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The Eisenstein reciprocity law
and ["th power residue

Mari Kouchiwa
(Received March 28, 2016)

Abstract: Taking an odd prime number [ and a natural number n, we study a reciprocity law
for the ["th power residue symbol along the same lines as in a proof given in Ireland and Rosen
[1] to the Eisenstein reciprocity law.

1 Definitions and preliminaries

For any natural number m, let ¢, = e2™/™. We denote by Q the field of rational numbers and by Z the
ring of rational integers. It follows that Z[(,,] is the ring of algebraic integers in the cyclotomic field Q((p)
of mth roots of unity. We fix m in the rest of this paper.

Definition 1. For each « € Z[(y] and each prime ideal P of Z[(n] not containing m, define (%) as
follows. If a € P, let "
a
2) —o.
<P)77L

Ifa & P, let (%) denote the unique mth root of unity such that
m

(%)m = oW P)=1/m  (nod P),

where N(P) stands for the absolute norm of P, i.e., N(P) = |Z[¢n]/P|. We call (%) the mth power

. m
residue symbol.

As is well known, the above definition gives the following result for any ay € Z[(], any as € Z[(,,] and
any prime ideal P of Z[(,,] not containing m (cf. [1, Proposition 14.2.2 and its Corollary]).

Proposition 1. — (i) If oy = as (mod P), then (%)m = (%)m.
W (%), = (%), (%),
(iii) (%)m =1 if and only if x™ = «; (mod P) for some x € Z[(n] \ P.

. Cm _ A(N(P)-1)/m
(iv) (P = .

Definition 2. For each 0 € Z[(], we put (0) = 0Z[(,y]. Suppose that A is an ideal of Z[(m] relatively prime
to (m). Let A= Py Py--- Ps be the prime decomposition of A in Z[(y,). For each o € Z[(y], define

.= (7) (&) ~(F).
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and for each B € Z[(y,] relatively prime to m, define

().~ ()
B)wm \NB) ) wm
The following result of Gauss for m = 2 is famous as main part of law of quadratic reciprocity: If p and

q are dlSllnCt ()dd pI‘lmeS, lhen
q p 2

Whereas Gauss discovered a similar result for m = 4, Fisenstein proved it completely. For the case in which
m is an odd prime, a result on the mth power residue symbol still analogous to law of quadratic reciprocity
was first proved by Eisenstein and is called the Eisenstein reciprocity law (cf. [1, Chapters 9 and 14]).

From now on, we treat the case m = [", where [ is an odd prime and n is a natural number.

Definition 3. A nonzero element o of Z[(in] is called primary if it is not a unit but it is relatively prime to
[ and congruent to a rational integer modulo (1 — (jn)?.

Proposition 2. For any « € Z[(»] prime to 1, there exists ¢ € Z, uniquely determined modulo I, such that
(fnax 1s primary.

Proof. Let A =1— (. Since the prime ideal (A) of Z[(;»] has degree 1, there is a rational integer a such that

a =a (mod (X)). We then have (o — a)/\ € Z[(»], so there is a rational integer b such that (o —a)/A=b
(mod (\)). Consequently, a = a + b\ (mod (\)?). Since « is relatively prime to [, the rational integer a is

also relatively prime to I. Choose a rational integer ¢ to satisfy ac = b (mod ). Since (;» = 1 — A, we have
5 =1—c\ (mod (\)?). It follows that

(oa=a+ (b—ac)) (mod (N)?).
Therefore, (f.a = a (mod (A\)?) and so (f, « is primary.
Next assume that (f,a = o’ (mod (\)?) with rational integers ¢/ and a’. Then
(= )= (G5 —G)a=d —a (mod (V?).
This implies @’ —a = 0 (mod (\)), i.e., @’ —a =0 (mod 1). Asl =0 (mod (\)?), it follows that ( lc,i_c -
1)¢f.a =0 (mod (M)?). Hence ¢ = ¢ (mod ). O

If a € Z[(j»] is given and ¢}« is primary with ¢ € Z, then by Proposition 1, any nonzero prime ideal P

of Z[¢n] fulfilles
(E) _ (G G\ _ e (G
P [ P In P n i P In '

In such a sense, for the study of the {"th power residue symbol, it suffices to consider only primary elements
of Z[Cln].
Now, let P be a nonzero prime ideal of Z[(;»]. Note that the multiplicative group of the field Z[(;»]/P is

(Z[Gm]/P)NAPY:

(Z[Gn]/P)* = (Z[Gn]/P)\ {P}.

By Proposition 1, we can define a multiplicative character xp of Z[(;»]/P by

xp(P)=0 and xp(u) = (%): for w € (Z[¢=]/P)*, a € u.
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Let p be the prime number in P. Then Z[(;»]/P becomes canonically a finite extension over the prime field
Z/pZ. Further ¢, is also defined canonically for each w € Z/pZ. Thus we can define an additive character
p of (the additive group of) Z[(»]|/P by

Yp(u) =¢™  for u € Z[(n]/P,

where tr denotes the trace map from Z[(;»|/P to Z/pZ. Naturally ¢p(P) = C;,T(P) =1.
Definition 4. With P as above, set
gP)= Y xe(wp(u).
w€Z[Gn]/ P

For this Gauss sum, we difine

o(P) = g(P)"".

Obviously it follows that g(P) belongs to Q({n,(p), but ®(P) is known to belong to Z[(n] (cf. [1,
Proposition 14.3.1]).

Definition 5. Let A be an ideal of Z[(jn] relatively prime to (1), a an element of Z[(n] relatively prime to
l. Let A= Py Py--- Py be the prime decomposition of A in Z[(jn]. We then define

(A) = O(P)2(P2) - (Fs), P(a) = &((@))-
Proposition 3. Let A be an ideal of Z[(;n] relatively prime to (1). Then ®(A) = +1 (mod 1)

Proof. Let P be a prime ideal of Z[(;] relatively prime to [. By Definition 5, it is enough to show that
®(P) = —1 (mod l). We obtain from Definition 4

oP)=g(P)" = > xp@ ¢pw) (modl),
u€Z[Gin]/ P

so that, by Definition 1,

O(P) = Z Yp)” (mod 1).

u€(Z[¢m]/ P)x
Since 1 p is an additive character of Z[(;»]/P, the right hand side above is

S weuw= Y () = —gp(P) = 1.

w€(Z[n]/P)* uw€(Z[¢n]/ P)*

2 Main results

Let G denote the Galois group of Q((i») over Q: G = Gal(Q(¢(»)/Q). Writing o° = o(«) for each
a € Q((n) and each o € G, we regard the multiplicative group Q((;»)* as the module over Z[G], the group
ring of G over Z, in the obvious way. Let A be any ideal of Z[(;»]. For each 6 € Z[G], we put

A’ ={p°| B e A}.

For every o € G, A? is also an ideal of Z[(;]; further, when A is relatively prime to (1), Proposition 1 and

Definitions 1, 2 yield
&)@, G-
A n A7 1"7 B2 n pg n
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for every 1 € Z[(j»] and for every By € Z[(;»] relatively prime to I. When ¢ is any rational integer relatively
prime to [, we denote by oy the element of G mapping (;» to (f.. In Z[G], let

'yzztat_la (2)

where the sum is taken over all natural numbers ¢t < [™ relatively prime to [. Let P be a nonzero prime ideal
of Z[(in]. A celebrated theorem of Stickelberger (cf. [1, Chapter 14, Theorem 2]) then guarantees that (®(P))
is decomposed in Z[(»] as
—1
(@(P) =P =[Jr )" (3)
t

This induces a relation (®(A4)) = A7. Now, take any a € Z[(»] \ {0}. Since (®(a)) = () = («”), we can
define a unit £(«) of Z[{;] by

®(a) = e(a)a”. (4)
Actually e(a) turns out to be a root of unity in Z[(;»], namely,
e(a) = £, (5)

—1
for some j € Z (cf. [1, Proposition 14.5.2]). Moreover, as (P) = 1, Proposition 1 gives

n

(6(5))[ = GO = (@I, ©

Proposition 4. If a € Z[(»] is primary, then e(o) = £(,.*, with some k € Z.
Proof. We assume that o € Z[(;»] is primary, whence
g(a)a” =+1 (mod ) (7)

by (4) and Proposition 3. Let A = 1 — (;». Since [ is totally ramified in Q((;») or, equivalently, (A)!" (=1) =
(1), we have (A)? = (A) for all o € G. Furthermore, by Definition 3, there is a rational integer a such that
a =a (mod (\)?). Hence (2) gives a” = a>+* (mod (\)?), where the sum is taken over the natural numbers
t < 1™ relatively prime to . Therefore

oY = g7 UD/2 = g(U-D/2 = (mod (A\)?)
and, consequently, (5) and (7) yield ¢/, = +1 (mod (\)?) with some j € Z. On the other hand,
Gh=01-X"=1-3x (mod (\)?).

Thus 1 — jA = 1 (mod (\)?). If 1 — jA = —1 (mod (A\)?), however, A would divide 2. This contradiction
shows that 1 — jA =1 (mod (A\)?), i.e., [ divides j. O

We are now ready to prove our main theorem.

Theorem 1. Let p be a prime number different from 1, a a primary element of Z[(n| relatively prime to p,
and P any prime ideal of Z[(jn] containing p. Then

(2) (%) =o)L

here [ denotes the degree of P, whence f is the order of p modulo 1™, namely, the smallest natural number
such that pf =1 (mod ™).
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Proof. Let @ be any prime ideal of Z[(;»] dividing (o). By Definitions 1, 4 and the definitions of xg, ¥q,

9@ = 3 xow wou)P  (mod p),
w€Z[(n]/Q
S v o = N xquwe(p'u)
u€Z[(n]/Q w€Z[(n]/Q
f
= Y el e et = () @)

u€Z[in]/Q @

Furthermore, (3) implies that g(Q) is relatively prime to p. Hence

o(Qp' = (g) (mod P).

On the other hand, since pf = N(P), we obtain from Definitions 1 and 4

9Q = (@) = (q)ga@)ln (mod P)

and, in Z[(;n]/ P, the cosets of 1,(n, ... Cll:*l are distinct. Thus

(7).~ (%),

This, together with Proposition 1 and Definitions 2, 5, implies that
)\ () _ (£>f
P ). \a). \alin’
a’ (ele)) _ (B)f
P).\ P ). \alin

Succesively by (2), Proposition 1, Definition 1, (1) and Definition 2, we also have

(), -1(%) ~11(%) -n1()

n

1 A e e C R

where ¢ ranges over the natural numbers less than [™ and relatively prime to [. It therefore follows that
o\ (ele)) _ (2
p)imw\ P ) alin’
Let n =1 in Theorem 1. Then, by Proposition 4, e(«) = £1 so that <

() -,

Hence (4) gives

O
e(a)

> = 1. Furthermore, since f
1

divides [ — 1, we have
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taking the (I — (I — 1)/f)th power of both sides of the equality in Theorem 1. The above equality is none
other than essential part of the Eisenstein reciprocity law. Thus Theorem 1 combined with Proposition 4
can be regarded as a narrow generalization of the Eisenstein reciprocity law.

The following result is deduced directly from Theorem 1.

Corollary 1. Let p be a prime number different from 1, a a primary element of Z[(j»] relatively prime to
p, P a prime ideal of Z[(j»] containing p, and f the order of p modulo I™. If f is relatively prime to l, i.e.,

P =1 (mod I), then h
(). ().~ (0.

for any natural number h such that fh =1 (mod I™).

Proof. Assume f to be relatively prime to [, and take a rational integer h with fh =1 (mod I™). Then, by

Theorem 1, ,
h f
(), () = ()L (E),) =@ - 0,

3 Additional results

In this last section, we add some results which are proved by means of Theorem 1.

Proposition 5. Let p and q be distinct prime numbers different from 1, and f the order of p modulo ™.

Then , ; ) ;
().~ G,
(2). (%)~ ().

where P is a prime ideal of Z[(;»] containing p. Therefore it suffices to prove £(¢) = £1. Let r be a prime
number such that r =1 (mod ¢) and r =" + 1 (mod [*"). We take a prime ideal R of Z[(;»] containing 7.
Let ¢ range over the natural numbers less than (" and relatively prime to I. Since r = 1 (mod ™), the degree
of Ris 1 and (r) =[], R”*. Hence Theorem 1 shows that

(5),-®, (22) - (%) ML), ®

Proof. By Theorem 1,

Here, by (1),

ot t 2n—11_
I1(). - TG -TH - (- (=

t

On the other hand, for every prime ideal @ of Z[(;»] containing ¢, we obtain (g) =1 fromr =1
n

(mod ¢), so that <2) = 1 follows. We also see that (dRQ)> = 4e(q)NE-D/T" by (6), and that
n n

e(q)NER=D/I" — £(q) since (N(R) —1)/1" = (r —1)/I" =1 (mod I"). Hence (8) implies £(q) = +1. O
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The above result yields the following.

Theorem 2. Let p and q be distinct prime numbers different from I, and g the greatest common divisor of

the orders of p and g modulo [™. Then
g g
(3).- ()
p n q n

().~ ).

if g is relatively prime to 1, namely, either p'~' =1 (mod I") or ¢'~* =1 (mod ().

In particular,

Proof. Let f and f’ be the orders of p and ¢ modulo I™, respectively. Then, by Proposition 5,

(8- (), ().~ (1),
P/ a)pm a/) )

These clearly give the first assertion of the theorem. Naturally the second assertion is an immediate conse-
quence of the first. O

We finally touch upon the special case where I” = 32 = 9.

Theorem 3. Let p be a prime number different from 3, a an element of Z[(s] \ {£1,+(3} relatively prime
to 3, and f the order of p modulo 9. Then
(a T (2)
p)y \alo’

3
@) _ (P CARNNGAN
(p>9(a)9 o (p>9<a>9
according to whether p = £1 (mod 9) or p # £1 (mod 9).

Proof. There exist rational integers @ and b with a = a+b(3. Since (3 = 1 (mod (1—(g)?), we have a = a+b
(mod (1 — ¢9)?). Therefore, by the assumption, « is a primary element of Z[(o].

Next, let us prove e(a) = +1, which concludes our proof. Let ¢ be a prime number such that ¢ = 4
(mod 9), and let @ be a prime ideal of Z[(;»] containing g. As the order of ¢ modulo 9 is 3, Theorem 1

implies that
3 3
<a> <€<a>> ~ (4
)9\ @ /g alg
3
In view of (1), we find (a) =1, because
a/9
(5= (), = (), (5)
q/9 q/9 4 /g q 9'
3

Similarly, by (1), we have (%) = 1. Hence, by (6),
9

in other words,

1= (E(Qa))g = te(a)N(@-D/,

However
NQ-1_ (¢—4)
9 9
Since Proposition 4 gives e(a) = 4(¥ for some k € Z, it then follows that 1 = +¢(a). O

((q—4)2+12(q—4)+48)+7=1 (mod 3).
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