The Eisenstein reciprocity law and l^{n} th power residue

Mari Kouchiwa

（Received March 28，2016）

Abstract

Taking an odd prime number l and a natural number n ，we study a reciprocity law for the l^{n} th power residue symbol along the same lines as in a proof given in Ireland and Rosen ［1］to the Eisenstein reciprocity law．

1 Definitions and preliminaries

For any natural number m ，let $\zeta_{m}=e^{2 \pi i / m}$ ．We denote by \mathbb{Q} the field of rational numbers and by \mathbb{Z} the ring of rational integers．It follows that $\mathbb{Z}\left[\zeta_{m}\right]$ is the ring of algebraic integers in the cyclotomic field $\mathbb{Q}\left(\zeta_{m}\right)$ of m th roots of unity．We fix m in the rest of this paper．

Definition 1．For each $\alpha \in \mathbb{Z}\left[\zeta_{m}\right]$ and each prime ideal P of $\mathbb{Z}\left[\zeta_{m}\right]$ not containing m ，define $\left(\frac{\alpha}{P}\right)_{m}$ as follows．If $\alpha \in P$ ，let

$$
\left(\frac{\alpha}{P}\right)_{m}=0
$$

If $\alpha \notin P$ ，let $\left(\frac{\alpha}{P}\right)_{m}$ denote the unique mth root of unity such that

$$
\left(\frac{\alpha}{P}\right)_{m} \equiv \alpha^{(N(P)-1) / m} \quad(\bmod P)
$$

where $N(P)$ stands for the absolute norm of P ，i．e．，$N(P)=\left|\mathbb{Z}\left[\zeta_{m}\right] / P\right|$ ．We call $\left(\frac{\alpha}{P}\right)_{m}$ the m th power residue symbol．

As is well known，the above definition gives the following result for any $\alpha_{1} \in \mathbb{Z}\left[\zeta_{m}\right]$ ，any $\alpha_{2} \in \mathbb{Z}\left[\zeta_{m}\right]$ and any prime ideal P of $\mathbb{Z}\left[\zeta_{m}\right]$ not containing m（cf．［1，Proposition 14．2．2 and its Corollary］）．
Proposition 1．－（i）If $\alpha_{1} \equiv \alpha_{2}(\bmod P)$ ，then $\left(\frac{\alpha_{1}}{P}\right)_{m}=\left(\frac{\alpha_{2}}{P}\right)_{m}$ ．
（ii）$\left(\frac{\alpha_{1} \alpha_{2}}{P}\right)_{m}=\left(\frac{\alpha_{1}}{P}\right)_{m}\left(\frac{\alpha_{2}}{P}\right)_{m}$ ．
（iii）$\left(\frac{\alpha_{1}}{P}\right)_{m}=1$ if and only if $x^{m} \equiv \alpha_{1}(\bmod P)$ for some $x \in \mathbb{Z}\left[\zeta_{m}\right] \backslash P$ ．
（iv）$\left(\frac{\zeta_{m}}{P}\right)_{m}=\zeta_{m}^{(N(P)-1) / m}$ ．
Definition 2．For each $\theta \in \mathbb{Z}\left[\zeta_{m}\right]$ ，we put $(\theta)=\theta \mathbb{Z}\left[\zeta_{m}\right]$ ．Suppose that A is an ideal of $\mathbb{Z}\left[\zeta_{m}\right]$ relatively prime to (m) ．Let $A=P_{1} P_{2} \cdots P_{s}$ be the prime decomposition of A in $\mathbb{Z}\left[\zeta_{m}\right]$ ．For each $\alpha \in \mathbb{Z}\left[\zeta_{m}\right]$ ，define

$$
\left(\frac{\alpha}{A}\right)_{m}=\left(\frac{\alpha}{P_{1}}\right)_{m}\left(\frac{\alpha}{P_{2}}\right)_{m} \ldots\left(\frac{\alpha}{P_{s}}\right)_{m}
$$

and for each $\beta \in \mathbb{Z}\left[\zeta_{m}\right]$ relatively prime to m, define

$$
\left(\frac{\alpha}{\beta}\right)_{m}=\left(\frac{\alpha}{(\beta)}\right)_{m}
$$

The following result of Gauss for $m=2$ is famous as main part of law of quadratic reciprocity: If p and q are distinct odd primes, then

$$
\left(\frac{p}{q}\right)_{2}=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}\left(\frac{q}{p}\right)_{2} .
$$

Whereas Gauss discovered a similar result for $m=4$, Eisenstein proved it completely. For the case in which m is an odd prime, a result on the m th power residue symbol still analogous to law of quadratic reciprocity was first proved by Eisenstein and is called the Eisenstein reciprocity law (cf. [1, Chapters 9 and 14]).

From now on, we treat the case $m=l^{n}$, where l is an odd prime and n is a natural number.
Definition 3. A nonzero element α of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ is called primary if it is not a unit but it is relatively prime to l and congruent to a rational integer modulo $\left(1-\zeta_{l^{n}}\right)^{2}$.

Proposition 2. For any $\alpha \in \mathbb{Z}\left[\zeta_{l^{n}}\right]$ prime to l, there exists $c \in \mathbb{Z}$, uniquely determined modulo l, such that $\zeta_{l n}^{c} \alpha$ is primary.

Proof. Let $\lambda=1-\zeta_{l^{n}}$. Since the prime ideal (λ) of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ has degree 1 , there is a rational integer a such that $\alpha \equiv a(\bmod (\lambda))$. We then have $(\alpha-a) / \lambda \in \mathbb{Z}\left[\zeta_{l^{n}}\right]$, so there is a rational integer b such that $(\alpha-a) / \lambda \equiv b$ $(\bmod (\lambda))$. Consequently, $\alpha \equiv a+b \lambda\left(\bmod (\lambda)^{2}\right)$. Since α is relatively prime to l, the rational integer a is also relatively prime to l. Choose a rational integer c to satisfy $a c \equiv b(\bmod l)$. Since $\zeta_{l^{n}}=1-\lambda$, we have $\zeta_{l^{n}}^{c} \equiv 1-c \lambda\left(\bmod (\lambda)^{2}\right)$. It follows that

$$
\zeta_{l^{n}}^{c} \alpha \equiv a+(b-a c) \lambda \quad\left(\bmod (\lambda)^{2}\right)
$$

Therefore, $\zeta_{l^{n}}^{c} \alpha \equiv a\left(\bmod (\lambda)^{2}\right)$ and so $\zeta_{l^{n}}^{c} \alpha$ is primary.
Next assume that $\zeta_{l^{n}}^{c^{\prime}} \alpha \equiv a^{\prime}\left(\bmod (\lambda)^{2}\right)$ with rational integers c^{\prime} and a^{\prime}. Then

$$
\left(\zeta_{l^{n}}^{c^{\prime}-c}-1\right) \zeta_{l^{n}}^{c} \alpha=\left(\zeta_{l^{n}}^{c^{\prime}}-\zeta_{l^{n}}^{c}\right) \alpha \equiv a^{\prime}-a \quad\left(\bmod (\lambda)^{2}\right)
$$

This implies $a^{\prime}-a \equiv 0(\bmod (\lambda))$, i.e., $a^{\prime}-a \equiv 0(\bmod l)$. As $l \equiv 0\left(\bmod (\lambda)^{2}\right)$, it follows that $\left(\zeta_{l^{n}}^{c^{\prime}-c}-\right.$ 1) $\zeta_{l^{n}}^{c} \alpha \equiv 0\left(\bmod (\lambda)^{2}\right)$. Hence $c^{\prime} \equiv c(\bmod l)$.

If $\alpha \in \mathbb{Z}\left[\zeta_{l^{n}}\right]$ is given and $\zeta_{l^{n}}^{c} \alpha$ is primary with $c \in \mathbb{Z}$, then by Proposition 1 , any nonzero prime ideal P of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ fulfilles

$$
\left(\frac{\alpha}{P}\right)_{l^{n}}=\left(\frac{\zeta_{l^{n}}^{-c}}{P}\right)_{l^{n}}\left(\frac{\zeta_{l^{n}}^{c} \alpha}{P}\right)_{l^{n}}=\zeta_{l^{n}}^{-c(N(P)-1) / l^{n}}\left(\frac{\zeta_{l^{n}}^{c} \alpha}{P}\right)_{l^{n}}
$$

In such a sense, for the study of the l^{n} th power residue symbol, it suffices to consider only primary elements of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$.

Now, let P be a nonzero prime ideal of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$. Note that the multiplicative group of the field $\mathbb{Z}\left[\zeta_{l^{n}}\right] / P$ is $\left(\mathbb{Z}\left[\zeta_{l^{n}}\right] / P\right) \backslash\{P\}:$

$$
\left(\mathbb{Z}\left[\zeta_{l^{n}}\right] / P\right)^{\times}=\left(\mathbb{Z}\left[\zeta_{l^{n}}\right] / P\right) \backslash\{P\} .
$$

By Proposition 1, we can define a multiplicative character χ_{P} of $\mathbb{Z}\left[\zeta_{l^{n}}\right] / P$ by

$$
\chi_{P}(P)=0 \quad \text { and } \quad \chi_{P}(u)=\left(\frac{\alpha}{P}\right)_{l^{n}}^{-1} \quad \text { for } u \in\left(\mathbb{Z}\left[\zeta_{l^{n}}\right] / P\right)^{\times}, \alpha \in u
$$

Let p be the prime number in P. Then $\mathbb{Z}\left[\zeta_{l^{n}}\right] / P$ becomes canonically a finite extension over the prime field $\mathbb{Z} / p \mathbb{Z}$. Further ζ_{p}^{w} is also defined canonically for each $w \in \mathbb{Z} / p \mathbb{Z}$. Thus we can define an additive character ψ_{P} of (the additive group of) $\mathbb{Z}\left[\zeta_{l^{n}}\right] / P$ by

$$
\psi_{P}(u)=\zeta_{p}^{\operatorname{tr}(u)} \quad \text { for } u \in \mathbb{Z}\left[\zeta_{l^{n}}\right] / P
$$

where tr denotes the trace map from $\mathbb{Z}\left[\zeta_{l^{n}}\right] / P$ to $\mathbb{Z} / p \mathbb{Z}$. Naturally $\psi_{P}(P)=\zeta_{p}^{\operatorname{tr}(P)}=1$.
Definition 4. With P as above, set

$$
g(P)=\sum_{u \in \mathbb{Z}\left[\zeta_{\left.l^{n}\right] / P}\right.} \chi_{P}(u) \psi_{P}(u) .
$$

For this Gauss sum, we difine

$$
\Phi(P)=g(P)^{l^{n}}
$$

Obviously it follows that $g(P)$ belongs to $\mathbb{Q}\left(\zeta_{l^{n}}, \zeta_{p}\right)$, but $\Phi(P)$ is known to belong to $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ (cf. [1, Proposition 14.3.1]).
Definition 5. Let A be an ideal of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ relatively prime to (l), α an element of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ relatively prime to l. Let $A=P_{1} P_{2} \cdots P_{s}$ be the prime decomposition of A in $\mathbb{Z}\left[\zeta_{l^{n}}\right]$. We then define

$$
\Phi(A)=\Phi\left(P_{1}\right) \Phi\left(P_{2}\right) \cdots \Phi\left(P_{s}\right), \quad \Phi(\alpha)=\Phi((\alpha))
$$

Proposition 3. Let A be an ideal of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ relatively prime to (l).Then $\Phi(A) \equiv \pm 1(\bmod l)$
Proof. Let P be a prime ideal of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ relatively prime to l. By Definition 5 , it is enough to show that $\Phi(P) \equiv-1(\bmod l)$. We obtain from Definition 4

$$
\Phi(P)=g(P)^{l^{n}} \equiv \sum_{u \in \mathbb{Z}\left[\zeta_{l n}^{n}\right] / P} \chi_{P}(u)^{l^{n}} \psi_{P}(u)^{l^{n}} \quad(\bmod l),
$$

so that, by Definition 1,

$$
\Phi(P) \equiv \sum_{u \in\left(\mathbb{Z}\left[\zeta_{n} n\right] / P\right)^{\times}} \psi_{P}(u)^{l^{n}} \quad(\bmod l)
$$

Since ψ_{P} is an additive character of $\mathbb{Z}\left[\zeta_{l^{n}}\right] / P$, the right hand side above is

$$
\sum_{u \in\left(\mathbb{Z}\left[\zeta_{l^{n}}\right] / P\right)^{\times}} \psi_{P}\left(l^{n} u\right)=\sum_{u \in\left(\mathbb{Z}\left[\zeta_{\left.l^{n}\right]}\right] P\right)^{\times}} \psi_{P}(u)=-\psi_{P}(P)=-1 .
$$

2 Main results

Let G denote the Galois group of $\mathbb{Q}\left(\zeta_{l^{n}}\right)$ over $\mathbb{Q}: G=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{l^{n}}\right) / \mathbb{Q}\right)$. Writing $\alpha^{\sigma}=\sigma(\alpha)$ for each $\alpha \in \mathbb{Q}\left(\zeta_{l^{n}}\right)$ and each $\sigma \in G$, we regard the multiplicative group $\mathbb{Q}\left(\zeta_{l^{n}}\right)^{\times}$as the module over $\mathbb{Z}[G]$, the group ring of G over \mathbb{Z}, in the obvious way. Let A be any ideal of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$. For each $\theta \in \mathbb{Z}[G]$, we put

$$
A^{\theta}=\left\{\beta^{\theta} \mid \beta \in A\right\}
$$

For every $\sigma \in G, A^{\sigma}$ is also an ideal of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$; further, when A is relatively prime to (l), Proposition 1 and Definitions 1, 2 yield

$$
\begin{equation*}
\left(\frac{\beta_{1}}{A}\right)_{l^{n}}^{\sigma}=\left(\frac{\beta_{1}^{\sigma}}{A^{\sigma}}\right)_{l^{n}}, \quad\left(\frac{\beta_{1}}{\beta_{2}}\right)_{l^{n}}^{\sigma}=\left(\frac{\beta_{1}^{\sigma}}{\beta_{2}^{\sigma}}\right)_{l^{n}} \tag{1}
\end{equation*}
$$

for every $\beta_{1} \in \mathbb{Z}\left[\zeta_{l^{n}}\right]$ and for every $\beta_{2} \in \mathbb{Z}\left[\zeta_{l^{n}}\right]$ relatively prime to l. When t is any rational integer relatively prime to l, we denote by σ_{t} the element of G mapping $\zeta_{l^{n}}$ to $\zeta_{l^{n}}^{t}$. In $\mathbb{Z}[G]$, let

$$
\begin{equation*}
\gamma=\sum_{t} t \sigma_{t}^{-1} \tag{2}
\end{equation*}
$$

where the sum is taken over all natural numbers $t<l^{n}$ relatively prime to l. Let P be a nonzero prime ideal of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$. A celebrated theorem of Stickelberger (cf. [1, Chapter 14, Theorem 2]) then guarantees that $(\Phi(P))$ is decomposed in $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ as

$$
\begin{equation*}
(\Phi(P))=P^{\gamma}=\prod_{t}\left(P^{\sigma_{t}^{-1}}\right)^{t} \tag{3}
\end{equation*}
$$

This induces a relation $(\Phi(A))=A^{\gamma}$. Now, take any $\alpha \in \mathbb{Z}\left[\zeta_{l^{n}}\right] \backslash\{0\}$. Since $(\Phi(\alpha))=(\alpha)^{\gamma}=\left(\alpha^{\gamma}\right)$, we can define a unit $\varepsilon(\alpha)$ of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ by

$$
\begin{equation*}
\Phi(\alpha)=\varepsilon(\alpha) \alpha^{\gamma} \tag{4}
\end{equation*}
$$

Actually $\varepsilon(\alpha)$ turns out to be a root of unity in $\mathbb{Z}\left[\zeta_{l^{n}}\right]$, namely,

$$
\begin{equation*}
\varepsilon(\alpha)= \pm \zeta_{l^{n}}^{j} \tag{5}
\end{equation*}
$$

for some $j \in \mathbb{Z}$ (cf. [1, Proposition 14.5.2]). Moreover, as $\left(\frac{-1}{P}\right)_{l^{n}}=1$, Proposition 1 gives

$$
\begin{equation*}
\left(\frac{\varepsilon(\alpha)}{P}\right)_{l^{n}}=\zeta_{l^{n}}^{j(N(P)-1) / l^{n}}= \pm \varepsilon(\alpha)^{(N(P)-1) / l^{n}} \tag{6}
\end{equation*}
$$

Proposition 4. If $\alpha \in \mathbb{Z}\left[\zeta_{l^{n}}\right]$ is primary, then $\varepsilon(\alpha)= \pm \zeta_{l^{n-1}}^{k}$ with some $k \in \mathbb{Z}$.
Proof. We assume that $\alpha \in \mathbb{Z}\left[\zeta_{l^{n}}\right]$ is primary, whence

$$
\begin{equation*}
\varepsilon(\alpha) \alpha^{\gamma} \equiv \pm 1 \quad(\bmod l) \tag{7}
\end{equation*}
$$

by (4) and Proposition 3. Let $\lambda=1-\zeta_{l^{n}}$. Since l is totally ramified in $\mathbb{Q}\left(\zeta_{l^{n}}\right)$ or, equivalently, $(\lambda)^{l^{n-1}(l-1)}=$ (l), we have $(\lambda)^{\sigma}=(\lambda)$ for all $\sigma \in G$. Furthermore, by Definition 3, there is a rational integer a such that $\alpha \equiv a\left(\bmod (\lambda)^{2}\right)$. Hence (2) gives $\alpha^{\gamma} \equiv a^{\sum_{t} t}\left(\bmod (\lambda)^{2}\right)$, where the sum is taken over the natural numbers $t<l^{n}$ relatively prime to l. Therefore

$$
\alpha^{\gamma} \equiv a^{l^{2 n-1}(l-1) / 2} \equiv a^{(l-1) / 2} \equiv \pm 1 \quad\left(\bmod (\lambda)^{2}\right)
$$

and, consequently, (5) and (7) yield $\zeta_{l^{n}}^{j} \equiv \pm 1\left(\bmod (\lambda)^{2}\right)$ with some $j \in \mathbb{Z}$. On the other hand,

$$
\zeta_{l^{n}}^{j}=(1-\lambda)^{j} \equiv 1-j \lambda \quad\left(\bmod (\lambda)^{2}\right)
$$

Thus $1-j \lambda \equiv \pm 1\left(\bmod (\lambda)^{2}\right)$. If $1-j \lambda \equiv-1\left(\bmod (\lambda)^{2}\right)$, however, λ would divide 2 . This contradiction shows that $1-j \lambda \equiv 1\left(\bmod (\lambda)^{2}\right)$, i.e., l divides j.

We are now ready to prove our main theorem.
Theorem 1. Let p be a prime number different from l, α a primary element of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ relatively prime to p, and P any prime ideal of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ containing p. Then

$$
\left(\frac{\alpha}{p}\right)_{l^{n}}^{f}\left(\frac{\varepsilon(\alpha)}{P}\right)_{l^{n}}=\left(\frac{p}{\alpha}\right)_{l^{n}}^{f}
$$

here f denotes the degree of P, whence f is the order of p modulo l^{n}, namely, the smallest natural number such that $p^{f} \equiv 1\left(\bmod l^{n}\right)$.

Proof. Let Q be any prime ideal of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ dividing (α). By Definitions 1,4 and the definitions of χ_{Q}, ψ_{Q},

$$
\begin{aligned}
& g(Q)^{p^{f}} \equiv \sum_{u \in \mathbb{Z}\left[\zeta_{l^{n}}\right] / Q} \chi_{Q}(u)^{p^{f}} \psi_{Q}(u)^{p^{f}}(\bmod p), \\
& \sum_{u \in \mathbb{Z}\left[\zeta_{\left.l^{n}\right] / Q}\right.} \chi_{Q}(u)^{p^{f}} \psi_{Q}(u)^{p^{f}}=\sum_{u \in \mathbb{Z}\left[\zeta_{\left.l^{n}\right] / Q}\right.} \chi_{Q}(u) \psi_{Q}\left(p^{f} u\right) \\
& =\sum_{u \in \mathbb{Z}\left[\zeta_{l^{n}}\right] / Q} \chi_{Q}\left(p^{f}\right)^{-1} \chi_{Q}\left(p^{f} u\right) \psi_{Q}\left(p^{f} u\right)=\left(\frac{p^{f}}{Q}\right)_{l^{n}} g(Q) .
\end{aligned}
$$

Furthermore, (3) implies that $g(Q)$ is relatively prime to p. Hence

$$
g(Q)^{p^{f}-1} \equiv\left(\frac{p^{f}}{Q}\right)_{l^{n}} \quad(\bmod P)
$$

On the other hand, since $p^{f}=N(P)$, we obtain from Definitions 1 and 4

$$
g(Q)^{p^{f}-1}=\Phi(Q)^{\frac{p^{f}-1}{l^{n}}} \equiv\left(\frac{\Phi(Q)}{P}\right)_{l^{n}} \quad(\bmod P)
$$

and, in $\mathbb{Z}\left[\zeta_{l^{n}}\right] / P$, the cosets of $1, \zeta_{l^{n}}, \ldots \zeta_{l^{n}}^{l^{n}-1}$ are distinct. Thus

$$
\left(\frac{\Phi(Q)}{P}\right)_{l^{n}}=\left(\frac{p^{f}}{Q}\right)_{l^{n}}
$$

This, together with Proposition 1 and Definitions 2, 5, implies that

$$
\left(\frac{\Phi(\alpha)}{P}\right)_{l^{n}}=\left(\frac{p^{f}}{\alpha}\right)_{l^{n}}=\left(\frac{p}{\alpha}\right)_{l^{n}}^{f}
$$

Hence (4) gives

$$
\left(\frac{\alpha^{\gamma}}{P}\right)_{l^{n}}\left(\frac{\varepsilon(\alpha)}{P}\right)_{l^{n}}=\left(\frac{p}{\alpha}\right)_{l^{n}}^{f}
$$

Succesively by (2), Proposition 1, Definition 1, (1) and Definition 2, we also have

$$
\begin{aligned}
\left(\frac{\alpha^{\gamma}}{P}\right)_{l^{n}} & =\prod_{t}\left(\frac{\alpha^{t \sigma_{t}^{-1}}}{P}\right)_{l^{n}}=\prod_{t}\left(\frac{\alpha^{\sigma_{t}^{-1}}}{P}\right)_{l^{n}}^{t}=\prod_{t}\left(\frac{\alpha^{\sigma_{t}^{-1}}}{P}\right)_{l^{n}}^{\sigma_{t}} \\
& =\prod_{t}\left(\frac{\alpha}{P^{\sigma_{t}}}\right)_{l^{n}}=\left(\frac{\alpha}{N(P)}\right)_{l^{n}}=\left(\frac{\alpha}{p^{f}}\right)_{l^{n}}=\left(\frac{\alpha}{p}\right)_{l^{n}}^{f}
\end{aligned}
$$

where t ranges over the natural numbers less than l^{n} and relatively prime to l. It therefore follows that

$$
\left(\frac{\alpha}{p}\right)_{l^{n}}^{f}\left(\frac{\varepsilon(\alpha)}{P}\right)_{l^{n}}=\left(\frac{p}{\alpha}\right)_{l^{n}}^{f} .
$$

Let $n=1$ in Theorem 1. Then, by Proposition $4, \varepsilon(\alpha)= \pm 1$ so that $\left(\frac{\varepsilon(\alpha)}{P}\right)_{l}=1$. Furthermore, since f divides $l-1$, we have

$$
\left(\frac{\alpha}{p}\right)_{l}=\left(\frac{p}{\alpha}\right)_{l},
$$

taking the $(l-(l-1) / f)$ th power of both sides of the equality in Theorem 1 . The above equality is none other than essential part of the Eisenstein reciprocity law. Thus Theorem 1 combined with Proposition 4 can be regarded as a narrow generalization of the Eisenstein reciprocity law.

The following result is deduced directly from Theorem 1.
Corollary 1. Let p be a prime number different from l, α a primary element of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ relatively prime to p, P a prime ideal of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ containing p, and f the order of p modulo l^{n}. If f is relatively prime to l, i.e., $p^{l-1} \equiv 1\left(\bmod l^{n}\right)$, then

$$
\left(\frac{\alpha}{p}\right)_{l^{n}}\left(\frac{\varepsilon(\alpha)}{P}\right)_{l^{n}}^{h}=\left(\frac{p}{\alpha}\right)_{l^{n}}
$$

for any natural number h such that $f h \equiv 1\left(\bmod l^{n}\right)$.
Proof. Assume f to be relatively prime to l, and take a rational integer h with $f h \equiv 1\left(\bmod l^{n}\right)$. Then, by Theorem 1,

$$
\left(\frac{\alpha}{p}\right)_{l^{n}}\left(\frac{\varepsilon(\alpha)}{P}\right)_{l^{n}}^{h}=\left(\left(\frac{\alpha}{p}\right)_{l^{n}}^{f}\left(\frac{\varepsilon(\alpha)}{P}\right)_{l^{n}}\right)^{h}=\left(\frac{p}{\alpha}\right)_{l^{n}}^{f h}=\left(\frac{p}{\alpha}\right)_{l^{n}}
$$

3 Additional results

In this last section, we add some results which are proved by means of Theorem 1.
Proposition 5. Let p and q be distinct prime numbers different from l, and f the order of p modulo l^{n}. Then

$$
\left(\frac{q}{p}\right)_{l^{n}}^{f}=\left(\frac{p}{q}\right)_{l^{n}}^{f}
$$

Proof. By Theorem 1,

$$
\left(\frac{q}{p}\right)_{l^{n}}^{f}\left(\frac{\varepsilon(q)}{P}\right)_{l^{n}}=\left(\frac{p}{q}\right)_{l^{n}}^{f}
$$

where P is a prime ideal of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ containing p. Therefore it suffices to prove $\varepsilon(q)= \pm 1$. Let r be a prime number such that $r \equiv 1(\bmod q)$ and $r \equiv l^{n}+1\left(\bmod l^{2 n}\right)$. We take a prime ideal R of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ containing r. Let t range over the natural numbers less than l^{n} and relatively prime to l. Since $r \equiv 1\left(\bmod l^{n}\right)$, the degree of R is 1 and $(r)=\prod_{t} R^{\sigma_{t}}$. Hence Theorem 1 shows that

$$
\begin{equation*}
\left(\frac{r}{q}\right)_{l^{n}}=\left(\frac{q}{r}\right)_{l^{n}}\left(\frac{\varepsilon(q)}{R}\right)_{l^{n}}=\left(\frac{\varepsilon(q)}{R}\right)_{l^{n}} \prod_{t}\left(\frac{q}{R^{\sigma_{t}}}\right)_{l^{n}} . \tag{8}
\end{equation*}
$$

Here, by (1),

$$
\prod_{t}\left(\frac{q}{R^{\sigma_{t}}}\right)_{l^{n}}=\prod_{t}\left(\frac{q}{R}\right)_{l^{n}}^{\sigma_{t}}=\prod_{t}\left(\frac{q}{R}\right)_{l^{n}}^{t}=\left(\frac{q}{R}\right)_{l^{n}}^{\sum_{t} t}=\left(\frac{q}{R}\right)_{l^{n}}^{l^{2 n-1}(l-1) / 2}=1
$$

On the other hand, for every prime ideal Q of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ containing q, we obtain $\left(\frac{r}{Q}\right)_{l^{n}}=1$ from $r \equiv 1$ $(\bmod q)$, so that $\left(\frac{r}{q}\right)_{l^{n}}=1$ follows. We also see that $\left(\frac{\varepsilon(q)}{R}\right)_{l^{n}}= \pm \varepsilon(q)^{(N(R)-1) / l^{n}}$ by (6), and that $\varepsilon(q)^{(N(R)-1) / l^{n}}=\varepsilon(q)$ since $(N(R)-1) / l^{n}=(r-1) / l^{n} \equiv 1\left(\bmod l^{n}\right)$. Hence (8) implies $\varepsilon(q)= \pm 1$.

The above result yields the following.
Theorem 2. Let p and q be distinct prime numbers different from l, and g the greatest common divisor of the orders of p and q modulo l^{n}. Then

$$
\left(\frac{q}{p}\right)_{l^{n}}^{g}=\left(\frac{p}{q}\right)_{l^{n}}^{g} .
$$

In particular,

$$
\left(\frac{q}{p}\right)_{l^{n}}=\left(\frac{p}{q}\right)_{l^{n}}
$$

if g is relatively prime to l, namely, either $p^{l-1} \equiv 1\left(\bmod l^{n}\right)$ or $q^{l-1} \equiv 1\left(\bmod l^{n}\right)$.
Proof. Let f and f^{\prime} be the orders of p and q modulo l^{n}, respectively. Then, by Proposition 5,

$$
\left(\frac{q}{p}\right)_{l^{n}}^{f}=\left(\frac{p}{q}\right)_{l^{n}}^{f}, \quad\left(\frac{p}{q}\right)_{l^{n}}^{f^{\prime}}=\left(\frac{q}{p}\right)_{l^{n}}^{f^{\prime}} .
$$

These clearly give the first assertion of the theorem. Naturally the second assertion is an immediate consequence of the first.

We finally touch upon the special case where $l^{n}=3^{2}=9$.
Theorem 3. Let p be a prime number different from 3 , α an element of $\mathbb{Z}\left[\zeta_{3}\right] \backslash\left\{ \pm 1, \pm \zeta_{3}\right\}$ relatively prime to 3 , and f the order of p modulo 9 . Then

$$
\left(\frac{\alpha}{p}\right)_{9}^{f}=\left(\frac{p}{\alpha}\right)_{9}^{f}
$$

in other words,

$$
\left(\frac{\alpha}{p}\right)_{9}=\left(\frac{p}{\alpha}\right)_{9} \quad \text { or } \quad\left(\frac{\alpha}{p}\right)_{9}^{3}=\left(\frac{p}{\alpha}\right)_{9}^{3}
$$

according to whether $p \equiv \pm 1(\bmod 9)$ or $p \not \equiv \pm 1(\bmod 9)$.
Proof. There exist rational integers a and b with $\alpha=a+b \zeta_{3}$. Since $\zeta_{3} \equiv 1\left(\bmod \left(1-\zeta_{9}\right)^{2}\right)$, we have $\alpha \equiv a+b$ $\left(\bmod \left(1-\zeta_{9}\right)^{2}\right)$. Therefore, by the assumption, α is a primary element of $\mathbb{Z}\left[\zeta_{9}\right]$.

Next, let us prove $\varepsilon(\alpha)= \pm 1$, which concludes our proof. Let q be a prime number such that $q \equiv 4$ $(\bmod 9)$, and let Q be a prime ideal of $\mathbb{Z}\left[\zeta_{l^{n}}\right]$ containing q. As the order of q modulo 9 is 3 , Theorem 1 implies that

$$
\left(\frac{\alpha}{q}\right)_{9}^{3}\left(\frac{\varepsilon(\alpha)}{Q}\right)_{9}=\left(\frac{q}{\alpha}\right)_{9}^{3} .
$$

In view of (1), we find $\left(\frac{\alpha}{q}\right)_{9}^{3}=1$, because

$$
\left(\frac{\alpha}{q}\right)_{9}^{4}=\left(\frac{\alpha}{q}\right)_{9}^{\sigma_{4}}=\left(\frac{\alpha^{\sigma_{4}}}{q}\right)_{9}=\left(\frac{\alpha}{q}\right)_{9}
$$

Similarly, by (1), we have $\left(\frac{q}{\alpha}\right)_{9}^{3}=1$. Hence, by (6),

$$
1=\left(\frac{\varepsilon(\alpha)}{Q}\right)_{9}= \pm \varepsilon(\alpha)^{(N(Q)-1) / 9}
$$

However

$$
\frac{N(Q)-1}{9}=\frac{(q-4)}{9}\left((q-4)^{2}+12(q-4)+48\right)+7 \equiv 1 \quad(\bmod 3)
$$

Since Proposition 4 gives $\varepsilon(\alpha)= \pm \zeta_{3}^{k}$ for some $k \in \mathbb{Z}$, it then follows that $1= \pm \varepsilon(\alpha)$.

References

[1] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics 84, Springer, 1990.

Mari Kouchiwa
Adress: 3-3-1-1410 Kawaguchi, Kawaguchi-shi, Saitama 332-0015
E-mail: kouchiwamari@gmail.com

