS axis, which is always nonzero due to a1 ̸= 0 in this

model. The HT potential can be rewritten as

V HT(z, γ;T ) = c0 + c1z +
(
c2 + c′2T

2
)
z2 − c3z

3 + c4z
4 (5.62)

where

c0 =
√
2a1v

′
s(T ) +

1

4

(
b1 + b2 + 2ΣST

2
)
(v′s(T ))

2
+

1

16
(v′s(T ))

4
, (5.63)

c1 =

(√
2a1 +

1

2

(
b1 + b2 + 2ΣST

2
)
v′s(T ) +

1

4
d4 (v

′
s(T ))

3

)
sin γ, (5.64)

c2 =
1

4

(
(b1 + b2) sin

2 γ +m2 cos2 γ
)
+

1

8

(
3d2 sin

2 γ + δ2 cos
2 γ
)
(v′s(T ))

2
, (5.65)

c′2 =
1

2

(
ΣH cos2 γ + ΣS sin

2 γ
)
, (5.66)

c3 = −1

4
sin γ

(
d2 sin

2 γ + δ2 cos
2 γ
)
v′s(T ), (5.67)

c4 =
1

16

(
d2 sin

4 γ + 2δ2 sin
2 γ cos2 γ + λ cos4 γ

)
. (5.68)

From Eq. (5.62), it can be seen that the negative cubic terms of the scalar fields appear. This is

exactly the terms derived from the tree-level structure that contributes significantly to first-order

EWPT. Looking at the coefficients of the cubic term (5.67), it consists of the quartic terms of the

singlet scalar d2 and the SU(2)L doublet-singlet mixing δ2.

When the 1st oreder EWPT occurs at T = TC , the HT potential takes the from

V HT (z, γ;Tc) = c4z
2

(
z − c3

2c4

)2

, (5.69)

where the subscripts C indicate that the quantities are evaluated at TC . Then, TC and vC are as

follows;

T 2
C =

1

2(ΣH + ΣSt2γC )

[
−m2 − (v′SC)

2δ2
2

−

{
b1 + b2 +

(
3d2
2

−
(δ2 + d2t

2
γC
)2

λ+ 2δ2t2γC + d2t4γC

)
(v′SC)

2

}
t2γC

]
, (5.70)

vC =
−2tγC (v

′
SC)

2(δ2 + d2t
2
γC
)

λ+ 2δ2t2γC + d2t4γC
, (5.71)

with

tγC =
sin γ(TC)

cos γ(TC)
=
vSC − v′SC

vC
, vC = lim

T↗TC
v(T ), vSC = lim

T↗TC
vS(T ), v′SC = lim

T↘TC
vS(T ),

(5.72)
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where T ↗ TC and T ↘ TC are defined such that T approaches TC from below and above,

respectively. For tγC ≪ 1, TC and vC can be approximated as [33]

TC ≃

√
1

2ΣH

(
−m2 − (v′SC)

2

2
δ2

)
, (5.73)

vC ≃

√
2δ2(v′SC)

2

λ

(
1− vSC

v′SC

)
. (5.74)

From the expression of TC (5.73) and vC (5.74) and the sphaleron decoupling condition (3.17),

we find the conditions for the parameters that favor a strong first-order EWPT. First, as seen

from Eq. (5.73), TC would get lowered if δ2 is positive and sizable. Expressing δ2 in terms of the

Lagrangian parameters yields

δ2 =
2

vvS
(m2

h1
−m2

h2
) sinα cosα. (5.75)

Since we are now considering the degenerate scalar scenario, a small vS is needed to increase δ2.

Moreover, the maximal mixing |α| = π/4 is also preferred.

Next, we turn our attention to vC . From Eq. (5.74), vC would also be enhanced with an

amplification factor (v′SC)
2(1− vSC/v

′
SC). v

′
SC is determined by the cubic equation

(v′SC)
3 +

2(b1 + b2 + 2ΣS)

d2
v′SC +

4
√
2a1
d2

= 0. (5.76)

When this equation yields real solutions, it is found to be scaled by 1/
√
d2, which indicates that

smaller d2 is needed for larger vC . By expressing the Lagrangian parameters in terms of the input

parameters, one finds

d2 =
2

v2S

[
m2
h1

+ (m2
h2

−m2
h1
) cos2 α +

√
2a1
vS

]
. (5.77)

Here, the degenerate scalar scenario is considered, d2 can be rewritten as

d2 ≃
2

v2S

[
m2
h1

+

√
2a1
vS

]
. (5.78)

The size and sign of a1 is important i.e., a1 < 0 is favored, to keep d2 small because of the small

vS preferred for sizable δ2.

To summarize the above discussion, to obtain strong first-order EWPT in the degenerate scalar

scenario, we need

(i) large δ2 with a positive sign, i.e., |α| ≃ π/4 and vS < 1 GeV,

(ii) small d2, i.e., a1 < 0 with its moderate absolute value.
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Inputs v [GeV] mh1 [GeV] mh2 [GeV] α [rad] a1 [GeV3] vS [GeV] mχ [GeV]

BP1 246.22 125 124 π/4 −6576.17 0.6 62.5

BP2 246.22 125 126 −π/4 −6682.25 0.6 62.5

Outputs m2 [GeV2] b1 [GeV2] b2 [GeV2] λ a1 [GeV3] d2 δ2

BP1 −(124.5)2 −(107.7)2 −(178.0)2 0.511 −6576.17 1.77 1.69

BP2 −(125.5)2 −(108.8)2 −(178.4)2 0.520 −6682.25 1.70 1.59

Table 5.1: Input and output parameters of the two benchmark points. These BPs satisfy all

theoretical constraints.

Here, the HT potential was used to evaluate the parameters that are likely to cause a strong

first-order EWPT. However, even though the HT potential is useful to discuss EWPT qualitatively,

the full 1-loop contributions would not be negligible for quantitative study. In order to incorporate

higher-order corrections, we employ two gauge-invariant calculation schemes on the scalar potential

and two familiar resummation methods in evaluating 1-loop (gauge dependent) effective potential.

The former two is the HT potential and the Patal-Ramsey-Musolf (PRM) scheme, and the latter

two is the 1-loop effective potential with Parwani [35] and Arnold-Espinosa (AE) [36] schemes for

the resummation. For each specific potential form, see Sec. 3.2.2 and Eq. (5.59). However, with

respect to the PRM scheme in our work, TC is determined to O(ℏ) using the following degeneracy

condition [30]

V0(0, v
′
S,tree) + V1(0, v

′
S,tree;T ) = V0(vtree, vS,tree) + V1(vtree, vS,tree;T ), (5.79)

where vtree, vS,tree, and v
′
S,tree are the tree-level VEVs at T = 0.

5.3.2 Numerical results

First, we show the DM relic density Ωχh
2 and the SI DM-nucleon scattering cross section σSI in

parameter space that satisfies the condition of strong first-order EWPT discussed. For illustration,

consider two benchmark points (BPs) in the table 5.1. For the moment, we treat mχ as a varying

parameter. In our study, we calculate Ωχh
2 and σSI using the public code micrOMEGAs [61]. The

value of Ωχh
2 should not exceed the observed value [4]

ΩDMh
2 = 0.1200± 0.0012. (5.80)

On the other hand, σSI is constrained by DM direct detection experiments. If Ωχ < ΩDM, we σSI

is scaled as

σ̃SI =

(
Ωχ

ΩDM

)
σSI, (5.81)
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Figure 5.4: The DM relic density Ωχh
2 (left panel) and scaled SI scattering cross section with

the nucleons σ̃SI (right panel) are plotted as a function of the DM mass mχ. We take BP1 for

illustration. The horizontal dotted lines in the left panel is the central value of the observed DM

relic density, while the dotted curve in the right panel is the LZ experiment data.

which should satisfy the direct detection experimental bounds. In the following, only results for

BP1 are presented, but almost the same results can be obtained using BP2.

Ωχh
2 is displayed as a function of mχ in the left panel of Fig. 5.4. The horizontal dotted line

is the value of the observed DM relic density (5.80). The results show that χ cannot constitute

the total amount of DM until around the mass 2 TeV where Ωχ = ΩDM. The sharp dip around

mχ = mh1,2/2 (≃ 62.5 GeV) reflects resonant enhancements of s-channel annihilation processes

mediated by h1 and h2. In the right panel of Fig. 5.4, σ̃SI is displayed as a function of mχ. The

dotted curve represents the LZ experiment data. It can be seen that the σ̃SI around mχ = 62.5

GeV is suppressed enough to avoid the LZ bound, but this is due to the dip in Ωχh
2 mentioned

above.

In summary, σSI is not generally suppressed by the mass degeneracy of h1 and h2. This is

because large δ2 and small vS are chosen to realize strong first-order EWPT, which is contrary to

the degenerate scalar scenario that requires suppression of δ2 for reasonably sized vS, as can be

seen from Eq. (5.27). In the following, we analyze EWPT with mχ = 62.5 GeV.

In Figs. 5.5 and 5.6, we display the temperature evolutions of VEVs in BP1 and BP2.　 Since

BP1 and BP2 give almost the same results, although there are some differences in their numerical

values, we focus our comments here on BP1. In the left panel, the HT potential and the PRM

scheme are used. v(T ) and vS(T ) required by the HT potential are shown by red solid and blue

dotted curves respectively, where magnified vS(T ) is also plotted in the small window. In addition,
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Figure 5.5: v(T ) and vS(T ) are shown as functions of the temperature T in BP1. The HT potential

and the PRM scheme are used in the left panel, while 1-loop effective potentials with the Parwani

and AE resummation schemes are used in the right panel.

Figure 5.6: v(T ) and vS(T ) are shown as functions of the temperature T in BP2.
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BP1

Scheme HT PRM Parwani AE

vC/TC
184.4
85.3

= 2.2 195.6
78.2

= 2.5 201.5
106.8

= 1.9 202.7
107.8

= 1.9

vSC [GeV] 1.5 1.2 1.2 1.2

vsymSC [GeV] 134.6 137.3 144.8 145.3

BP2

HT PRM Parwani AE

vC/TC
191.3
81.5

= 2.3 201.0
74.8

= 2.7 206.3
102.8

= 2.0 208.3
104.4

= 2.0

vSC [GeV] 1.3 1.1 1.1 1.1

vsymSC [GeV] 144.2 146.6 153.2 154.1

Table 5.2: TC and the corresponding Higgs VEVs in BP1 and BP2 using the four calculation

schemes. ‘HT’ stands for the high-temperature scheme in which the potential (5.59) is used,

‘PRM’ denotes the gauge-invariant calculation scheme proposed by Patel and Ramsey-Musolf [30].

‘Parwani’ refers to the ordinary 1-loop calculation with the thermal resummation adopted in the

work of Parwani [35], while ‘AE’ defines the same 1-loop effective potential calculation with the

thermal resummation dopted in the work of Arnold and Espinosa [36].

vC and TC with PRM scheme are given by black circle. As clearly seen, discontinuity exists in the

temperature evolutions of VEVs.

In the right panel of Figs. 5.5 and 5.6, 1-loop effective potentials with the Parwani and AE

resummation schemes are used to evaluate the temperature evolution of VEVs. The solid and

dotted lines in red represent v(T ) and vS(T ) in the Parwani scheme, while the dashed and dotted

lines in blue denote ones in the AE scheme, respectively. The graph shows that there is little

difference in the numerical values depending on the thermal resummation scheme, because EWPT

of the CxSM is dominated by the tree-level potential.

The specific values are shown in Table 5.2. In both cases, vC/TC is about 10% lower with full

1-loop compared to HT potential, all schemes satisfy the sphaleron decoupling condition (3.17).

In conclusion, strong first-order EWPT in the degenerate scalar scenario is possible both for

mh1 > mh2 and for mh1 < mh2 .

5.4 Summary of Chapter 5

In this chapter, we used CP-conserving CxSM to discuss EWPT, which is an integral part of

EWBG. In addition, the tree-level MPP is applied and requirements for model parameters are

discussed.
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We have investigated the compatibility of the degenerate scalar scenarios and the strong first-

order EWPT in the CxSM. The degenerate scalar scenario suppresses DM-quark scattering re-

gardless of DM mass and interaction magnitude, giving a solution that satisfies the DM direct

detection experiment [46]. For this degenerate scalar scenario to hold, suppression of δ2 for moder-

ate magnitude of vS is essential, as can be seen from Eq. (5.27). On the other hand, the first-order

EWPT of the CxSM is driven by the tree-level potential and SU(2)L doublet-singlet mixing plays

the most important role. Therefore, large δ2 is preferred in the context of the strong first-order

EWPT, and then small vS and the maximum mixing angle α = π/4 are required (See Eq. (5.75)).

We have considered two benchmark points, in which the additional Higgs mass is fixed at

mh2 = 124 GeV for BP1 and mh2 = 10 GeV for BP2. Our numerical analysis showed only the DM

mass mχ ≃ 62.5 GeV is consistent with the DM observations (Fig. 5.4). Only this region, which

reflects the resonance enhancement of DM, was compatible with the degenerate scalar scenario and

the strong first-order EWPT. Then the four calculation schemes used to analyze EWPT are the

gauge-independent ways: HT and PRM and the gauge-dependent conventional effective potentials:

Parwani and AE. The strong first-order EWPT was obtained using any of them (Fig. 5.5,5.6).

We have also considered the origin of the degenerate scalar scenario by using the scalar po-

tential of the general CxSM and found that the mixing term of H and S is restricted besides

the orthogonality of the matrix mixing CP-even scalar particles. Furthermore, we adopted the

tree-level MPP as a possible guiding principle that predicts the degenerate Higgs. We found the

parameter space where two vacua are degenerate with small vS (Fig. 5.3).

In the next section, we consider the CP-violating CxSM for EWBG realization. In this case,

χ is no longer DM candidate and the DM issue must be left to others. For studies of other DM

candidate examples, see, for example, ref. [62].



Chapter 6

CP-violating CxSM

From Sakharov conditions, CP symmetry violation is essential for EWBG; since CP-conserving

scalar potentials were used in Chapter 5, here we treat the CP-violating scalar potential by making

the coefficients of the global U(1) symmetry breaking terms and VEV of S complex. However,

since the stability of the imaginary part of S was guaranteed by CP symmetry, this time χ is not

treated as DM but as an ordinary decaying particle.

First, we quantify the influence of CPV on first-order EWPT, with a specific focus on the de-

generate scalar scenario―an area of continued interest due to its status as an experimental blind

spot independent of DM considerations. To clarify differences from the CP-conserving (CPC) case

[22], we qualitatively examine the EWPT using a tree-level potential with thermal masses, referred

to as the high-temperature (HT) potential in this context. Conversely, a comprehensive numeri-

cal study employs a finite temperature 1-loop effective potential with the Parwani resummation

method [35]. As a phenomenological consequence of the first-order EWPT, we also evaluate GWs

generation [63, 64], resulting from the dynamics of bubbles and thermal plasma. These GWs may

serve as a supplementary means to probe the experimental blind spot.

Then, we explore the feasibility of EWBG within the CxSM incorporating higher-dimensional

operators. Specifically, we examine cases where the complex phase is present in the scalar potential,

and this phase is communicated to the Standard Model (SM) fermion sector through dimension-5

Yukawa interactions, both with and without complex coefficients. Our investigation indicates that

the inclusion of a complex phase in the scalar potential provides a suitable range of values for BAU

without resorting the use of complex coefficients in higher-dimensional operators. Additionally,

EDM of the electron (de) can be suppressed due to Higgs mass degeneracy and new electron Yukawa

coupling, effectively avoiding the most recent constraints imposed by the JILA experiment.

64
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6.1 The Model

As mentioned in Chapter 5, the CxSM is the extension of the SM by adding the complex SU(2)L

gauge singlet scalar field S. The model was proposed in ref. [19] and shows that DM can exist

if the scalar potential is invariant under CP transformation S → S∗, and a VEV of S is real.

Phenomenological studies of DM can be conducted in Refs. [20, 21]. Furthermore, one could

obtain the strong first-order EWPT in this model [43, 65, 33, 66, 67, 68, 22].

The comprehensive CPC scalar potential, as outlined in [19], encompasses a total of 11 new

parameters. Given that not all of these parameters pertain directly to DM and EWPT physics,

we focus our attention on a minimal scalar potential denoted as

V0(H,S) =
m2

2
H†H +

λ

4

(
H†H

)2
+
δ2
2
H†H|S|2 + b2

2
|S|2 + d2

4
|S|4 +

(
a1S +

b1
4
S2 +H.c.

)
.

(6.1)

where both a1 and b1 break a global U(1) symmetry, preventing an undesired massless particle.

Additionally, the introduction of a1 is essential to mitigate a potential domain wall issue that may

arise during the spontaneous breaking of the Z2 symmetry, where V0(H,S) → V0(H,−S).
If the Higgs sector maintains CP conservation, the real and imaginary components of S remain

independent, allowing the latter to potentially serve as DM candidate. However, for Electroweak

Baryogenesis (EWBG) to occur, new CPV is required. Furthermore, the condition of the strong

first-order EWPT in this minimal CxSM results in the DM relic density being significantly lower

than the observed value within the viable DM mass range of approximately 62.5 GeV [22]. This

necessitates the introduction of an additional stable particle as a primary constituent of the DM

abundance. Hence, it is more rational to consider the CxSM that incorporates CPV, leaving the

DM-related challenges to be addressed in a more comprehensive theoretical framework1.

We parametrize the scalar fields as

H(x) =

(
G+(x)

1√
2
(v + h(x) + iG0(x))

)
, (6.2)

S(x) =
1√
2

(
vrS + iviS + s(x) + iχ(x)

)
=

1√
2

(
|vS|eiθS + s(x) + iχ(x)

)
(6.3)

where h is the SM-like Higgs field and v(≃ 246.22 GeV) is its VEV, while G0 and G+ are Nambu-

Goldsone (NG) fields. vrS and viS are the VEVs of s and χ, respectively. For future reference, let

us express a1 = ar1 + iai1 and b1 = br1 + ibi1.

1See ref. [62] for new DM implementation attempts.
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Tadpole conditions with respect to h, s and χ are, respectively, given by〈
∂V0
∂h

〉
= v

[
m2

2
+
λ

4
v2 +

δ2
4
|vS|2

]
= 0, (6.4)〈

∂V0
∂s

〉
= vrS

[
b2
2
+
δ2
4
v2 +

d2
4
|vS|2 +

br1
2

]
+
√
2ar1 −

1

2
bi1v

i
S = 0, (6.5)〈

∂V0
∂χ

〉
= viS

[
b2
2
+
δ2
4
v2 +

d2
4
|vS|2 −

br1
2

]
−
√
2ai1 −

1

2
bi1v

r
S = 0, (6.6)

where ⟨· · · ⟩ signifies that all fluctuation fields become zero after the derivative. Here, vrS is non-zero

if ar1 ̸= 0.

The tree-level masses of the scalars are obtained by

−Lmass =
1

2

(
h s χ

)
M2

S


h

s

χ

 =
1

2

(
h1 h2 h3

)
OTM2

SO


h1

h2

h3

 =
1

2

3∑
i=1

m2
hi
h2i .

(6.7)

The mass matrix is specifically obtained with

M2
S =


λ
2
v2 δ2

2
vvrS

δ2
2
vviS

δ2
2
vvrS

d2
2
vr2S −

√
2ar1
vrS

+
bi1
2

viS
vrS

− bi1
2
+ d2

2
vrSv

i
S

δ2
2
vviS − bi1

2
+ d2

2
vrSv

i
S

d2
2
vi

2

S +
√
2ai1
viS

+
bi1
2

vrS
viS

 , (6.8)

which is diagonalize by the mixing matrix O is parametrized as

O(αi) =


1 0 0

0 c3 −s3
0 s3 c3




c2 0 −s2
0 1 0

s2 0 c2




c1 −s1 0

s1 c1 0

0 0 1

 , (6.9)

with si = sinαi and ci = cosαi (i = 1, 2, 3). In addition, from Eq. (6.7), the following relational

equation is obtained: (
M2

S

)
ij
=
∑
k

OikOjkm
2
hk
. (6.10)

For later convenience, we mention the relationship between input and output parameters. There

are nine parameters in the scalar potential, {m2, λ, δ2, b2, d2, a
r
1, a

i
1, b

r
1, b

i
1}. In this work, we take

mh1 = 125 GeV and bi1 = 0 without loss of generality. Among the Lagrangian parameters, m2, b2

and br1 are eliminated from the tadpole conditions (6.4),(6.5) and (6.6),

m2 = −λ
2
v2 − δ2

2
|vS|2 , (6.11)

b2 = −δ2
2
v2 − d2

2
|vS|2 −

√
2

(
ar1
vrS

− ai1
viS

)
, (6.12)

br1 = −
√
2

(
ar1
vrS

+
ai1
viS

)
. (6.13)
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The remaining five parameters are given as

λ =
2

v2

∑
i

O2
1im

2
hi
, (6.14)

δ2 =
2

vvrS

∑
i

O1iO2im
2
hi
=

2

vviS

∑
i

O1iO3im
2
hi
, (6.15)

d2 =
2

vr2S

[√
2ar1
vrS

+
∑
i

O2
2im

2
hi

]
=

2

vi2S

[
−
√
2ai1
viS

+
∑
i

O2
3im

2
hi

]
=

2

vrSv
i
S

[∑
i

O2iO3im
2
hi

]
, (6.16)

ar1 = − vrS√
2

[∑
i

O2i

(
O2i −O3i

vrS
viS

)
m2
hi

]
, (6.17)

ai1 =
viS√
2

[∑
i

O3i

(
O3i −O2i

viS
vrS

)
m2
hi

]
, (6.18)

Note that α3 is not an independent parameter and determined by the second equality in Eq. (6.15)∑
i

O1i

[
O2i

vrS
− O3i

viS

]
m2
hi
=

(M2
S)12
vrS

− (M2
S)13
viS

= 0. (6.19)

Furthermore, we can find that ai1 = 0 if viS = 0 from Eq. (6.18), i.e., the explicit CPV must be

associated with the spontaneous CPV, but not vice versa.

In this model and χ no longer behaves as a DM. As with the CPC CxSM, the degenerate scalar

scenario is useful to obtain SM-like limits. Interactions between Higgs couplings to fermions (f)

and gauge bosons (V = W±, Z) are, respectively, given by

Lhif̄f = −mf

v
hf̄f = −mf

v

∑
i=1−3

κifhif̄f, (6.20)

LhiV V =
1

v
h
(
m2
ZZµZ

µ + 2m2
WW

+
µ W

−µ) = 1

v

∑
i=1−3

κiV hi
(
m2
ZZµZ

µ + 2m2
WW

+
µ W

−µ) , (6.21)

where mf and mV are the same as those in the SM and Higgs coupling modifiers are

κif = O1i, κiV = O1i. (6.22)

Decay rates from hi to the SM particle X is

Γhi→XX = O2
1i Γ

SM
hi→XX(mhi), (6.23)

The sum of all processes by hi is to be observed, i.e.,∑
i=1−3

Γhi→XX ≃ ΓSM
h→XX(mh), (6.24)

where the orthogonality of the mixing matrix (6.10) is used. Thus, the SM-like limit is achieved

in the degenerate scalar scenario also in the CPV CxSM.
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6.2 CPV effects on electroweak phase transition and grav-

itational waves

6.2.1 CPV effects on electroweak phase transition

EWPT pattern in the CPV CxSM is
(
0, ṽrS(T ), ṽ

i
S(T )

)
→
(
v(T ), vrS(T ), v

i
S(T )

)
. To discuss the

strong first-order EWPT qualitatively, as in Chapter. 5, we use the HT potential consisting of the

tree-level potential and thermal masses which areO(T 2) term extracted from the finite temperature

effective potential.

V HT
(
φ, φrS, φ

i
S;T

)
=V0(φ, φ

r
S, φ

i
S) +

T 2

2

[
ΣHφ

2 + ΣSφ
r2
S + ΣSφ

i2
S

]
=
m2

4
φ2 +

λ

16
φ4 +

δ2
8
φ2
(
φr2S + φi2S

)
+
d2
16

(
φr2S + φi2S

)2
+
√
2
(
ar1φ

r
S − ai1φ

i
S

)
+

1

4
br1
(
φr2S − φi2S

)
+
b2
4

(
φr2S + φi2S

)
+
T 2

2

[
ΣHφ

2 + ΣSφ
r2
S + ΣSφ

i2
S

]
, (6.25)

where

ΣH =
λ

8
+
δ2
24

+
3

16
g22 +

1

16
g21 +

y2t
4

+
y2b
4
, (6.26)

ΣS = (δ2 + d2)
1

12
, (6.27)

As indicated in the previous chapter, in the presence of an additional singlet field, the doublet-

singlet mixing in the tree-level potential can contribute significantly to the first-order EWPT. In

this context, we extend the analysis to the CPV CxSM case to investigate the extent to which

CPV can influence the vigor of the first-order EWPT.

The three scalar fields are reexpressed in terms of the radial coordinates as

φ = z cos γ, φrS = z sin γ cos θ + ṽrS, φiS = z sin γ sin θ + ṽiS, (6.28)

where the limit of z = 0 describes to the symmetric phase. With those, the HT potential (6.25)

takes the form

V (z, γ, θ;T ) = c0 + c1z +
(
c2 + c′2T

2
)
z2 − c3z

3 + c4z
4, (6.29)
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where

c0 =
b2
4
(ṽr2S + ṽi2S ) +

d2
16

(ṽr2S + ṽi2S )
2 +

√
2(ar1ṽ

r
S − ai1ṽ

i
S) +

br1
4
(ṽr2S − ṽi2S ) +

1

2
ΣS(ṽ

r2
S + ṽi2S )T

2 (6.30)

c1 =

[
b2
2
(ṽrScθ + ṽiSsθ) +

d2
4
(ṽr2S + ṽi2S )(ṽ

r
Scθ + ṽiSsθ)

+
√
2(ar1cθ − ai1sθ) +

br1
2
(ṽrScθ − ṽiSsθ) + ΣS(ṽ

r
Scθ + ṽiSsθ)T

2

]
sγ (6.31)

c2 =
m2

4
c2γ +

δ2
8
(ṽr2S + ṽi2S )c

2
γ +

b2
4
s2γ +

d2
8
{2(ṽrScθ + ṽiSsθ)

2 + (ṽr2S + ṽi2S )}s2γ +
br1
4
(c2θ − s2θ)s

2
γ (6.32)

c′2 =
1

2
ΣHc

2
γ +

1

2
ΣSs

2
γ (6.33)

c3 = −sγ
4
(ṽrScθ + ṽiSsθ)(δ2c

2
γ + d2s

2
γ) (6.34)

c4 =
1

16
(λc4γ + 2δ2c

2
γs

2
γ + d2s

4
γ) (6.35)

At TC , V (z, γ, θ;TC) takes the form

V (z, γ, θ;TC) = c4z
2 (z − zC)

2 , zC =
c3
2c4

, (6.36)

where the subscripts C indicate that the quantities are evaluated at TC with sθC = sin θC , cθC =

cos θC and

tγC =
vrSC − ṽrSC
vCcθC

=
viSC − ṽiSC
vCsθC

. (6.37)

For tγC ≪ 1,TC and vC can be approximated as

vC ≃

√
2δ2
λ

(
|ṽSC |2 − ṽiSC(ṽ

i
SC − tθC ṽ

r
SC)
)(

1− vrSC
ṽrSC

)
, (6.38)

TC ≃

√
1

2ΣH

[
−m2 − δ2

2
|ṽSC |2

]
, (6.39)

where the first equality in Eq. (6.37) is used to obtain vC . The second equality in Eq. (6.37) gives

an equivalent expression of vC , which is obtained by exchanging the indices r and i in Eq. (6.38).

A large δ2 is required to satisfy the condition of the strong first-order EWPT vC/TC ≳ 1, as in

the CPC case. From the first equality in Eq. (6.15), one obtains

δ2 =
2

vvrS

∑
i

O1iO2im
2
hi
=

2c2
vvrS

[
(m2

h1
−m2

h2
)s1c1c3 + s2s3(m

2
h3

−m2
h1
c21 −m2

h2
s21)
]
. (6.40)

We have to take vr,iS /v ≲ 1 GeV while maintaining δ2 = O(1) due to the orthogonality of the

rotation matrix O,
∑

iO1iO2i = 0. As shown below, vrS ≲ 1 GeV and viS ≲ 1 GeV are the typical

sizes.
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Figure 6.1: TC and all VEVs in the symmetric and broken phases at TC as functions of viS. Shown

here are TC (solid, red), vC (dashed, green), vrSC (thick-dotted, blue), ṽrSC (thin-dotted, blue), viSC

(thick-dot-dashed, magenta), and ṽiSC (thin-dot-dashed, magenta). The other input parameters

other than viS are listed in Table 6.1.

We now present our numerical findings, focusing on the strong first-order EWPT driven pri-

marily by the tree-level structure. For the sake of illustration, we consider the Parwani scheme as

outlined in [35].To analyze EWPT, we use a public code CosmoTransitions [69]. To evaluate the

impact of CPV on the EWPT and make a comparison with the previously studied CPC case, we

adopt parameter choices closely aligned with those in the aforementioned reference. Specifically,

we set vrS = 0.6 GeV, mh2 = 124.0 GeV, and α1 = π/4. In addition, we choose mh3 = 124.5 GeV

and α2 = 0.0 radians for illustration.

Fig. 6.1 shows all VEVs in the symmetric and broken phases at TC as functions of viS, where line

and color schemes represent TC (solid, red), vC (dashed, green), vrSC (thick-dotted, blue), ṽrSC (thin-

dotted, blue), viSC (thick-dot-dashed, magenta), and ṽiSC (thin-dot-dashed, magenta), respectively.

Although viSC and ṽiSC are monotonically increasing with respect to viS, the relationship between

them are reversed around viS ≃ 0.5. This result implies that sizable CPV at TC requires the sizable

CPV at T = 0 GeV. In other words, the so-called transitional CPV [70, 71, 72, 73, 74], where

CPV is large for TC but is suppressed or zero for T = 0 GeV, does not occur in the present case.

We set Benchmark points so that the strong first-order EWPT occurs with reference to Fig. 6.1,

which are summarized in Table 6.1. As can be seen from Fig. 6.2, the value of v/T becomes larger
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Inputs v [GeV] vrS [GeV] viS [GeV] mh1 [GeV] mh2 [GeV] mh3 [GeV] α1 [rad] α2 [rad]

BP1 246.22 0.6 0.3 125.0 124.0 124.5 π/4 0.0

BP2 246.22 0.6 0.4 125.0 124.0 124.5 π/4 0.0

BP3 246.22 0.6 0.5 125.0 124.0 124.5 π/4 0.0

Outputs m2 b2 [GeV2] br1 [GeV2] λ δ2 d2 ar1 [GeV3] ai1 [GeV3]

BP1 −(124.5)2 −(121.2)2 −7.717× 10−12 0.511 1.51 1.111 −(18.735)3 (14.870)3

BP2 −(124.5)2 −(107.3)2 5.145× 10−12 0.511 1.40 0.962 −(18.735)3 (16.367)3

BP3 −(124.5)2 −(90.82)2 0.0000 0.511 1.29 0.820 −(18.735)3 (17.630)3

Table 6.1: Input and output parameters in the three BPs. α3 = 0.464, 0.588, 0.695 radians in BP1,

BP2, and BP3, respectively.

CPV CPC

viS = 0.3 GeV viS = 0.4 GeV viS = 0.5 GeV mχ = 62.5 GeV

vC/TC
196.1
112.3

= 1.7 177.2
122.5

= 1.4 150.9
132.8

= 1.1 200.1
106.1

= 1.9

vrSC [GeV] 1.249 1.634 2.403 1.250

viSC [GeV] 0.624 1.089 2.003 —

ṽrSC [GeV] 137.9 118.5 94.82 144.2

ṽiSC [GeV] 68.97 79.01 79.01 —

Table 6.2: VEVs at critical temperature TC in the three BPs and the CPC case.

as viS decreases, leading to vC/TC < 1 for viS ≳ 0.5. When the CPC CxSM is used, the EWPT is

much stronger2. The reduction of vC/TC is the consequence of the diminution of δ2 ∝ 1/viS, which

can be understood by the analytic formulas Eqs.(6.38) and (6.39). On the other hand, TN and the

corresponding VEVs in the three BPs and CPC cases are summarized in Table 6.3. TN is derived

based on Eqs. (3.18) and (3.19) and here we employ the condition S3(TN)/TN = 140. The stronger

first-order EWPT leads to the larger supercooling, which may be characterized by the quantity

∆ = (TC − TN)/TC . Too strong first-order EWPT, otherwise known as too large supercooling,

prevents the bubble nucleation. In fact, viS must be greater than 0.3 for bubble nucleation (See

Fig. 6.3). Thus, viS must be between 0.3 and 0.5 while keeping other parameter fixed.

6.2.2 CPV effects on gravitational waves

As a phenomenological consequence, gravitational waves (GWs) from the first-order EWPT can be

evaluated. The amplitudes and frequencies of GWs would be modulated according to the amount

of latent heat and/or duration of the phase transition. Those quantities may be quantified by the

2In the CPC case, only mχ ≃ 62.5 GeV is an allowed region, as discussed in Sec. 5
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CPV CPC

viS = 0.3 GeV viS = 0.4 GeV viS = 0.5 GeV mχ = 62.5 GeV

vN/TN
239.0
66.85

= 3.6 211.7
102.0

= 2.1 177.2
123.1

= 1.4 241.8
57.20

= 4.2

vrSN [GeV] 0.657 0.921 1.446 0.636

viSN [GeV] 0.328 0.614 1.205 —

ṽrSN [GeV] 143.7 122.3 97.26 150.1

ṽiSN [GeV] 71.83 81.55 81.05 —

∆ 40.5% 16.7% 7.3% 46.0%

Table 6.3: VEVs at nucleation temperature TN in the three BPs and the CPC case. ∆ = (TC −
TN)/TC , which characterizes the degrees of supercooling.

so-called α and β parameters [75, 76].

α ≡ ϵ (T∗)

ρrad (T∗)
, β ≡ H∗T∗

d

dT

(
S3(T )

T

)∣∣∣∣
T=T∗

, (6.41)

with

ϵ(T ) = ∆Veff − T
∂∆Veff
∂T

, ρrad(T ) =
π2

30
g∗(T )T

4, (6.42)

where ∆Veff = Veff (0, ṽ
r
S(T ), ṽ

i
S(T );T ) − Veff (v(T ), v

r
S(T ), v

i
S(T );T ) and H∗ = H (T∗). T∗ is the

temperature at which GWs are produced. In this study, we set T∗ = TN .

Sources of GWs arise from bubble collisions [77, 78, 79, 80, 81, 82], sound waves [83, 84, 85, 86]

and turbulence induced by percolation [87, 88, 89, 90, 91, 92]. The GW spectrum we observe is

the sum of them, i.e.,

ΩGW(f)h2 = Ωcol(f)h
2 + Ωsw(f)h

2 + Ωturb(f)h
2, (6.43)

where f is the frequency of GW. We estimate ΩGW using the following equations [75, 76]

Ωcolh
2 = 1.67× 10−5

(
β

H∗

)−2(
κcolα

1 + α

)2(
100

g∗

)1/3(
0.11v3w

0.42 + v2w

)
3.8 (f/fcol)

2.8

1 + 2.8 (f/fcol)
3.8 , (6.44)

Ωswh
2 = 2.65× 10−6

(
β

H∗

)−1(
κvα

1 + α

)2(
100

g∗

)1/3

vw

(
f

fsw

)3(
7

4 + 3 (f/fsw)
2

)7/2

, (6.45)

Ωturbh
2 = 3.35× 10−4

(
β

H∗

)−1(
κturbα

1 + α

) 3
2
(
100

g∗

)1/3

vw
(f/fturb )

3

[1 + (f/fturb)]
11
3 (1 + 8πf/h∗)

, (6.46)

where vw denotes the bubble wall velocity and h∗ is

h∗ = 1.65× 10−5

(
T∗

100 GeV

)( g∗
100

)1/6
Hz. (6.47)
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For vw ≃ 1, one gets

κcol ≃
1

1 + 0.715α

(
0.715α +

4

27

√
3α

2

)
, (6.48)

κv ≃
α

0.73 + 0.083
√
α + α

, (6.49)

κturb ≃ (0.05− 0.1)κv. (6.50)

The peak frequencies of the three sources are, respectively, given by

fcol = 16.5× 10−6

(
β

H∗

)(
0.62

1.8− 0.1vw + v2w

)(
T∗

100 GeV

)( g∗
100

)1/6
Hz, (6.51)

fsw = 1.9× 10−5 1

vw

(
β

H∗

)(
T∗

100 GeV

)( g∗
100

)1/6
Hz, (6.52)

fturb = 2.7× 10−5v−1
w

(
β

H∗

)(
T∗

100 GeV

)( g∗
100

)1/6
Hz. (6.53)

In our numerical analysis, we take vw = 0.95 and κturb = 0.1κv for illustration. As can be

seen from Eqs. (6.44), (6.45), and (6.46), ΩGWh
2 becomes more enhanced as α increases and/or

β decreases. Since the larger supercooling or the stronger first-order EWPT corresponds to the

larger α, we can expect that ΩGW in BP1 or CPC cases becomes higher than in other cases.

As numerically shown below, the sound wave contribution is dominant near the peak frequency.

On the other hand, the other two contributions act at higher frequencies since Ωsw ∝ f−4 while

Ωcol ∝ f−1 and Ωturb ∝ f−5/3 [76]. Thus, we include all the contributions in our calculation.

In Fig. 6.2, ΩGWh
2 in the three BPs and CPC cases are shown. The line and color schemes are

as follows: BP1 (thick-solid, red), BP2 (thick-dashed, blue), BP3 (thick-dotted, green) and CPC

with mχ = 62.5 GeV (thin-solid, black). We also overlay the sensitivity curves of the future GW

experiments such as TianQin [93, 94], Taiji [95, 96], LISA [76, 97, 98], DECIGO [99, 100], and

BBO [101]. For BP1 and CPC, ΩGWh
2 becomes as large as 10−11 near the peak frequency due to

large supercooling, which can be probed by Taiji, LISA, DECIGO and BBO. On the other hand,

at each peak frequency, we find that ΩGWh
2 ≃ 10−14 in BP2, which can be probed by only BBO

and ΩGWh
2 ≃ 10−16 in BP3, which is still beyond the reach of the proposed experiments.
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Figure 6.2: ΩGWh
2 in the three BPs and CPC case are plotted as functions of f . The line and

color schemes are as follows: BP1 (thick-solid, red), BP2 (thick-dashed, blue), BP3 (thick-dotted,

green), CPC with mχ = 62.5 GeV (thin-solid, black). The sensitivity curves of the future GW

experiments TianQin, Taiji, LISA, DECIGO, and BBO are also plotted.

6.3 Electron electric dipole moment and electroweak baryo-

genesis

6.3.1 Extension of CxSM with higher dimensional operators

The classical background fields are parameterized as

⟨H(x)⟩ = 1√
2

(
0

ρ(x)

)
, ⟨S(x)⟩ = 1√

2

(
ρrS(x) + iρiS(x)

)
. (6.54)

Since a spherically symmetric configuration is expected to give the least energy, the scalar fields

depend only on the radial coordinate of the bubble r =
√
x2 + y2 + z2. Then, we obtain the

critical bubble using the following energy functional

S3(T ) =

∫
d3x

[
(∂iH)† ∂iH + ∂iS

∗∂iS + Veff(H,S;T )
]
. (6.55)

In this case, the energy functional (6.55) takes the simplified form

S3(T ) = 4π

∫ ∞

0

dr r2

[
1

2

(
dρ

dr

)2

+
1

2

(
dρrS
dr

)2

+
1

2

(
dρiS
dr

)2

+ V̄eff
(
ρ, ρrS, ρ

i
S;T

)]
, (6.56)
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where we normalize the potential as

V̄eff
(
ρ, ρrS, ρ

i
S;T

)
= Veff

(
ρ, ρrS, ρ

i
S;T

)
− Veff

(
0, ṽrS, ṽ

i
S;T

)
. (6.57)

From the energy functional (6.56), one finds the equations of motion (EOMs) of the scalar fields

as

d2ρ

dr2
+

2

r

dρ

dr
− ∂V̄

∂ρ
= 0, (6.58)

d2ρrS
dr2

+
2

r

dρrS
dr

− ∂V̄

∂ρrS
= 0, (6.59)

d2ρiS
dr2

+
2

r

dρiS
dr

− ∂V̄

∂ρiS
= 0. (6.60)

For the critical bubble, the boundary conditions are

lim
r→∞

ρ(r) = 0, lim
r→∞

ρrS(r) = ṽrS, lim
r→∞

ρiS(r) = ṽiS, (6.61)

dρ(r)

dr

∣∣∣∣
r=0

= 0,
dρrS(r)

dr

∣∣∣∣
r=0

= 0,
dρiS(r)

dr

∣∣∣∣
r=0

= 0, (6.62)

where the first boundary conditions (6.61) correspond to the symmetric phase (r → ∞) and the

second boundary conditions (6.62) are needed to avoid the singularities of EOMs at the broken

phase (r = 0).

TN and bubble wall profile are the most important key parameters in generating BAU. Fig. 6.3

shows ρ(r) (solid, red), ρrS(r) (dashed, blue), and ρ
i
S(r) (dotted, green) in BP1 (left panel), BP2

(middle panel), and BP3 (right panel), respectively. The left endpoints correspond to the VEVs

in the broken phase, while the right endpoints approach those in the symmetric phase. All the

profiles have hyperbolic tangent shapes, but each BP has a different thicknesses of the walls (Lw)

which gets smaller as the first-order EWPT becomes stronger. In Fig. 6.4, we also show the r

dependence on the phase of the singlet scalar. Since ρiS/ρ
r
S in all the BPs are constant, θS is not

dynamical in our model at this time and the model must be extended to generate BAU.

The above numerical results for the phase are also explained qualitatively. Since S couples

to fermions and gauge bosons only through the mixing angles αi, a pseudoscalar coupling hif̄γ5f

does not arise in this model. In other words, even though the complex phases exist in the scalar

potential and the singlet scalar VEV, they do not induce CPV in the matter sector in the SM.

Therefore, further extensions are needed to achieve EWBG and one possible extension is the

addition of new fermions coupling to S. After integrating out the fermions, we consider the new

Yukawa interactions by using higher dimensional operators contributing to the top quark and
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Figure 6.3: ρ(r) (solid, red), ρrS(r) (dashed, blue), and ρiS(r) (dotted, green) in BP1 (left), BP2

(middle), BP3 (right).

Figure 6.4: ρiS/ρ
r
S as a function of r in BP1 (solid, red), BP2 (dashed, blue), and PB3 (dotted,

green).
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electron Yukawa coupling:

−Lhif̄f = q̄LH̃
(
yt +

ct,1
Λ
S +

ct,2
Λ2

|S|2 + ct,3
Λ2

S2 + · · ·
)
tR

+ ℓ̄LH
(
ye +

ce,1
Λ
S +

ce,2
Λ2

|S|2 + ce,3
Λ2

S2 + · · ·
)
eR

+H.c, (6.63)

where qL denotes the up-type left-handed quark doublet of the third generation, while ℓL is the

down-type left-handed lepton doublet of the first generation. tR and eR are the right-handed top

and electron, respectively. Λ is the scale of the integrated fermion i.e., a cutoff scale and H̃ = iτ 2H∗

with τ 2 representing the second Pauli matrix. yt and ye are the top and electron Yukawa couplings

in the SM, respectively, while ct,i and ce,i (i=1-3) are arbitrary complex parameters. Note that

only the top phase is relevant here for EWBG. The imaginary parts of ct,1S, ct,2, and ct,3S
2

contribute to the pseudoscalar coupling, potentially driving EWBG. The possibilities for EWBG

using Im(ct,1) or Im(ct,2) in extensions of the SM with singlet scalar has been explored in studies

such as refs. [102, 103, 65, 104]. On the other hand, the electron phase plays an important role in

suppressing the electron EDM.

After this, we consider the dimension 5 operator in Eq. (6.63):

−Ldim.5
hif̄f

∋ q̄LH̃
(
yt +

ct,1
Λ
S
)
tR + ℓ̄LH

(
ye +

ce,1
Λ
S
)
eR

+H.c., (6.64)

Henceforth, ct,1 = ct and ce,1 = ce. For later use, we parametrize cf = |cf |eiϕf = crf + icif , f = t, e.

The top mass during EWPT is given by

mt(r) =
ρ(r)√

2

(
yt +

ct√
2Λ

(
ρrS(r) + iρiS(r)

))
≡ |mt(r)|eiθt(r), (6.65)

where the phase θt(r) is expressed as

θt(r) = tan−1

(
ρiS(r)√

2Λyt/ct,1 + ρrS(r)

)
. (6.66)

The CPV source term for BAU can arise from the derivatives of θt(r) with respect to r. Actually,

in Fig. 6.5, we show the r dependence on the phase (6.66), where |ct| = yt and Λ = 1 TeV. The

graph shows that the phase, which was constant in Fig. 6.4, now varies with respect to r due to

the introduction of the dimension 5 operator. Our primary interest is the case where the complex

phase in the scalar potential is the only source for the CP violation that drives EWBG. Secondarily,

to what extent complex ct and ce can change the former result. In what follows, we consider the

2 cases3:

3See App. E for specific physical CPV phases.
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Figure 6.5: The phase (6.66) as a function of r in BP1 (solid, red), BP2 (dashed, blue), and PB3

(dotted, green). We set |ct| = yt and Λ = 1 TeV as an example.

1. Both ct and ce are real

2. Both ct and ce are complex

6.3.2 Electron electric dipole moment

The electron EDM severely restrict the magnitude of CPV. The latest upper bounds on |de| from
the ACME and JILA experiments are, respectively, given by [105, 106]

|dACME
e | < 1.1× 10−29 e cm (90% C.L.), (6.67)

|dJILAe | < 4.1× 10−30 e cm (90% C.L.). (6.68)

In our model, dominant corrections to de come from the so-called Barr-Zee diagrams [107]. We

decompose them into two parts

de = dte + dWe , (6.69)

where dte = (dhγe )t+(dhZe )t and d
W
e = (dhγe )W +(dhZe )W . The subscripts of the parentheses represent

the particle running in the upper loop in the Barr-Zee diagrams, as showed in Fig. 6.6.

The top-loop contributions to dhγe in the degenerate mass limit becomes

(dhγe )t
e

≃ αem|ct||ce| sin(ϕe − ϕt)v
2

24π3mtΛ2

[
f(τth)− g(τth)

]
, (6.70)

where τth = m2
t/m

2
h with mh ≡ mh1 = mh2 = mh3 , and ct,e = |ct,e|eiϕt,e . f(τth) and g(τth), are the

loop functions defined in Refs. [107].
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Figure 6.6: Dominant two-loop contributions to de in which electron phase enters. The left dia-

grams are denoted as (dhγe )t and (dhZe )t, while the right ones as (dhγe )W and (dhZe )W .

dte dWe

Real ct and ce mhi = mhj mhi = mhj

Complex ct and ce mhi = mhj and ϕt = ϕe ± nπ mhi = mhj

Table 6.4: Conditions for the vanishing electron EDM de.

The W -loop contributions to dhγe in the degenerate mass limit becomes

(dhγe )W
e

= −
3∑
i=1

α2
emvC

hiγ
W

32π2s2Wm
2
W

J γ
W (mhi), (6.71)

where J γ
W (mhi) are the loop functions defined in [108], and it has the form

3∑
i=1

Chiγ
W J γ

W (mhi)

=
vce
2Λ

(
O12O32∆

(21)J γ
W +O13O33∆

(31)J γ
W

)
, (6.72)

where ∆(ij)J γ
W = J γ

W (mhi)− J γ
W (mhj).

Therefore, As for the top-loop, from Eq. (6.70), we see that if ct and ce are real, (d
hγ
e )t vanishes

due to the Higgs mass degeneracy, while if ct and ce are complex, further phase alignment ϕt =

ϕe + nπ is needed to suppress (dhγe )t. On the other hand, as for the W -loop, regardless of ce,

(dhγe )W vanishes when mh1 = mh2 = mh3 . Similarly, we can obtain the same vanishing conditions

for (dhZe )t and (dhZe )W . The conditions for the vanishing dte and d
W
e are summarized in Table 6.4.
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Inputs v [GeV] vrS [GeV] viS [GeV] mh1 [GeV] mh2 [GeV] mh3 [GeV] α1 [rad] α2 [rad]

246.22 0.6 −0.3 125.0 124.0 124.5 π/4 0.0

Outputs m2 b2 [GeV2] b1 [GeV2] λ δ2 d2 ar1 [GeV3] ai1 [GeV3]

−(124.5)2 −(121.2)2 −7.717× 10−12 0.511 1.51 1.111 −(18.735)3 −(14.870)3

Table 6.5: Inputs and outputs in our benchmark. In this case, α3 = 0.464 radians, and the Higgs

coupling modifiers are κ1 = 0.711, κ2 = −0.711, and κ3 = 0.0.

6.3.3 Numerical results

With respect to the generated baryon number, we follow the work of refs. [40, 41, 42] which derives

the semiclassical force in the presence of the CP violation. The specific calculation method is as

described in Sec. 3.2.3. In our case, the top mass during EWPT and its phase are given by

Eqs. (6.65) and (6.66).

After solving transport equations, one can find the baryon-to-photon ratio (ηB) as [42]

ηB =
405Γsym

sph

4π2γwvwg∗(T )T

∫ ∞

0

dz µBL
exp

(
−
45Γsym

sph z

4γwvw

)
, (6.73)

where µBL
represents a chemical potential for the left-handed baryon number, g∗(T )(= 108.75) is

the degrees of freedom of the relativistic particles in the thermal bath, Γsym
sph (= 1.0 × 10−6T [42])

is the sphaleron rate in the symmetric phase, vw(= 0.1) is the wall velocity, and γw = 1/
√

1− v2w.

We set T to a nucleation temperature TN . Using Eq. (6.73), we estimate ηB and compare with

the observed values, ηBBN
B = (5.8 − 6.5) × 10−10 at 95% CL from bigbang nucleosynthesis and

ηCMB
B = (6.105± 0.055)× 10−10 at 95% CL from comic microwave background [109].

To see the behavior of the suppression numerically, a typical example is given here. The input

and output parameters are summarized in Table 6.5. As studied in Sec. 6.2.1, 0.3 ≲ viS ≲ 0.5 is the

range where the first-order EWPT is strong enough and bubble nucleates. We take a parameter

set BP1 in Table. 5.1 for illustrative purposes but with the sign of viS being flipped. Regarding

cf (f = t, e), we set |cf | = yf and take ϕf as the free parameters.

Fig. 6.7 shows |de| (green solid line) and its details |dte| (blue dotted line) and |dWe | (orange
dashed line) as a function of mh2 with |ct| = yt, |ce| = ye, ϕt = ϕe = 0, and Λ = 1.0 TeV. The upper

dotted horizontal line represents the experimental bound of ACME, while the lower one represents

the JILA bound, above which regions are excluded. As can be seen from this graph, when mh2

approaches 125 GeV(= mh1) the large dip is provided, evading ACME and JILA constraints.

This clearly shows that the degenerate scalar scenario provides an exquisite parameter space that

simultaneously fits LHC and electronic EDM data.

As shown in Fig. 6.6, the top-loop and the W -loop contributions have opposite signs, so these

cancellations suppress electron EDM to some extent. In adition, in the case of ϕt = ϕe = 0, CP

violation solely comes from the scalar potential. With this CP violation, we calculate the BAU
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Figure 6.7: The electron EDM as a function of mh2 in the case that |ct| = yt, |ce| = ye, ϕt = ϕe = 0,

and Λ = 1.0 TeV. We take the parameter set given in Table 6.5 while mh2 is the free parameter.

Here, dte and d
W
e are the two-loop and the W-loop contributions to the electron EDM, depicted as

the left and right diagrams in Fig. 6.6, respectively.

in the cases of Λ = 1.0, 1.5, and 2.0 TeV, respectively. The results are summarized in Table 6.6.

One can see that the Λ = 1.0 TeV case provides ηB = O(10−10), while the other two cases provide

the smaller ηB to some extent. Thus, the case in which CP violation arises only from the scalar

potential seems to give the sufficient baryon asymmetry.

Next, we discuss the case of complex ct and ce. In this case, viS and ct gives the CP-violation

responsible for EWBG. Fig. 6.8 shows ηB and |de| in the (ϕt, ϕe) plane. The red line represents the

JILA’s bound. Small spaces between close red lines are allowed. This graph insists that in addition

to mass degeneracy of the Higgs boson, top and electron phases must coincide. The vertical dotted

lines denotes ηB = 2.62 × 10−10, 2.59 × 10−10, 2.01 × 10−10, 1.83 × 10−11, −8.19 × 10−11, and

−2.42× 10−10 for ϕt = −π/2, −π/4, −π/8, π/8, π/4, and π/2, from left to right, respectively. In

this benchmark point, ϕt = −π/2 gives the largest BAU with the correct sign. This demonstration

reveals that the parameter space for successful EWBG is still wide open in light of the JILA data.
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ηB/10
−10 |de|/10−30 dte/10

−30 dWe /10
−30

Λ = 1.0 [TeV] 1.16 1.15 3.14 −4.29

Λ = 1.5 [TeV] 0.797 0.77 2.09 −2.86

Λ = 2.0 [TeV] 0.606 0.57 1.57 −2.15

Table 6.6: ηB and |de| in the case of |ct| = yt, |ce| = ye, and ϕt = ϕe = 0. The electron EDM is

given in units of e cm.

6.4 Summary of Chapter 6

FIrst, we have investigated the possibility of a strong first-order EWPT taking CPV into account

in the CxSM with degenerate scalars. To qualitatively understand the impact of CP violation on

the first-order EWPT, we derived analytical expressions for vC and TC using simplified effective

potentials. As is the CPC case, vC/TC can be enhanced by the doublet-singlet Higgs mixing

coupling δ2, which is realized by small vrS, v
i
S. This behavior was confirmed through numerical

analysis employing the 1-loop effective potential with the Parwani resummation scheme (Fig. 6.1).

The critical temperature and bubble wall profiles were also evaluated, and these results were

used to estimate the gravitational waves. Since GWs are modulated by the strength of the first-

order EWPT, the GWs spectrum cannot be detected if the CPV of the singlet scalar is large.

However, we can conclude that it is observable by future experiments in BP1 and BP2. Thus, even

though the GWs are not the CPV observable, we may get some useful information about CPV

in the CxSM. Besides the GWs probes, degenerate scalars may be distinguished by a recoil mass

technique at future lepton colliders [46].

Next, we also have studied the possibility of EWBG in the CxSM. Since the singlet scalar

couples to the SM fermions only through the mixing angles α, a pseudoscalar coupling does not

arise in this model at current stage. Therefore, even though the complex phases exist in the

singlet scalar VEV, we do not induce CPV in the matter sector in the SM. We have considered

the new Yukawa interactions by using the following dimension-5 operators contributing to the

top quark and electron Yukawa coupling. Two cases are addressed: one is the case in which CP

violation arises only from the scalar potential, and the other is the case where the coefficient of

the dimension-5 Yukawa interaction additionally yields CP violation. It is found that sufficient

baryon asymmetry was found to be generated even when the CPV phase is derived only from the

imaginary part of the singlet scalar. The EWPT and BAU perturbation calculations used here

include theoretical uncertainties, so a more detailed analysis is left for future research.

We have also studied the electron EDM in the above two cases. In the real ct and ce cases, the

Higgs mass degeneracy suppresses the electron EDM and avoids the ACME and JILA constraints.

On the other hand, in the case of complex ct and ce, an additional phase alignment ϕt = ϕe + nπ
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Figure 6.8: ηB and |de| are shown, where Λ = 1.0 TeV, |ct| = yt, and |ce| = ye are taken. The red

line represents the JILA’s bound and small spaces between close red lines are allowed.

is required to be consistent with the experimental bounds. In conclusion, the parameter space of

EWBG in our scenario is still wide open after the recent EDM update.



Chapter 7

Grand Summary

This chapter summarize the entire thesis. Chapter 2 have provided an overview of the SM. Starting

with the elementary particles that make up the SM, I have described the Higgs mechanism, which

is closely related to EWBG, and the associated mass gain process of gauge bosons and fermions.

I have also mentioned the CKM matrix that gives CPV phase in the SM.

In Chapter 3, I have discussed one of the outstanding issues, BAU. The baryon-to-photon

ratio ηB has been measured by some cosmological observations, and the correct explanation of

this value is baryogenesis. There are various baryogenesis scenario, but here we focus on the

most testable scenario, EWBG, and described sphaleron process and strong first-order EWPT

with bubble nucleation that is necessary to satisfy the Sakharov’s conditions. In addition, several

calculation schemes for effective potentials, which are essential for the evaluation of EWPT, were

presented. In order to derive the generated baryon number, the WKB method for top transport

scenario is introduced here. In Chapter 4, I have discussed DM, specifically WIMP. Expressions

for DM relic density and DM-nucleon scattering cross section were derived for comparison with

observations/experiments.

From Chapter 5, I have described the details of our study. First, I have focused on the CP-

conserving CxSM. There are two Higgs bosons and one scalar DM in this model, and the DM

and quark scattering can be suppressed due to the degenerate scalar scenario. It must be em-

phasized here that the core of the cancellation mechanism in the degenerate scalar scenario is the

suppression of δ2 owing to the Higgs mass degeneracy with moderate values of vS. In the CxSM,

the structure of the tree-level potential, especially the SU(2)L doublet-singlet mixing δ2, makes

an important contribution to first-order EWPT. Therefore, the conditions for strong first-order

EWPT is incompatible with the suppression mechanism of the degenerate scalar scenario, but the

allowed region still exists at mχ = 62.5 GeV. In the area there, the above two were found to be

compatible. We also have examined the constraints that the degenerate scalar scenario imposes

on the tree-level potential, and the possibility that the MPP predicts a degenerate Higgs. As
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a result, the degenerate scalar scenario does not hold for the most general potential because it

constrains the SU(2)L doublet-singlet mixing. Furthermore, although the MPP does not force the

degenerate scalars, it implies a small region where both the degenerate scalar scenario and EWPT

are possible.

The next CP-violating CxSM study is presented in Chapter 6. In this case, there are three Higgs

bosons, and the imaginary part of S is an ordinary decaying particle. The CPV phase is sensitive

to the strength of the EWPT; the larger CPV derives the weaker first-order EWPT. On the other

hand, too strong first-order EWPT prevents bubble nucleation. As a result, 0.3 ≲ viS ≲ 0.5 is

preferred. We also have estimated GW generated by EWPT. The amplitude of the predicted GW

becomes larger as first-order EWPT is stronger, i.e., smaller viS produces more observable GWs.

Finally, new Yukawa interactions of top quark and electron involving higher dimensional operators

was introduced to convey the CPV phase of the singlet to the SM sector. In this study, we focus on

the dimension-5 operators. The electron EDM is currently the most sensitive to CPV, and mass

degeneracy of the Higgs bosons is most important to suppress the contribution to the electron

EDM. It was also found that even when CPV involved in EWBG comes only from the singlet

phase, the generated baryon numbers are consistent with the observed values.



Appendix A

Derivation of effective potential

In this chapter, effective potential at zero and finite temperature is derived according to ref. [110].

A.1 Effective potential at zero temperature

A.1.1 Generating functional

The relation between the action function S[ϕ] and the Lagrangian density L{ϕ(x)} with respect

to the field ϕ is defined as

S[ϕ] =

∫
d4xL{ϕ(x)}. (A.1)

The generating functional is given by the path-integral representation as follows:

Z[J ] = ⟨0out | 0in ⟩ ≃
∫

Dϕ exp[i(S + Jϕ)], (A.2)

Jϕ ≡
∫
d4xJ(x)ϕ(x). (A.3)

The nth derivative of Z[J ] with respect to J is the nth-order Green ’s function G(n)

G(n) ≡ δ(n)Z[J ]

δJ (n)
. (A.4)

However, the Green’s functions obtained in this way are disconnected and contain components that

do not contribute to the physical process. We introduce the connected generating functional W [J ]

as a prescription for dropping the disconnected components and extracting only the connected

parts such that

Z[J ] = eiW [J ]. (A.5)
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The effective action Γ[ϕ] is defined as the Legendre transform of (A.5)

Γ[ϕ̄] = W [J ]−
∫
d4xJ(x)ϕ̄(x), (A.6)

where

ϕ̄(x) ≡ δW (J)

δJ(x)
. (A.7)

From (A.6) and (A.7), we can obtain

δΓ[ϕ̄]

δϕ̄(x)
=

δ

δϕ̄(x)

[
W [J ]−

∫
d4yJ(y)ϕ̄(y)

]
=

∫
d4z

δW [J ]

δJ(z)

δJ(z)

δϕ̄(x)
− δ

δϕ̄(x)

∫
d4yJ(y)ϕ̄(y)

=

∫
d4z

δW [J ]

δJ(z)

δJ(z)

δϕ̄(x)
−
∫
d4y

{
δϕ̄(y)

δϕ̄(x)
J(y) + ϕ̄(y)

δJ(y)

δϕ̄(x)

}
=

∫
d4z

δW [J ]

δJ(z)

δJ(z)

δϕ̄(x)
−
∫
d4y

{
δϕ̄(y)

δϕ̄(x)
J(y) +

δW [J ]

δJ(y)

δJ(y)

δϕ̄(x)

}
=

∫
d4z

δW [J ]

δJ(z)

δJ(z)

δϕ̄(x)
−
∫
d4y

{
δ(y − x)J(y) +

δW [J ]

δJ(y)

δJ(y)

δϕ̄(x)

}
= −J(x). (A.8)

Here, from (A.8)

δΓ̄[ϕ̄]

δϕ̄(x)

∣∣∣∣
j=0

= 0, (A.9)

is given and this defines the vacuum state of the theory in the absence of an external source. As

mentioned earlier, the Green’s function is given as the derivative of the generating functional with

respect to source. Therefore, suppose that Z[J ] and W [J ] can be expanded at source J as follows:

Z[J ] =
∑
n

in

n!

∫
d4x1 · · · d4xnJ (x1) · · · J (xn)G

(n) (x1 · · ·xn) , (A.10)

iW [J ] =
∑
n

in

n!

∫
d4x1 · · · d4xnJ (x1) · · · J (xn)G

(n)
c (x1 · · ·xn) . (A.11)

Since the effective action is a functional of ϕ̄, it is expressed as

Γ[ϕ̄] =
∑
n

in

n!

∫
d4x1 · · · d4xnϕ̄ (x1) · · · ϕ̄ (xn) Γ(n) (x1 · · ·xn) , (A.12)

where Γ(n) (x1 · · ·xn) is defined as the one-particle irreducible (1PI) Green functions. 1PI means

that one propagation function cannot be disconnected and separated into two or more. Since

the interaction vertex is given by the momentum space representation of the remainder of the

Lagrangian minus the field, the effective vertex is also considered to be given by the momentum

space representation of Γ(n) (x1 · · ·xn), which is the remainder of the effective action minus the

field.
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A.1.2 Definition of effective potential

The relationship between the effective potential and the effective action is given by using the

constant field ϕc as follows:

Γ [ϕc] = −
∫
d4xVeff (ϕc) , (A.13)

and justify this relationship below. In one dimension, the Fourier transformation of the function

f(x) in coordinate space into momentum space is

f̃(p) =

∫
dxe−ipxf(x), (A.14)

f(x) =

∫
dp

2π
eipxf̃(p). (A.15)

The Fourier transformations of the 1PI Green’s functions Γ(n)(x) and ϕ̄ are given by

Γ(n) (x1, · · · , xn) =
∫ ∏

i

d4pi
(2π)4

eipixi(2π)4δ(4) (p1 + · · ·+ pn) Γ
(n) (p1, · · · , pn) , (A.16)

ϕ̄(p) =

∫
d4xe−ipxϕ̄(x). (A.17)

By using the effective action of the momentum space Γ(n)(p), Eq. (A.12) can be expressed as

Γ[ϕ̄] =
∑
n

1

n!

∫
d4x1 · · · d4xnϕ̄ (x1) · · · ϕ̄ (xn) Γ(n) (x1, · · · , xn)

=
∑
n

1

n!

∫
d4x1 · · · d4xnϕ̄ (x1) · · · ϕ̄ (xn)

×
∫ ∏

i

[
d4pi
(2π)4

eipixi
]
(2π)4δ(4) (p1 + · · ·+ pn) Γ

(n) (p1, · · · , pn)

=
∑
n

1

n!

∫
d4x1 · · · d4xne−i(−p1)x1 · · · e−i(−pn)xnϕ̄ (x1) · · · ϕ̄ (xn)

=×
∫

d4p1
(2π)4

· · · d
4pn

(2π)4
(2π)4δ(4) (p1 + · · ·+ pn) Γ

(n) (p1, · · · , pn)

=
∑
n

1

n!

∫
d4p1
(2π)4

· · · d
4pn

(2π)4
ϕ̃ (−p1) · · ·ϕ (−pn)

× (2π)4δ(4) (p1 + · · ·+ pn) Γ
(n) (p1, · · · , pn) , (A.18)

where

δ(4)(p) =

∫
d4x

(2π)4
e−ipx. (A.19)

On the other hand, by using the following relationship

ϕ̄(p) =

∫
d4xe−ipxϕc = (2π)4δ(4)(p)ϕc, (A.20)
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we can obtain

Γ (ϕc) =
∑
n

1

n!

∫
d4p1
(2π)4

· · · d
4pn

(2π)4
ϕ̄ (−p1) · · · ϕ̄ (−pn)

× (2π)4δ(4) (p1 + · · ·+ pn) Γ
(n) (p1, · · · , pn)

=
∑
n

1

n!

∫
d4p1
(2π)4

· · · d
4pn

(2π)4
(2π)4δ(4) (−p1)ϕc · · · (2π)4δ(4) (−pn)ϕc

× (2π)4δ(4) (p1 + · · ·+ pn) Γ
(n) (p1, · · · , pn)

=
∑
n

1

n!
ϕnc (2π)

4δ(4)(0)Γ(n) (pi = 0)

=
∑
n

1

n!
ϕnc

∫
d4xe−i·0·xΓ(n) (pi = 0)

=
∑
n

1

n!
ϕnc

∫
d4xΓ(n) (pi = 0) . (A.21)

Comparing (A.13) and (A.21), one finds

Veff = −
∑
n

1

n!
ϕncΓ

(n) (pi = 0) . (A.22)

In other words, the effective potential is the 1PI Green’s function in momentum space with the

momentum of the external line set to zero multiplied by an n constant field ϕc.

Another method of evaluating the effective potential will also be presented. Substituting (A.2)

and (A.5) for (A.6), one gets

Γ[ϕ̄] = −iℏ ln
∫

Dϕ exp i
ℏ
[S + J(ϕ− ϕ̄)]. (A.23)

Changing the integrating variable ϕ to ϕ+ ϕ̄ and substituting (A.8) yields

Γ[ϕ̄] = −iℏ ln
∫

Dϕ exp i
ℏ

∫
d4x

[
L(ϕ+ ϕ̄)− δΓ[ϕ̄]

δϕ̄
ϕ

]
. (A.24)

Expand L(ϕ+ ϕ̄) around the constant field ϕ̄ for ϕi(x):

L(ϕ+ ϕ̄) = L(ϕ̄) + ∂L(ϕ̄)
∂ϕ̄i

ϕi +
1

2
ϕii
[
D−1
F (ϕ̄)

]ij
ϕj + · · · , (A.25)

where

i
[
D−1
F (ϕ̄)

]ij
=
∂2L(ϕ+ ϕ̄)

∂ϕi∂ϕj

∣∣∣∣
ϕ=0

=
∂2L(ϕ̄)
∂ϕ̄i∂ϕ̄j

, (A.26)

is the inverse of the propagator in a vacuum such that the expectation value of the field is ϕ̄.

Substituting (A.25) for (A.24), we get

Γ[ϕ̄] =

∫
d4xL(ϕ̄) + Γ̃[ϕ̄], (A.27)
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where

Γ̃[ϕ̄] = −iℏ ln
∫

Dϕ exp i
ℏ

∫
d4x

[
1

2
ϕiD−1

F (ϕ̄)ϕ+ · · · − δΓ̃[ϕ̄]

δϕ̄
ϕ

]
. (A.28)

The first term in (A.27) is the classical action integral and the second term is the contribution of

the 1PI loop graph. Then using the Gaussian integral formula∫
Dϕ exp

[
−i
∫
d4xd4y

1

2
ϕ(x)A(x, y)ϕ(y)

]
∝ Det

1
2 A, (A.29)

we can obtain

Γ[ϕ̄] =

∫
d4xL(ϕ̄) + i

2
lnDet

[
iD−1

F (ϕ̄)
]
+ · · · . (A.30)

Det in the second term is the determinant for the space-time coordinates and all other field indices.

The second term represents the contribution of the 1-loop graph; the contribution of graphs above

2-loops is not explicitly mentioned here. From this, the effective potential V (ϕ̄) is

V (ϕ̄) = V0(ϕ̄) +
1

2
ℏ
∫

d4k

i(2π)4
ln det

[
iD−1

F (k; ϕ̄)
]
+ · · · , (A.31)

where det in the second term is the determinant for the subscripts of the field. Below I note the

1-loop effective potentials at zero temperature of scalar, fermion, and gauge boson fields.

Scalar field

The Lagrangian of a scalar field is defined as follows

L =
1

2
∂µϕ∂µϕ− V0(ϕ) (A.32)

V0 =
1

2
m2ϕ2 +

λ

4!
ϕ4. (A.33)

From (A.31), the 1-loop effective potential at zero temperature of scalar fields is

V s
1 (ϕc) =

1

2

∫
d4p

(2π)4
ln
[
p2 +m2 (ϕc)

]
, (A.34)

where ϕc is a constant background field.

Fermion field

The Lagrangian of a fermion field is defined as follows

L = iψ̄aγ · ∂ψa − ψ̄a (Mf )
a
b ψ

b. (A.35)

From (A.31), the 1-loop effective potential at zero temperature of fermion fields is

V f
1 (ϕc) = −2λ

1

2
Tr

∫
d4p

(2π)4
ln
[
p2 +M2

f (ϕc)
]
, (A.36)
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where 2λ denotes the degrees of freedom of fermions, where λ = 1(2) corresponds to Weil (Dirac)

fermions.

Gauge boson field

The Lagrangian of a Gauge boson fields is defined as follows

L = −1

4
Tr (FµνF

µν) +
1

2
Tr (Dµϕa)

†Dµϕa + · · · . (A.37)

From (A.31), the 1-loop effective potential at zero temperature of fermion field is

V gb
1 (ϕc) = Tr(∆)

1

2
Tr

∫
d4p

(2π)4
log
[
p2 + (Mgb)

2 (ϕc)
]
, (A.38)

where Tr(∆) denotes the degrees of freedom of massive gauge bosons, with Tr(∆) = 3.

A.1.3 Dimensional regularization

Here, we perform renormalization using dimensional regularization. Extending the scalar effective

potential (A.34) to n dimensions, one gets

V s
1 (ϕc) =

1

2

(
µ2
)2−n

2

∫
dnp

(2π)n
log
[
p2 +m2 (ϕc)

]
, (A.39)

where µ is the renormalization scale with mass dimension. Differentiating V s
1 (ϕc) by m

2 (ϕc), we

obtain

V s ′
1 (ϕc) =

1

2

(
µ2
)2−n

2

∫
dnp

(2π)n
1

p2 +m2 (ϕc)
. (A.40)

Integrating above equation by m2 (ϕc) using the relationship∫
dnp

(p2)
α

(p2 +M2)β
= π

n
2

(
M2
)n

2
+α−β Γ

(
α + n

2

)
Γ
(
β − α− n

2

)
Γ
(
n
2

)
Γ(β)

, (A.41)

then yields

V s
1 (ϕc) = − 1

32π2

1
n
2

(
n
2
− 1
) (m2 (ϕc)

4πµ2

)n
2
−2

Γ
(
2− n

2

)
m4 (ϕc) . (A.42)

Eq. (A.42) can be re-expressed as

V s
1 (ϕc) =

m4 (ϕc)

64π2

{
−
[

1

2− n
2

− γE + log 4π

]
+ log

m2 (ϕc)

µ2
− 3

2
+O

(n
2
− 2
)}

, (A.43)

by using

Γ(z) =
1

z
− γE +O(z), (A.44)
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with the Euler constant γE ≈ 0.5772.

From here, the so-called MS scheme is used to address diverging terms, i.e., the terms propor-

tional to

−m
4 (ϕc)

64π2

{
1

2− n
2

− γE + log 4π

}
, (A.45)

are absorbed by the counter terms. Finally, the 1-loop effective potential at zero temperature of

scalar fields casts into form

V s
1 (ϕc) =

1

64π2
m4 (ϕc)

{
log

m2 (ϕc)

µ2
− 3

2

}
. (A.46)

Similarly, the 1-loop effective potential at zero temperature of scalar fields

V f
1 (ϕc) = −λ 1

32π2
M4

f (ϕc)

{
log

M2
f (ϕc)

µ2
− 3

2

}
, (A.47)

V gb
1 (ϕc) = 3

1

64π2
M4

gb (ϕc)

{
log

M2
gb (ϕc)

µ2
− 5

6

}
. (A.48)

As an example, we consider the SM. The SU(2)L doublet in the SM is defined as

Φ =

(
χ1 + iχ2

ϕc+h+iχ3√
2

)
, (A.49)

where h is the Higgs field and χi (i = 1, 2, 3) are Nambu-Goldstone bosons. The tree-level potential

with respect to ϕc is

V0 (ϕc) = −m
2

4
ϕ2
c +

λ

16
ϕ4
c . (A.50)

Using the MS, the 1-loop effective potential at zero temperature of the SM casts into form

V (ϕc) = V0 (ϕc) +
1

64π2

∑
i=W,Z,h,t,b

nim
4
i (ϕc)

[
log

m2
i (ϕc)

µ2
− Ci

]
(A.51)

CW = CZ =
5

6
(A.52)

Ch = Ct = Cb =
3

2
(A.53)

nW = 6, nZ = 3, nh = 1, nt = nb = −12. (A.54)

Here we consider the contributions of the Higgs boson, the W and Z boson, and the top and

bottom quarks which are relatively heavy fermions. The degrees of freedom of each particle are as

in Eq. (A.54). On the other hand, using renormalization with cut-off regularization, we finds

V (ϕc) = V0 (ϕc) +
1

64π2

∑
i

{
m4
i (ϕc)

(
log

m2
i (ϕc)

m2
i (v)

− 3

2

)
+ 2m2

i (v)m
2
i (ϕc)

}
. (A.55)
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A.2 Effective potential at finite temperature

A.2.1 Generating functional

To define the effective potential at finite temperature, we start with a grand canonical population.

A grand canonical population is a system that can exchange energy and particles with the external

world. In a system characterized by a HamiltonianH, a conserved charge QA, the equilibrium state

of a stationary system with a large volume V is described by grand canonical density operators:

ρ = exp(−Φ) exp

{
−
∑
A

αAQA − βH

}
, (A.56)

Φ = log Tr exp

{
−
∑
A

αAQA − βH

}
, (A.57)

where αA and β are Lagrange multipliers, which can be expressed as αA = −βµA, β = T−1 using

temperature T and chemical potential µA. Also, the grand canonical average of a physical quantity

O can be expressed as

⟨O⟩ ≡ Tr(Oρ) (A.58)

and satisfies ⟨1⟩ = 1.

Consider the case of a real scalar field ϕ(x). The chemical potential µA is assumed to be zero.

The real scalar field ϕ(x) can be expressed as

ϕ(x) = eitHϕ(0, x⃗)e−itH , (A.59)

and x0 = t is considered to follow the complex plane. The thermal Green’s function is defined as

the grand canonical average of the ordinal product of n field operators:

G(C) (x1, . . . , xn) ≡ ⟨TCϕ (x1) , . . . , ϕ (xn)⟩ . (A.60)

The TC ordinal product is reordered along path C on the complex t-plane. That is

TCϕ(x)ϕ(y) = θC
(
x0 − y0

)
ϕ(x)ϕ(y) + θC

(
y0 − x0

)
ϕ(y)ϕ(x). (A.61)

If we parameterize C as t = z(τ), then the TC ordinal product implies the usual ordinal product

along the real parameter τ . Thus, the step and delta functions are

θC(t) = θ(τ), δC(t) = (∂z/∂τ)−1δ(τ). (A.62)

As in the zero temperature case, the generating functional for the full Green’s function is expressed

as

Zβ[j] =
∞∑
n=0

in

n!

∫
C

d4x1 . . . d
4xnj (x1) . . . j (xn)G

(C) (x1, . . . , xn) , (A.63)
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and can also be written as

Zβ[j] =

〈
TC exp

{
i

∫
C

d4xj(x)ϕ̇(x)

}〉
, (A.64)

where Zβ[0] = ⟨1⟩ = 1 and the integral along t follows the path C in the complex plane.

Furthermore, the generating functional of the connected Green’s function W β[j] is defined by

Zβ[j] ≡ exp
{
iW β[j]

}
. Using the Legendre transform, the generating functional for 1PI Green

functions is given by

Γβ[ϕ̄] = W β[j]−
∫
C

d4x
δW β[j]

δj(x)
j(x). (A.65)

Here the classical field ϕ̄(x) can be expressed as ϕ̄(x) = δW β[j]/δj(x), which makes δΓβ[ϕ̄]/δϕ̄(x) =

−j(x). ϕ̄(x) = ⟨ϕ(x)⟩ is the grand canonical average of ϕ(x). Here we can define the effective

potential at finite temperature by removing the overall factor of space-time volume appearing in

each term of Γβ
[
ϕ̄
]
as follows:

Γβ [ϕc] = −
∫
d4xV β

eff (ϕc) . (A.66)

Also, symmetry breaking occurs when

∂V β
eff (ϕc)

∂ϕc
= 0. (A.67)

Scalar field

Using Eq. (A.61), the two-point Green function is

G(C)(x− y) = θC
(
x0 − y0

)
G+(x− y) + θC

(
y0 − x0

)
G−(x− y), (A.68)

where

G+(x− y) = ⟨ϕ(x)ϕ(y)⟩, G−(x− y) = G+(y − x). (A.69)

After some calculations, Eq. (A.68) takes the form

G(C)(x− y) =

∫
d4p

(2π)4
2π
[
θ
(
p0
)
− θ

(
−p0

)]
δ
(
p2 −m2

)
e−ip(x−y)

[
θC
(
x0 − y0

)
+ nB

(
p0
)]
,

(A.70)

where nB (ω) represents the Bose distribution function

nB(ω) =
1

eβω − 1
. (A.71)

The periodicity relation affecting the Green function, called the Kubo-Martin-Schwinger relation,

is derived as

G+(t− iβ, x⃗) = G−(t, x⃗). (A.72)
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Fermion field

The two-point Green function in the fermion case can be expressed as

S
(C)
αβ (x− y) ≡

〈
TCψα(x)ψ̄β(y)

)
= θC

(
x0 − y0

)
S+
αβ − θC

(
y0 − x0

)
S−
αβ, (A.73)

where

S+
αβ(x− y) =

〈
ψα(x)ψ̄β(y)

〉
. (A.74)

After some calculations, Eq. (A.73) takes the form

S(C)(x− y) =

∫
d4p

(2π)4
2π
[
θ
(
p0
)
− θ

(
−p0

)]
δ
(
p2 −m2

)
e−ip(x−y)

[
θC
(
x0 − y0

)
− nF

(
p0
)]
,

(A.75)

where nF (ω) represents the Bose distribution function

nF (ω) =
1

eβω + 1
. (A.76)

The reduced Green function S(C)(x− y) satisfies the Kubo-Martin-Schwinger relation

S+
αβ(t− iβ, x⃗) = −S−

αβ(t, x⃗). (A.77)

A.2.2 1-loop effective potential at finite temperature

The calculation of the propagator depends on the choice of path C from initial time t to t−iβ. The
simplest path is a straight line along the imaginary axis t = −iτ , called the Matsubara contour.

The two-point Green functions can be expressed as

G(τ, x⃗) =

∫
d4p

(2π)4
2π
[
θ
(
p0
)
− θ

(
−p0

)]
δ
(
p2 −m2

)
eip⃗x⃗e−τp

0 [
θ(τ) + ηnB,F

(
p0
)]
, (A.78)

where η = 1 for bosons and η = −1 for fermions. The Green function can be decomposed as

G(τ, x⃗) = G+(τ, x⃗)θ(τ) +G−(τ, x⃗)θ(−τ), (A.79)

where G(τ + β) = ηG(τ) for − β ≤ τ ≤ 0, G(τ − β) = ηG(τ) for 0 ≤ τ ≤ β. The Fourier

transform of Eq. (A.78) is

G̃ (ωn, p⃗) =

∫ α

α−β
dτ

∫
d3xeiωnτ−ix⃗p⃗G(τ, x⃗), (A.80)

where ωn = 2nπβ−1 for bosons and ωn = (2n+1)πβ−1 for fermions. From Eqs. (A.78) (A.80), one

finds

G̃ (ωn, p⃗) =
1

p⃗2 +m2 + ω2
n

. (A.81)
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Inverse Fourier transform of Eq. (A.81) yields the euclidean propagator:

∆(x) =
1

β

∞∑
n=−∞

∫
d3p

(2π)3
e−iωnτ+ip⃗x⃗

−i
p⃗2 +m2 + ω2

n

, (A.82)

where G(τ, x⃗) = i∆(−iτ, x⃗). As can be seen Eq. (A.82), the Feynman rule for finite temperature

is given as follows:

Loop integral :
i

β

∞∑
n=−∞

∫
d3p

(2π)3

Vertex function :− iβ(2π)3δ
∑
ωi

δ(3)

(∑
i

p⃗i

)

Boson propagator :
i

p2 −m2
(A.83)

pµ =
[
2niπβ−1, p⃗

]
Fermion propagator :

i

γ · p−m
(A.84)

pµ =
[
(2n+ 1)iπβ−1, p⃗

]
. (A.85)

Scalar field

The tree-level potential of scalar fields is given by Eqs. (A.32) and (A.33). Using the Feynman

rule (A.85), Eq. (A.34) can be rewritten as

V β
1 (ϕc) =

1

2β

∞∑
n=−∞

∫
d3p

(2π)3
log
(
ω2
n + ω2

)
, (A.86)

where ωn is the Matsubara frequency in bosons, and ω2 = p⃗2 +m2 (ϕc). To compute Eq. (A.86)

we consider

∂a(ω)

∂ω
=

∞∑
n=−∞

2ω

ω2
n + ω2

, (A.87)

where a(ω) ≡
∑∞

n=−∞ log (ω2
n + ω2). Using the identity

f(y) =
∞∑
n=1

y

y2 + n2
= − 1

2y
+

1

2
π cothπy

= − 1

2y
+
π

2
+ π

e−2πy

1− e−2πy
, (A.88)

one finds

∂a(ω)

∂ω
= 2β

[
1

2
+

e−βω

1− e−βω

]
. (A.89)



A.2. EFFECTIVE POTENTIAL AT FINITE TEMPERATURE 97

Integrating this yields

a(ω) = 2β

[
w

2
+

1

β
log
(
1− e−βω

)]
. (A.90)

Substituting this into Eq. (A.86), one gets

V β
1 (ϕc) =

∫
d3p

(2π)3

[
ω

2
+

1

β
log
(
1− e−βω

)]
. (A.91)

The first term in Eq. (A.91) represents the zero temperature 1-loop effective potential in equation

(A.34) itself. The second term in Eq. (A.91) is converted to

1

β

∫
d3p

(2π)3
log
(
1− e−βω

)
=

1

2π2β4
IB
[
m2 (ϕc) β

2
]
, (A.92)

IB
[
m2β2

]
=

∫ ∞

0

dxx2 log
[
1− e−

√
x2+β2m2

]
. (A.93)

When Eq. (A.93) is expanded to high temperature, one obtains

IB
(
m2/T 2

)
≃ −π

4

45
+
π2

12

m2

T 2
− π

6

(
m2

T 2

)3/2

− 1

32

m4

T 4
log

m2

abT 2
. (A.94)

Fermion field

The tree-level potential of fermion fields is given by Eqs. (A.35). Using the Feynman rule (A.85),

Eq. (A.36) can be rewritten as

V β
1 (ϕc) = −2λ

2β

∞∑
n=−∞

∫
d3p

(2π)3
log
(
ω2
n + ω2

)
, (A.95)

where ωn is the Matsubara frequency in fermions, and ω2 = p⃗2 +M2
f (ϕc). Calculating as in the

case of a scalar field, we obtain

∂a

∂ω
=

4β

π

∑
1,3,...

y

y2 + n2
= 2β

[
1

2
− 1

1 + eβω

]
. (A.96)

Integrating this yields

a(ω) = 2β

[
w

2
+

1

β
log
(
1 + e−βω

)]
. (A.97)

Substituting this into Eq. (A.95), one gets

V β
1 (ϕc) = −2λ

∫
d3p

(2π)3

[
ω

2
+

1

β
log
(
1 + e−βω

)]
, . (A.98)

The first term in Eq. (A.98) represents the zero temperature 1-loop effective potential in equation

(A.36) itself. The second term in Eq. (A.98) is converted to

− 2λ
1

β

∫
d3p

(2π)3
log
(
1 + e−βω

)
= −2λ

1

2π2β4
IF
[
M2

f (ϕc) β
2
]

(A.99)

IF
[
m2β2

]
=

∫ ∞

0

dxx2 log
[
1 + e−

√
x2+β2m2

]
. (A.100)
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When Eq. (A.100) is expanded to high temperature, one obtains

IF
(
m2/T 2

)
≃ 7π4

360
− π2

24

m2

T 2
− 1

32

m4

T 4
log

m2

afT 2
. (A.101)

Gauge boson field

The tree-level potential of gauge boson fields is given by Eqs. (A.37). Using the Feynman rule

(A.85), Eq. (A.38) can be rewritten as

V β
1 (ϕc) = Tr(∆)

1

2β

∞∑
n=−∞

∫
d3p

(2π)3
log
(
ω2
n + ω2

)
, (A.102)

where ωn is the Matsubara frequency in bosons, and ω2 = p⃗2+M2
gb (ϕc). Calculating this as before

leads to the zero temperature effective potential and the finite temperature effective potential as

in

V β
1 (ϕc) = Tr(∆)

{
1

2

∫
d4p

(2π)4
log
[
p2 +M2

gb (ϕc)
]
+

1

2π2β4
IB
[
M2

gb (ϕc) β
2
]}

. (A.103)

IB in the second term of Eq. (A.103) refers to Eq. (A.93).



Appendix B

Field dependent mass

B.1 CPC CxSM

We enumerate the field dependent masses and derive the thermal mass of the scalars. First, we

focus on the CPC CxSM. The scalar mass matrix takes the form 2-by-2:

1

2

(
φ φS

)
M̄2

S

(
φ

φS

)
, (B.1)

where

M̄2
S (φ, φS) =

(
m2

2
+ 3λ

4
φ2 + δ2

4
φ2
S

δ2
2
φφS

δ2
2
φφS

b2
2
+ b1

2
+ δ2

4
φ2 + 3d2

4
φ2
S

)
(B.2)

≡

(
m̄2
h (φ, φS)

δ2
2
φφS

δ2
2
φφS m̄2

hS
(φ, φS)

)
. (B.3)

The field dependent masses of the NG bosons, gauge bosons and top/bottom are, respectively,

given by

m̄2
G0 = m̄2

G± =
m2

2
+
λ

4
φ2 +

δ2
4
φ2
S, (B.4)

m̄2
W =

g22
4
φ2, m̄2

Z =
g22 + g21

4
φ2, (B.5)

m̄2
t =

y2t
2
φ2, m̄2

b =
y2b
2
φ2. (B.6)

The eigenvalues of CP-even scalars are

m̄2
h1,2

(φ, φS) =
1

2

[
m̄2
h + m̄2

hS
∓
√(

m̄2
h − m̄2

hS

)2
+ δ22φ

2φ2
S

]
. (B.7)
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The thermal mass of the Higgs field φ appearing in the HT potential (5.59) is calculated as follows:

ΣHT
2 =

∂2V1|T>0

∂φ2
=
∑
i

ni

[
T 2

2π2

∂IB,F (a
2
i )

∂a2i

∂2m̄2
i

∂φ2
+

1

2π2

∂2IB,F (a
2
i )

∂(a2i )
2

(
∂m̄2

i

∂φ

)2
]

≃ T 2

24

∑
i=bosons

ni
∂2m̄2

i

∂φ2
− T 2

48

∑
i=fermions

ni
∂2m̄2

i

∂φ2

=

[
λ

8
+
δ2
24

+
1

16
(3g22 + g21) +

1

4
(y2t + y2b )

]
T 2, (B.8)

where
∑

i=1,2 m̄
2
i =

∑
i=1,2(M̄2

S)ii is used for the scalars. Similarly, the thermal mass of the singlet

field φS is represented by

ΣST
2 =

∂2V1|T>0

∂φr2S
=
∂2V1|T>0

∂φi2S
=
δ2 + d2
12

T 2. (B.9)

B.2 CPV CxSM

In the presence of CP violation, the mass matrix of the scalars takes the 3-by-3 form

1

2

(
φ φrS φiS

)
M̄2

S


φ

φrS

φiS

 , (B.10)

where

(M̄2
S)11 =

m2

2
+

3λ

4
φ2 +

δ2
4
|φS|2, (B.11)

(M̄2
S)22 =

b2
2
+
br1
2
+
d2
4
(3φr2S + φi2S ) +

δ2
4
φ2, (B.12)

(M̄2
S)33 =

b2
2
− br1

2
+
d2
4
(φr2S + 3φi2S ) +

δ2
4
φ2, (B.13)

(M̄2
S)12 =

δ2
2
φφrS, (B.14)

(M̄2
S)13 =

δ2
2
φφiS, (B.15)

(M̄2
S)23 = −b

i
1

2
+
d2
2
φrSφ

i
S, (B.16)

with |φS|2 = φr2S + φi2S . The thermal masses of φ is same as Eq. (B.8) and those of φrS, φ
i
S are

same as Eq. (B.9).



Appendix C

Theoretical constraints on parameters

A requirement on the scalar potential that is bounded from below is given by

λ > 0, d2 > 0. (C.1)

When the scalar fields take on large values, the scalar potential is dominated by the quartic terms

of fields. Thus, we consider the condition that the quartic terms of scalar fields is positive:

λ

4
|H|4 + δ2

2
|H|2|S|2 + d2

4
|S|4 > 0. (C.2)

If δ2 > 0, then Eq. (C.2) holds. When δ2 < 0, we finds

λ

(
|H|2 + δ2

λ
|S|2

)2

+

(
d2 −

δ22
λ

)
|S|4 > 0. (C.3)

The first term of Eq. (C.3) is always positive, which leads to

λd2 > δ22. (C.4)

Furthermore, we consider constraints from perturbation theory. The S matrix is an operator

that gives the relationship between initial and final states, and can be expressed as

⟨f |S|i⟩ = (2π)4δ(4) (pf − pi) iM, (C.5)

where M is a scattering amplitude and pi(pf ) is an initial (final) momentum. Using the amplitude

of the partial wave aj with angular momentum j, the scattering amplitude M is

M(θ) = 16π
∞∑
j=0

aj(2j + 1)Pj(cos θ), (C.6)

where Pj(x) is the Legendre polynomial, which is expressed as

Pj(x) =
1

2jj!

dj

dxj
(
x2 − 1

)j
. (C.7)
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The S matrix is a unitary matrix, i.e., S†S = 1, which gives the following constraints on a0 with

angular momentum j = 0:

|a0| ≦ 1, Re [a0] ≦
1

2
. (C.8)

When j = 0, one gets

M(j=0) = 16π · a0, (C.9)

and conditional equation

|M| ≦ 8π, (C.10)

is derived by using the second equation of (C.8).

h1(h2) h1(h2)

h1(h2) h1(h2)

Figure C.1: Diagram of 4-point interaction of h1(h2)

Now, we consider 4-point interaction of h1(h2) expressed in Fig. C.1. From the Feynman Rules,

one can derive

iM = i · λ
16

· 4!, iM = i · d2
16

· 4!. (C.11)

From Eq. (C.10), conditions from the perturbative unitarity is expressed as

λ, d2 ≦
16π

3
. (C.12)

Finally, to guarantee the vacuum stability , one should request that the eigenvalues of the mass

matrix (5.10) are positive, which leads to

λ

(
d2 −

2
√
2a1
v3S

)
> δ22. (C.13)

In this study, the mass eigenvalues are treated as input parameters and take positive values, so it

is inevitable that the above condition is satisfied.



Appendix D

Sum rules of 1-loop scattering of DM

and quarks

We study the 1-loop contributions to the DM-quark scattering in the degenerate scalar scenario.

Here, we use the minimal tree-level scalar potential (5.1) which is known to satisfy the condition

of the cancellation mechanism. The H-S mixing δ2 is given by

δ2 =
2

vvS

(
m2
h1

−m2
h2

)
sinα cosα. (D.1)

δ2 becomes zero in the degenerate scalar limit. We classify the 1-loop diagrams for the DM-quark

scattering into five groups as summarized in Figs. D.1-D.5. The amplitudes of the diagrams for each

group are shown in the non-relativistic limit of the momentum transfer t→ 0 and the degenerate

scalar limit mh1 = mh2 ≡ m.

D.1 Group-1

The diagrams belonging to Group-1 (Fig. D.1) contain the tree-level diagram (χχ → (hi) → qq)

as a subdiagram. Consequently, each diagram in this group vanishes for the same reason as the

tree-level diagram. Specifically, regarding Fig. D.1 (a), particle A denotes all Standard Model

(SM) particles excluding the Higgs, all of which solely couple with the SM Higgs h. Therefore,

these contributions cancel out through the same mechanism observed in the DM-quark scattering

at the tree-level.
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χ χ

q q

hj

hi

AA

(a)

χ,hk,A
χ χ

q q

χ

hi

hj

(b)

χ,hk,A
χ χ

q q

χ

hi

hj

(c)

χ χ

q q

χ

hi

χ,hj

(d)

χ χ

q q

χ

hi

χ,hj

(e)

χ χ

q q

χ

hi

hj

χ

(f)

χ χ

q q

χ

hi

hj

χ

(g)

χ χ

q q

hj

hi

χχ

(h)

χ χ

q q

χ χ

hj

hi

(i)

χ χ

q q

hj hk

χ

hi

(j)

χ χ

q q

hi

χ

hj

q

(k)

χ χ

hi

q q

q
g g

(l)

χ χ

hi

χ

hjq

q q

g g

q

(m)

Figure D.1: Group-1: 1-loop diagrams including the tree-level structure as a subdiagram.
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χ,hl,A

χ χ

q q

hj

hihk

(a)

χ χ

q q

hj

hiχ,hk

(b)

χ χ

q q

hj

hi

hlhk

(c)

χ χ

q q

χ

hi
hj

(d)

χ χ

q q

χ

hi
hj

(e)

χ χ

q q

hj hk

χ

hi

(f)

Figure D.2: Group-2: 1-loop diagrams including one Yukawa coupling Cffhi and scalar trilinear

coupling Cχχhj .

D.2 Group-2

The scattering amplitudes described by the diagrams in Fig. D.2 (α), where α = a ∼ f, can be

represented as follows1:

iMα = i

(∑
A=1,2

CχχhiCqqhAF
α
Ai

)
f(m2)ū(p3)u(p1), (D.2)

where the scalar hA is defined as the Higgs that couples to the external quark lines, while hi is

defined as the Higgs that interacts with the χ pair. The factor Fα
Ai constains all the couplings and

f(m2) contains propagators. Only exception is Fig. D.2 (a), where Fα
Ai contains only Chihjhk and

tadpole couplings are included in f(m2).

The condition to suppress the scattering amplitude (Mα = 0) is given as follows:∑
A=1,2

CχχhiCqqhAF
α
Ai = Cχχs

{
(Fα

11 − Fα
22) cosα sinα + Fα

12 cos
2 α− Fα

21 sin
2 α
}

= 0. (D.3)

1The symmetry factor according to the identical particles at the vertex is suppressed.
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Since Cχχh is given by δ2 as can be seen from (5.41), we have dropped Cχχh because δ2 becomes

zero for mh1 = mh2 (D.1). In general, the parameter Fα
Ai is represented by the scalar trilinear

and/or quartic couplings, which are given by δ2, λ and d2, whose specific expressions are given in

Sec. D.6. Thus, in the degenerate mass limit, Fα
Ai can be expanded as

Fα
1i = aα1iλ+ bα1id2, F α

2i = aα2iλ+ bα2id2. (D.4)

Thus, the condition (D.3) is replaced by the following two conditions, which should be satisfied

simultaneously

(aα11 − aα22) cosα sinα + aα12 cos
2 α− aα21 sin

2 α = 0, (D.5)

(bα11 − bα22) cosα sinα + bα12 cos
2 α− bα21 sin

2 α = 0. (D.6)

For illustration, we examine the amplitude given by Fig. D.2 (a):

iMa =
−1

m6
ū(p3)u(p1)

( ∑
l=χ,h1,h2,A

Cllhk
i

16π2
A(ml)

)
×
(
Cqqh1CχχhjCh1hjhk + Cqqh2CχχhjCh2hjhk

)
, (D.7)

where j, k = 1, 2, and A(m) is the A-function proposed by Passarino and Veltman [111]. Comparing

(D.7) with (D.2), the parameter Fα
Ai is given by the trilinear couplings as

F a
1j = Ch1hjhk , F a

2j = Ch2hjhk . (D.8)

Taking account of the symmetry factors, F a
Ai for k = 1 are given as

F a
11 = 6C111 =

3

2

(
λv cos3 α + d2vs sin

3 α
)
, (D.9)

F a
12 = 2C112 =

3

2

(
−λv sinα cos2 α + d2vs sin

2 α cosα
)
, (D.10)

F a
21 = 2C112 =

3

2

(
−λv sinα cos2 α + d2vs sin

2 α cosα
)
, (D.11)

F a
22 = 2C122 =

3

2

(
λv sin2 α cosα + d2vs sinα cos2 α

)
. (D.12)

It is easy to confirm that Eqs. (D.9)-(D.12), and those for k = 2 satisfy the conditions (D.5)

and (D.6), so the amplitude given by Fig. D.2 (a) vanishes in the degenerate scalar limit. Other

diagrams in Fig. D.2 will disappear as well.

D.3 Group-3

The diagrams in Group-3 have the Yukawa couplings Cqqhi and the scalar quartic coupling Chihjχχ

as shown in Figs. D.3. The amplitude of Fig. D.3 (a) is given as

iMa =
1

m2

i

16π2
B0(m,m)ū(p3)u(p1)

(
Cqqh1Ch1hjhk + Cqqh2Ch2hjhk

)
Cχχhjhk , (D.13)
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χ χ

q q

hi

hkhj

(a)

χ,hk,Aχ χ

q q

hi

hj

(b)

Figure D.3: Group-3: 1-loop diagrams including one Yukawa coupling Cffhi and scalar quartic

coupling Cχχhjhk .

where B0(m,m) is the B-function proposed in [111]. The condition to vanish the amplitude is

given as follows: (
Ch1hjhk cosα− Ch2hjhk sinα

)
Cχχhjhk = 0, (D.14)

where (5.23) is used. Summing up (D.14) for j and k, and substituting trilinear and quartic

couplings, one can find that (D.14) is satisfied.

Similarly, we consider Fig. D.3 (b). The scattering amplitude is given by

iMb =
−1

m4
ū(p3)u(p1)

( ∑
l=χ,h1,h2,A

CllA
i

16π2
A(ml)

)(
Cqqh1Cχχhjh1 + Cqqh2Cχχhjh2

)
. (D.15)

The sum rule for Mb = 0 is

Cχχhjh1 cosα− Cχχhjh2 sinα = 0. (D.16)

One can also find that (D.16) is satisfied.

D.4 Group-4

The Feynman diagram of Group-4 given in Fig. (D.4) has two Yukawa couplings. The scattering

amplitude is given by

iM =
−1

m2
ū(p3)u(p1)

(
i

16π2
Cµ(mq,m,m)

)
×
(
Cχχh1Ch1hjhk + Cχχh2Ch2hjhk

)
CqqhjCqqhk , (D.17)
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χ χ

q q

hi

hj hk
q

Figure D.4: Group-4: 1-loop diagram including two Yukawa coupling Cffhi and scalar trilinear

coupling Cχχhj .

where the rank-1 C-function Cµ is proposed in [111]. The sum rule for M = 0 is(
Cχχh1Ch1hjhk + Cχχh2Ch2hjhk

)
CqqhjCqqhk = 0. (D.18)

D.5 Group-5

The Feynman diagram of Group-5 is given in Fig. D.5, which has the scalar quartic coupling and

two Yukawa couplings. Up to the quark-gluon scattering part, the amplitudes of Fig. D.5 is given

by

iM =

(
i

16π2
Cµ(mq,m,m)

)
ū(p3)u(p1)CχχhihjCqqhiCqqhj . (D.19)

The sum rule for M = 0 is

CχχhihjCqqhiCqqhj = 0. (D.20)
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χ χ

hi hj
q

q q

g g

q

Figure D.5: Group-5: 1-loop diagram including two Yukawa coupling Cffhi and scalar quartic

coupling Cχχhjhk .

D.6 Trilinear and quartic couplings in the minimal scalar

potential

In the mass eigenstates of scalars h1, h2 and the DM χ, the trilinear and quartic terms of the scalar

potential are given by

V =C111h
3
1 + C112h

2
1h2 + C122h1h

2
2 + C222h

3
2 + Cχχ1h1χ

2 + Cχχ2h2χ
2

+ C1111h
4
1 + C1112h

3
1h2 + C1122h

2
1h

2
2 + C1222h1h

3
2 + C2222h

4
2

+ Cχχ11h
2
1χ

2 + Cχχ12h1h2χ
2 + Cχχ22h

2
2χ

2 + Cχχχχχ
4. (D.21)

The explicit forms of the couplings are summarized as follows:

C111 =
λ

4
v cos3 α +

δ2
4
v sin2 α cosα +

δ2
4
vS sinα cos2 α +

d2
4
vs sin

3 α, (D.22)

C112 = −3λ

4
v sinα cos2 α +

δ2
4
v(2 sinα cos2 α− sin3 α),

+
δ2
4
vS(cos

3 α− 2 sin2 α cosα) +
3d2
4
vs sin

2 α cosα, (D.23)

C122 =
3λ

4
v sin2 α cosα +

δ2
4
v(cos3 α− 2 sin2 α cosα)

− δ2
4
vS(2 sinα cos2 α− sin3 α) +

3d2
4
vs sinα cos2 α, (D.24)

C222 = −λ
4
v sin3 α− δ2

4
v sinα cos2 α +

δ2
4
vS sin

2 α cosα +
d2
4
vs cos

3 α, (D.25)
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Cχχ1 =
δ2
4
v cosα +

d2
4
vS sinα, (D.26)

Cχχ2 = −δ2
4
v sinα +

d2
4
vS cosα, (D.27)

C1111 =
λ

16
cos4 α +

δ2
8
sin2 α cos2 α +

d2
16

sin4 α, (D.28)

C1112 = −λ
4
sinα cosα3 +

δ2
4
(sinα cosα3 − sinα3 cosα) +

d2
4
sin3 α cosα, (D.29)

C1122 =
3λ

8
sin2 α cos2 α +

δ2
8
(sin4 α + cos4 α− 4 sin2 α cos2 α) +

3d2
8

sin2 α cos2 α, (D.30)

C1222 = −λ
4
sin3 α cosα +

δ2
4
(− sinα cos3 α + sin3 α cosα) +

d2
4
sinα cos3 α, (D.31)

C2222 =
λ

16
sin4 α +

δ2
8
sin2 α cos2 α +

d2
16

cos4 α, (D.32)

Cχχ11 =
δ2
8
cos2 α +

d2
8
sin2 α, (D.33)

Cχχ12 = −δ2
4
sinα cosα +

d2
4
sinα cosα, (D.34)

Cχχ22 =
δ2
8
sin2 α +

d2
8
cos2 α, (D.35)

Cχχχχ =
d2
16
. (D.36)



Appendix E

Rephasing invariant CPV phases

In general CPV CxSM, the CPV arises from

−LCPV
Y = q̄LH̃

(
Y u +

cu1
Λ
S

)
uR + q̄LH

(
Y d +

cd1
Λ
S

)
dR + ℓ̄LH

(
Y e +

ce1
Λ
S

)
eR

+ a1S +
b1
4
S2 + H.c., (E.1)

where all the couplings can be complex and denoted as X = |X|eiθX . However, these phases are

not physical, so we obtain relative phases by rotating the fields as follows1:

qL → q′L = e−iθqLqL, uR → u′R = e−iθuRuR, dR → d′R = e−iθdRdR (E.2)

ℓL → ℓ′L = e−iθℓL ℓL, eR → e′R = e−iθeReR (E.3)

H → H ′ = e−iθHH, S → S ′ = e−iθSS. (E.4)

Under the rotations, each phase transforms as

θY u → θ′Y u = θYu + θqL + θH − θuR , (E.5)

θY d → θ′Y d = θYd + θqL − θH − θdR , (E.6)

θY e → θ′Y e = θY e + θℓL − θH − θeR , (E.7)

θcu1 → θ′cu1 = θcu1 + θqL + θH − θuR − θS, (E.8)

θcd1 → θ′cd1
= θcd1 + θqL − θH − θdR − θS, (E.9)

θce1 → θ′ce1 = θce1 + θℓL − θH − θeR − θS, (E.10)

θa1 → θ′a1 = θa1 − θS, (E.11)

θb1 → θ′b1 = θb1 − 2θS. (E.12)

1For simplicity, we consider one generation case.
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Using Eqs. (E.5)-(E.12), one can find the rephasing invariant combination.

θ1 ≡ 2θa1 − θb1 → 2θ′a1 − θ′b1 = 2θa1 − θb1 , (E.13)

θ2 ≡ θY u − θcu1 + θa1 → θ′Y u − θ′cu1 + θ′a1 = θY u − θcu1 + θa1 . (E.14)

θ3 ≡ θY d − θcd1 + θa1 → θ′Y d − θ′cd1
+ θ′a1 = θY d − θcd1 + θa1 , (E.15)

θ4 ≡ θY e − θce1 + θa1 → θ′Y e − θ′ce1 + θ′a1 = θY e − θce1 + θa1 . (E.16)

Thus, there are only four rephasing invariant phases.
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