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Abstract: Taking an odd prime number l and a natural number n, we study a reciprocity law
for the lnth power residue symbol along the same lines as in a proof given in Ireland and Rosen
[1] to the Eisenstein reciprocity law.

1 Definitions and preliminaries

For any natural number m, let ζm = e2πi/m. We denote by Q the field of rational numbers and by Z the
ring of rational integers. It follows that Z[ζm] is the ring of algebraic integers in the cyclotomic field Q(ζm)
of mth roots of unity. We fix m in the rest of this paper.

Definition 1. For each α ∈ Z[ζm] and each prime ideal P of Z[ζm] not containing m, define
(α

P

)
m

as

follows. If α ∈ P , let (α

P

)
m

= 0.

If α ̸∈ P , let
(α

P

)
m

denote the unique mth root of unity such that

(α

P

)
m

≡ α(N(P )−1)/m (mod P ),

where N(P ) stands for the absolute norm of P , i.e., N(P ) = |Z[ζm]/P |. We call
(α

P

)
m

the mth power

residue symbol.

As is well known, the above definition gives the following result for any α1 ∈ Z[ζm], any α2 ∈ Z[ζm] and
any prime ideal P of Z[ζm] not containing m (cf. [1, Proposition 14.2.2 and its Corollary]).

Proposition 1. ― (i) If α1 ≡ α2 (mod P ), then
(α1

P

)
m

=
(α2

P

)
m
.

(ii)
(α1α2

P

)
m

=
(α1

P

)
m

(α2

P

)
m
.

(iii)
(α1

P

)
m

= 1 if and only if xm ≡ α1 (mod P ) for some x ∈ Z[ζm] \ P.

(iv)

(
ζm
P

)

m

= ζ
(N(P )−1)/m
m .

Definition 2. For each θ ∈ Z[ζm], we put (θ) = θZ[ζm]. Suppose that A is an ideal of Z[ζm] relatively prime
to (m). Let A = P1P2 · · ·Ps be the prime decomposition of A in Z[ζm]. For each α ∈ Z[ζm], define

(α

A

)
m

=

(
α

P1

)

m

(
α

P2

)

m

. . .

(
α

Ps

)

m

,
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and for each β ∈ Z[ζm] relatively prime to m, define

(
α

β

)

m

=

(
α

(β)

)

m

.

The following result of Gauss for m = 2 is famous as main part of law of quadratic reciprocity: If p and
q are distinct odd primes, then (

p

q

)

2

= (−1)
p−1
2

q−1
2

(
q

p

)

2

.

Whereas Gauss discovered a similar result for m = 4, Eisenstein proved it completely. For the case in which
m is an odd prime, a result on the mth power residue symbol still analogous to law of quadratic reciprocity
was first proved by Eisenstein and is called the Eisenstein reciprocity law (cf. [1, Chapters 9 and 14]).

From now on, we treat the case m = ln, where l is an odd prime and n is a natural number.

Definition 3. A nonzero element α of Z[ζln ] is called primary if it is not a unit but it is relatively prime to
l and congruent to a rational integer modulo (1− ζln)

2.

Proposition 2. For any α ∈ Z[ζln ] prime to l, there exists c ∈ Z, uniquely determined modulo l, such that
ζclnα is primary.

Proof. Let λ = 1− ζln . Since the prime ideal (λ) of Z[ζln ] has degree 1, there is a rational integer a such that
α ≡ a (mod (λ)). We then have (α − a)/λ ∈ Z[ζln ], so there is a rational integer b such that (α − a)/λ ≡ b
(mod (λ)). Consequently, α ≡ a + bλ (mod (λ)2). Since α is relatively prime to l, the rational integer a is
also relatively prime to l. Choose a rational integer c to satisfy ac ≡ b (mod l). Since ζln = 1 − λ, we have
ζcln ≡ 1− cλ (mod (λ)2). It follows that

ζclnα ≡ a+ (b− ac)λ (mod (λ)2).

Therefore, ζclnα ≡ a (mod (λ)2) and so ζclnα is primary.

Next assume that ζc
′

lnα ≡ a′ (mod (λ)2) with rational integers c′ and a′. Then

(ζc
′−c

ln − 1)ζclnα = (ζc
′

ln − ζcln)α ≡ a′ − a (mod (λ)2).

This implies a′ − a ≡ 0 (mod (λ)), i.e., a′ − a ≡ 0 (mod l). As l ≡ 0 (mod (λ)2), it follows that (ζc
′−c

ln −
1)ζclnα ≡ 0 (mod (λ)2). Hence c′ ≡ c (mod l).

If α ∈ Z[ζln ] is given and ζclnα is primary with c ∈ Z, then by Proposition 1, any nonzero prime ideal P
of Z[ζln ] fulfilles (α

P

)
ln

=

(
ζ−c
ln

P

)

ln

(
ζclnα

P

)

ln
= ζ

−c(N(P )−1)/ln

ln

(
ζclnα

P

)

ln
.

In such a sense, for the study of the lnth power residue symbol, it suffices to consider only primary elements
of Z[ζln ].

Now, let P be a nonzero prime ideal of Z[ζln ]. Note that the multiplicative group of the field Z[ζln ]/P is
(Z[ζln ]/P ) \ {P}:

(Z[ζln ]/P )× = (Z[ζln ]/P ) \ {P}.

By Proposition 1, we can define a multiplicative character χP of Z[ζln ]/P by

χP (P ) = 0 and χP (u) =
(α

P

)−1

ln
for u ∈ (Z[ζln ]/P )×, α ∈ u.
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P

)
ln

=

(
ζ−c
ln

P

)

ln

(
ζclnα

P

)

ln
= ζ

−c(N(P )−1)/ln

ln

(
ζclnα

P

)

ln
.

In such a sense, for the study of the lnth power residue symbol, it suffices to consider only primary elements
of Z[ζln ].

Now, let P be a nonzero prime ideal of Z[ζln ]. Note that the multiplicative group of the field Z[ζln ]/P is
(Z[ζln ]/P ) \ {P}:

(Z[ζln ]/P )× = (Z[ζln ]/P ) \ {P}.

By Proposition 1, we can define a multiplicative character χP of Z[ζln ]/P by

χP (P ) = 0 and χP (u) =
(α

P

)−1

ln
for u ∈ (Z[ζln ]/P )×, α ∈ u.

Let p be the prime number in P . Then Z[ζln ]/P becomes canonically a finite extension over the prime field
Z/pZ. Further ζwp is also defined canonically for each w ∈ Z/pZ. Thus we can define an additive character
ψP of (the additive group of) Z[ζln ]/P by

ψP (u) = ζtr(u)p for u ∈ Z[ζln ]/P,

where tr denotes the trace map from Z[ζln ]/P to Z/pZ. Naturally ψP (P ) = ζ
tr(P )
p = 1.

Definition 4. With P as above, set

g(P ) =
∑

u∈Z[ζln ]/P

χP (u)ψP (u).

For this Gauss sum, we difine
Φ(P ) = g(P )l

n

.

Obviously it follows that g(P ) belongs to Q(ζln , ζp), but Φ(P ) is known to belong to Z[ζln ] (cf. [1,
Proposition 14.3.1]).

Definition 5. Let A be an ideal of Z[ζln ] relatively prime to (l), α an element of Z[ζln ] relatively prime to
l. Let A = P1P2 · · ·Ps be the prime decomposition of A in Z[ζln ]. We then define

Φ(A) = Φ(P1)Φ(P2) · · ·Φ(Ps), Φ(α) = Φ((α)).

Proposition 3. Let A be an ideal of Z[ζln ] relatively prime to (l).Then Φ(A) ≡ ±1 (mod l)

Proof. Let P be a prime ideal of Z[ζln ] relatively prime to l. By Definition 5, it is enough to show that
Φ(P ) ≡ −1 (mod l). We obtain from Definition 4

Φ(P ) = g(P )l
n

≡
∑

u∈Z[ζln ]/P

χP (u)
lnψP (u)

ln (mod l),

so that, by Definition 1,

Φ(P ) ≡
∑

u∈(Z[ζln ]/P )×

ψP (u)
ln (mod l).

Since ψP is an additive character of Z[ζln ]/P , the right hand side above is

∑
u∈(Z[ζln ]/P )×

ψP (l
nu) =

∑
u∈(Z[ζln ]/P )×

ψP (u) = −ψP (P ) = −1.

2 Main results

Let G denote the Galois group of Q(ζln) over Q: G = Gal(Q(ζln)/Q). Writing ασ = σ(α) for each
α ∈ Q(ζln) and each σ ∈ G, we regard the multiplicative group Q(ζln)

× as the module over Z[G], the group
ring of G over Z, in the obvious way. Let A be any ideal of Z[ζln ]. For each θ ∈ Z[G], we put

Aθ = {βθ | β ∈ A}.

For every σ ∈ G, Aσ is also an ideal of Z[ζln ]; further, when A is relatively prime to (l), Proposition 1 and
Definitions 1, 2 yield (

β1

A

)σ

ln
=

(
βσ
1

Aσ

)

ln
,

(
β1

β2

)σ

ln
=

(
βσ
1

βσ
2

)

ln
(1)
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for every β1 ∈ Z[ζln ] and for every β2 ∈ Z[ζln ] relatively prime to l. When t is any rational integer relatively
prime to l, we denote by σt the element of G mapping ζln to ζtln . In Z[G], let

γ =
∑
t

tσ−1
t , (2)

where the sum is taken over all natural numbers t < ln relatively prime to l. Let P be a nonzero prime ideal
of Z[ζln ]. A celebrated theorem of Stickelberger (cf. [1, Chapter 14, Theorem 2]) then guarantees that (Φ(P ))
is decomposed in Z[ζln ] as

(Φ(P )) = P γ =
∏
t

(P σ−1
t )t. (3)

This induces a relation (Φ(A)) = Aγ . Now, take any α ∈ Z[ζln ] \ {0}. Since (Φ(α)) = (α)γ = (αγ), we can
define a unit ε(α) of Z[ζln ] by

Φ(α) = ε(α)αγ . (4)

Actually ε(α) turns out to be a root of unity in Z[ζln ], namely,

ε(α) = ±ζjln (5)

for some j ∈ Z (cf. [1, Proposition 14.5.2]). Moreover, as

(
−1

P

)

ln
= 1, Proposition 1 gives

(
ε(α)

P

)

ln
= ζ

j(N(P )−1)/ln

ln = ±ε(α)(N(P )−1)/ln . (6)

Proposition 4. If α ∈ Z[ζln ] is primary, then ε(α) = ±ζ k
ln−1 with some k ∈ Z.

Proof. We assume that α ∈ Z[ζln ] is primary, whence

ε(α)αγ ≡ ±1 (mod l) (7)

by (4) and Proposition 3. Let λ = 1− ζln . Since l is totally ramified in Q(ζln) or, equivalently, (λ)
ln−1(l−1) =

(l), we have (λ)σ = (λ) for all σ ∈ G. Furthermore, by Definition 3, there is a rational integer a such that
α ≡ a (mod (λ)2). Hence (2) gives αγ ≡ a

∑
t t (mod (λ)2), where the sum is taken over the natural numbers

t < ln relatively prime to l. Therefore

αγ ≡ al
2n−1(l−1)/2 ≡ a(l−1)/2 ≡ ±1 (mod (λ)2)

and, consequently, (5) and (7) yield ζjln ≡ ±1 (mod (λ)2) with some j ∈ Z. On the other hand,

ζjln = (1− λ)j ≡ 1− jλ (mod (λ)2).

Thus 1 − jλ ≡ ±1 (mod (λ)2). If 1 − jλ ≡ −1 (mod (λ)2), however, λ would divide 2. This contradiction
shows that 1− jλ ≡ 1 (mod (λ)2), i.e., l divides j.

We are now ready to prove our main theorem.

Theorem 1. Let p be a prime number different from l, α a primary element of Z[ζln ] relatively prime to p,
and P any prime ideal of Z[ζln ] containing p. Then

(
α

p

)f

ln

(
ε(α)

P

)

ln
=

( p

α

)f

ln
;

here f denotes the degree of P , whence f is the order of p modulo ln, namely, the smallest natural number
such that pf ≡ 1 (mod ln).

22 Mari Kouchiwa NSR. O., Vol. 67



for every β1 ∈ Z[ζln ] and for every β2 ∈ Z[ζln ] relatively prime to l. When t is any rational integer relatively
prime to l, we denote by σt the element of G mapping ζln to ζtln . In Z[G], let

γ =
∑
t

tσ−1
t , (2)

where the sum is taken over all natural numbers t < ln relatively prime to l. Let P be a nonzero prime ideal
of Z[ζln ]. A celebrated theorem of Stickelberger (cf. [1, Chapter 14, Theorem 2]) then guarantees that (Φ(P ))
is decomposed in Z[ζln ] as

(Φ(P )) = P γ =
∏
t

(P σ−1
t )t. (3)

This induces a relation (Φ(A)) = Aγ . Now, take any α ∈ Z[ζln ] \ {0}. Since (Φ(α)) = (α)γ = (αγ), we can
define a unit ε(α) of Z[ζln ] by

Φ(α) = ε(α)αγ . (4)

Actually ε(α) turns out to be a root of unity in Z[ζln ], namely,

ε(α) = ±ζjln (5)

for some j ∈ Z (cf. [1, Proposition 14.5.2]). Moreover, as

(
−1

P

)

ln
= 1, Proposition 1 gives

(
ε(α)

P

)

ln
= ζ

j(N(P )−1)/ln

ln = ±ε(α)(N(P )−1)/ln . (6)

Proposition 4. If α ∈ Z[ζln ] is primary, then ε(α) = ±ζ k
ln−1 with some k ∈ Z.

Proof. We assume that α ∈ Z[ζln ] is primary, whence

ε(α)αγ ≡ ±1 (mod l) (7)

by (4) and Proposition 3. Let λ = 1− ζln . Since l is totally ramified in Q(ζln) or, equivalently, (λ)
ln−1(l−1) =

(l), we have (λ)σ = (λ) for all σ ∈ G. Furthermore, by Definition 3, there is a rational integer a such that
α ≡ a (mod (λ)2). Hence (2) gives αγ ≡ a

∑
t t (mod (λ)2), where the sum is taken over the natural numbers

t < ln relatively prime to l. Therefore

αγ ≡ al
2n−1(l−1)/2 ≡ a(l−1)/2 ≡ ±1 (mod (λ)2)

and, consequently, (5) and (7) yield ζjln ≡ ±1 (mod (λ)2) with some j ∈ Z. On the other hand,

ζjln = (1− λ)j ≡ 1− jλ (mod (λ)2).

Thus 1 − jλ ≡ ±1 (mod (λ)2). If 1 − jλ ≡ −1 (mod (λ)2), however, λ would divide 2. This contradiction
shows that 1− jλ ≡ 1 (mod (λ)2), i.e., l divides j.

We are now ready to prove our main theorem.

Theorem 1. Let p be a prime number different from l, α a primary element of Z[ζln ] relatively prime to p,
and P any prime ideal of Z[ζln ] containing p. Then

(
α

p

)f

ln

(
ε(α)

P

)

ln
=

( p

α

)f

ln
;

here f denotes the degree of P , whence f is the order of p modulo ln, namely, the smallest natural number
such that pf ≡ 1 (mod ln).

Proof. Let Q be any prime ideal of Z[ζln ] dividing (α). By Definitions 1, 4 and the definitions of χQ, ψQ,

g(Q)p
f

≡
∑

u∈Z[ζln ]/Q

χQ(u)
pf

ψQ(u)
pf

(mod p),

∑
u∈Z[ζln ]/Q

χQ(u)
pf

ψQ(u)
pf

=
∑

u∈Z[ζln ]/Q

χQ(u)ψQ(p
fu)

=
∑

u∈Z[ζln ]/Q

χQ(p
f )−1χQ(p

fu)ψQ(p
fu) =

(
pf

Q

)

ln
g(Q).

Furthermore, (3) implies that g(Q) is relatively prime to p. Hence

g(Q)p
f−1 ≡

(
pf

Q

)

ln
(mod P ).

On the other hand, since pf = N(P ), we obtain from Definitions 1 and 4

g(Q)p
f−1 = Φ(Q)

pf−1
ln ≡

(
Φ(Q)

P

)

ln
(mod P )

and, in Z[ζln ]/P , the cosets of 1, ζln , . . . ζ
ln−1
ln are distinct. Thus

(
Φ(Q)

P

)

ln
=

(
pf

Q

)

ln
.

This, together with Proposition 1 and Definitions 2, 5, implies that
(
Φ(α)

P

)

ln
=

(
pf

α

)

ln
=

( p

α

)f

ln
.

Hence (4) gives (
αγ

P

)

ln

(
ε(α)

P

)

ln
=

( p

α

)f

ln
.

Succesively by (2), Proposition 1, Definition 1, (1) and Definition 2, we also have

(
αγ

P

)

ln
=

∏
t

(
αtσ−1

t

P

)

ln

=
∏
t

(
ασ−1

t

P

)t

ln

=
∏
t

(
ασ−1

t

P

)σt

ln

=
∏
t

( α

Pσt

)
ln

=

(
α

N(P )

)

ln
=

(
α

pf

)

ln
=

(
α

p

)f

ln
,

where t ranges over the natural numbers less than ln and relatively prime to l. It therefore follows that

(
α

p

)f

ln

(
ε(α)

P

)

ln
=

( p

α

)f

ln
.

Let n = 1 in Theorem 1. Then, by Proposition 4, ε(α) = ±1 so that

(
ε(α)

P

)

l

= 1. Furthermore, since f

divides l − 1, we have (
α

p

)

l

=
( p

α

)
l
,
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taking the (l − (l − 1)/f)th power of both sides of the equality in Theorem 1. The above equality is none
other than essential part of the Eisenstein reciprocity law. Thus Theorem 1 combined with Proposition 4
can be regarded as a narrow generalization of the Eisenstein reciprocity law.

The following result is deduced directly from Theorem 1.

Corollary 1. Let p be a prime number different from l, α a primary element of Z[ζln ] relatively prime to
p, P a prime ideal of Z[ζln ] containing p, and f the order of p modulo ln. If f is relatively prime to l, i.e.,
pl−1 ≡ 1 (mod ln), then (

α

p

)

ln

(
ε(α)

P

)h

ln
=

( p

α

)
ln

for any natural number h such that fh ≡ 1 (mod ln).

Proof. Assume f to be relatively prime to l, and take a rational integer h with fh ≡ 1 (mod ln). Then, by
Theorem 1, (

α

p

)

ln

(
ε(α)

P

)h

ln
=

((
α

p

)f

ln

(
ε(α)

P

)

ln

)h

=
( p

α

)fh

ln
=

( p

α

)
ln
.

3 Additional results

In this last section, we add some results which are proved by means of Theorem 1.

Proposition 5. Let p and q be distinct prime numbers different from l, and f the order of p modulo ln.
Then (

q

p

)f

ln
=

(
p

q

)f

ln
.

Proof. By Theorem 1, (
q

p

)f

ln

(
ε(q)

P

)

ln
=

(
p

q

)f

ln
,

where P is a prime ideal of Z[ζln ] containing p. Therefore it suffices to prove ε(q) = ±1. Let r be a prime
number such that r ≡ 1 (mod q) and r ≡ ln + 1 (mod l2n). We take a prime ideal R of Z[ζln ] containing r.
Let t range over the natural numbers less than ln and relatively prime to l. Since r ≡ 1 (mod ln), the degree
of R is 1 and (r) =

∏
t R

σt . Hence Theorem 1 shows that

(
r

q

)

ln
=

(q
r

)
ln

(
ε(q)

R

)

ln
=

(
ε(q)

R

)

ln

∏
t

( q

Rσt

)
ln
. (8)

Here, by (1),

∏
t

( q

Rσt

)
ln

=
∏
t

( q

R

)σt

ln
=

∏
t

( q

R

)t

ln
=

( q

R

)∑
t t

ln
=

( q

R

)l2n−1(l−1)/2

ln
= 1.

On the other hand, for every prime ideal Q of Z[ζln ] containing q, we obtain

(
r

Q

)

ln
= 1 from r ≡ 1

(mod q), so that

(
r

q

)

ln
= 1 follows. We also see that

(
ε(q)

R

)

ln
= ±ε(q)(N(R)−1)/ln by (6), and that

ε(q)(N(R)−1)/ln = ε(q) since (N(R)− 1)/ln = (r − 1)/ln ≡ 1 (mod ln). Hence (8) implies ε(q) = ±1.
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In this last section, we add some results which are proved by means of Theorem 1.

Proposition 5. Let p and q be distinct prime numbers different from l, and f the order of p modulo ln.
Then (

q

p

)f

ln
=

(
p

q

)f

ln
.

Proof. By Theorem 1, (
q

p

)f

ln

(
ε(q)

P

)

ln
=

(
p

q

)f

ln
,

where P is a prime ideal of Z[ζln ] containing p. Therefore it suffices to prove ε(q) = ±1. Let r be a prime
number such that r ≡ 1 (mod q) and r ≡ ln + 1 (mod l2n). We take a prime ideal R of Z[ζln ] containing r.
Let t range over the natural numbers less than ln and relatively prime to l. Since r ≡ 1 (mod ln), the degree
of R is 1 and (r) =

∏
t R

σt . Hence Theorem 1 shows that

(
r

q

)

ln
=

(q
r

)
ln

(
ε(q)

R

)

ln
=

(
ε(q)

R

)

ln

∏
t

( q

Rσt

)
ln
. (8)

Here, by (1),

∏
t

( q

Rσt

)
ln

=
∏
t

( q

R

)σt

ln
=

∏
t

( q

R

)t

ln
=

( q

R

)∑
t t

ln
=

( q

R

)l2n−1(l−1)/2

ln
= 1.

On the other hand, for every prime ideal Q of Z[ζln ] containing q, we obtain

(
r

Q

)

ln
= 1 from r ≡ 1

(mod q), so that

(
r

q

)

ln
= 1 follows. We also see that

(
ε(q)

R

)

ln
= ±ε(q)(N(R)−1)/ln by (6), and that

ε(q)(N(R)−1)/ln = ε(q) since (N(R)− 1)/ln = (r − 1)/ln ≡ 1 (mod ln). Hence (8) implies ε(q) = ±1.

The above result yields the following.

Theorem 2. Let p and q be distinct prime numbers different from l, and g the greatest common divisor of
the orders of p and q modulo ln. Then (

q

p

)g

ln
=

(
p

q

)g

ln
.

In particular, (
q

p

)

ln
=

(
p

q

)

ln

if g is relatively prime to l, namely, either pl−1 ≡ 1 (mod ln) or ql−1 ≡ 1 (mod ln).

Proof. Let f and f ′ be the orders of p and q modulo ln, respectively. Then, by Proposition 5,
(
q

p

)f

ln
=

(
p

q

)f

ln
,

(
p

q

)f ′

ln
=

(
q

p

)f ′

ln
.

These clearly give the first assertion of the theorem. Naturally the second assertion is an immediate conse-
quence of the first.

We finally touch upon the special case where ln = 32 = 9.

Theorem 3. Let p be a prime number different from 3, α an element of Z[ζ3] \ {±1,±ζ3} relatively prime
to 3, and f the order of p modulo 9. Then

(
α

p

)f

9

=
( p

α

)f

9
;

in other words, (
α

p

)

9

=
( p

α

)
9

or

(
α

p

)3

9

=
( p

α

)3

9

according to whether p ≡ ±1 (mod 9) or p ̸≡ ±1 (mod 9).

Proof. There exist rational integers a and b with α = a+bζ3. Since ζ3 ≡ 1 (mod (1−ζ9)
2), we have α ≡ a+b

(mod (1− ζ9)
2). Therefore, by the assumption, α is a primary element of Z[ζ9].

Next, let us prove ε(α) = ±1, which concludes our proof. Let q be a prime number such that q ≡ 4
(mod 9), and let Q be a prime ideal of Z[ζln ] containing q. As the order of q modulo 9 is 3, Theorem 1
implies that (

α

q

)3

9

(
ε(α)

Q

)

9

=
( q

α

)3

9
.

In view of (1), we find

(
α

q

)3

9

= 1, because

(
α

q

)4

9

=

(
α

q

)σ4

9

=

(
ασ4

q

)

9

=

(
α

q

)

9

.

Similarly, by (1), we have
( q

α

)3

9
= 1. Hence, by (6),

1 =

(
ε(α)

Q

)

9

= ±ε(α)(N(Q)−1)/9.

However
N(Q)− 1

9
=

(q − 4)

9
((q − 4)2 + 12(q − 4) + 48) + 7 ≡ 1 (mod 3).

Since Proposition 4 gives ε(α) = ±ζk3 for some k ∈ Z, it then follows that 1 = ±ε(α).
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