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FINDING ROOTS BY A SIMPLE ORIGAMI
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ABSTRACT. We present a solving method of algebraic equations of one indeterminate of degree up to
six by simple paper foldings.

ZOLEED A% OALRT O L2 P B S %
Bagatelle no.292 from “Kiyosuke Ason shu”

1. INTRODUCTION

The history of algebraic equation with one variable goes back to Babylonian mathematics ca. 2000
BC [31], and the solution of the quadratic equation in square root was known to the ancient Egyptians.
Through the history of pre-modern and modern mathematics the solution of algebraic equation of degree
> 3 in radical form had been long seeked for until it was discovered for degrees 3 and 4 in the first half
of the 16th centuries, and negatively settled by Ruffini, Able and Galois by proving the non-existence in
general for degrees 5 and higher in the beginning of the 19th centuries.

Origami literally means paper folding in Japanese. Paper crafts in the shapes of Birds and Frogs are,
although controversial, alluded in the old texts of the late 12th and 13th centuries [14, 29] (see also page
222 in [5] and page 781 in [22]). The history of Japanese folk art of origami can trace back at least to the
late 18th century in the Edo period (see e.g. the books [2]), when origami was popularised to the masses
due to a wide distribution of paper.

From the mathematical point of view, paper folding was systematically investigated by an Indian
mathematician Sundara Row [28] in the end of the 19th century. His work caught attention of Klein and
became widely regarded (see e.g. [21, 16]). In 1936 an Ttalian female mathematician Beloch [6] showed
first a method of solving cubic equations by creases: realizing an enjoyable idea of an Austrian engineer
Lill [24] (see Fig.1), and after, its variants were re-discovered by many origami enthusiasts (see [16]).
As quartic equations reduce to cubic equations by Ferrari’s formula, quartic equations also can be, in
principle, solved by paper folding.

Edwards and Shurman [13] showed a method of solving quartic equations by folding lines bi-tangent
to a parabola and a circle in 2001, but the procedure given was applicable to a certain partial case (see
also the article [25]). The equations of degree higher than or equal to five are known [10] to be solved
in the multi-fold origami introduced by Alperin and Lang [4], again being inspired by the method of
Lill. Although its modification was made by Nishimura [26] in the aspect of “multiplicity” especially for
the quintic equations, the multi-fold origami in general is exceedingly difficult to manipulate in practice,
and not included in the so-called “Hatori-Huzita-Justin axioms”of origami. In fact, the ancient Greek
problem of Angle trisection is nothing but a special case of the 2-fold origami.

In this short note, we present the simplest and concrete procedure of solving quartic equations by
compass and paper folding (Proposition 6.1) simplifying a result of Edwards and Shurman and realizing
an idea of Ghourabi, Ida, Kaliszyk and Kasem [19, 15], which could, from the mathematical view point,
have been discovered more than two milleniums ago if origami on Papyrus had been allowed (see e.g.
Figure 4 for a simple example). We present also a nomogram method of solving equations of higher
degree using curves B, introduced in §9, and examine applying it to the various problems such as the
quintic equation, the sextic equation etc. in §9, 10.

This work was initiated in the course of graduation study of a former student Eri Ono in Ochanomizu
university in the academic year of 2012. The authors thank to Catherine Oikonomides for aid in a literal
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problem in ancient Greek, and also to Ghourabi and the referee for their careful reading of the previous

draft of this note.
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FIGURE 1. Left. A self-explaining diagram due to Lill: a five-fold origami solving 2x° —
724 4+ 92% — 52?2 + 32 — 1 = 0. The polygonal diagram in solid line consists of segments
of length 2,7,9,5,3,1 successively from the starting point o. The initial slope of the
dashed line is a unique real solution: i.e. © = % The dashed trajectory might be found
by lapping a transparent graph paper over the polygonal diagram. This method applies
to univariate algebraic equations of any degree.

FI1cURE 2. Right. Angle trisection by origami due to Abe: Let p; € Lo and assume Iy
is the perpendicular at midpoint of the segment pips. Fold pi, ps respectively onto some
points p},ph on Ly, Ly. Then the angle of p1p} and Ly trisects the angle 3¢ of L; and
Ls. There exist two other folds placing p1, p2 respectively onto L1, Ly. Those folds give
0/3+ /3 and 0/3 + 27/3 (cf. the angle trisection in Figure 4).

2. ORIGAMI AXIOMS

A fold of a piece of paper (or the Euclidean plane R?) defines an isometric everting acting on the
paper, which fixes every point on a line L: the folding line. Huzita [17] and Justin [18] introduced seven
allowable operations in paper folding, and called them “axioms” of origami in 1989, which seem now to
be widely accepted in the geometry of origami.

The original statement of the origami “axioms” in [17, 18] is pointed to be non-decidable as a theory in
the sense of computational logic in [19], where a refined set of “axioms” is proposed. We would re-state
those operations or “axioms” in slightly modulated forms as follows.

e Given two points p; # pe, one can make a unique fold that passes p; and po.

Given two points p; # p2, one can make a unique fold that places p; onto ps.

Given two lines Ly # Lo, one can make all (one or two) folds that place L1 onto Lo.

Given a line L and a point p off L, one can make a unique fold perpendicular to L that passes p.
Given two points p; # p2 and a line Ly, one can make all (0 or 1 or 2) folds that place p; onto
some point pj € L; and passes po.

Given two points p; # po and two lines L, Lo such that p; ¢ L; for i = 1 or 2, or Ly N Lo
is non-empty, one can make all (0 or 1 or 2 or 3) folds that place p; onto some point p; € L;
simultaneously for i = 1,2 (see Figure 3, left).

Given a point p; and two lines Ly, L, with a non-empty intersection, one can make a unique fold
perpendicular to Lo that places p; onto some point p| € L.

Among these “axioms” the most crucial is the 6th one, which is equivalent to solving a certain cubic
equation (see also Remark 1). It seems that most of the other “axioms” are substituted by the above 6th
“axiom” placing the initial point p; on L; and assuming Ly = Lo if necessary. For instance, if ps € Lo
and pa ¢ Ly (but not too far from L;), then the 6th “axiom” provides, in a generic case, two folds placing
p1 onto Ly and passing po, and one fold placing p; onto Ly and also Lo onto itself. The former folds are
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p2 = ph for two foldings

FIGUrE 3. Left: the 6th axiom for right angled two lines; Right: the 6th axiom with
a singular configuration (ps € La). The long dashed lines are the folding lines.

those given by the 5th “axiom” and the latter fold is the one given by the 7th “axiom” (see Figure 3,
right). This suggests a possibility of reducing the “axioms”.

The number of all possible folds in the 6th axiom varies from 0 to 3 depending on the configuration
of p; and L;. In fact if L and Lo are parallel and their distance exceeds the distance of p; and ps, there
exists no fold as being required. This will be discussed again in §8.

Here let us remind a practical problem of making a fold placing a point p onto a line L. For this sake,
one varies and fixes the fold image p’ of p when it collides with L. This is carried out in a continuous
move of p’ with a parameter of dimension one crossing the line L transversely. In order to make a fold
that places p onto a prefixed point p’ (as in the second Axiom), a parameter of dimension 2 is needed.
In general it can be said that probing a point on a plane is much more difficult than a point on a line.

The neusis (vevois in ancient Greek) construction is to place two marked points of a straightedge
respectively onto two curves so that it inclines towards a prescribed fixed point (see [11]). This task
requires to “slide” the marked points along the curves. This construction was applied by Archimedes, for
instance for the angle trisection, to a pair of a straight line and a circle (see Figure 4 and also [11]), but
not accepted by most of the other Greek geometers such as Fuclid and Pappus, because of the use of a
marked straight edge. Interestingly this can be replaced by paper folding construction as in the following
figure [19].

The most elementary Angle Trisection by a single-fold with “sliding” along two lines was found by
Abe [1] in 1980 before the “axioms” were proclaimed by the others (see Figure 2). Basically, the angle
trisection is equivalent to a cubic equation: Chebyshev polynomial of degree 3 is equal to a constant. It
is then solved by the sixth origami axiom, which requires to “slide” the extremities of a segment p}p}
(p; € L;) of equal length to pips along the lines into a mirror position of pyps. For all above, it seems the
sliding construction with a marked straight edge ought to be accepted to explore beyond cubic equations
by paper foldings.

In this note the authors would suggest yet another “operation”

e Given two points p; # ps and two curves C7, Cy, one can make all folds that place p; onto some

point p} € C; simultaneously for i = 1,2.

The adequate choices for the curves C; would be straight lines, circles and possibly conics, which are
already suggested by Ghourabi et al. [19, 15]. Of course the number of such folds varies in general
depending on the configuration as before. In this note the authors define the curves B,,,n = 2,3,4,5,...
in §9, and present origami solutions to the various equations of degree 2, 3,4 and higher with those curves
and the above new “operation”. We will discuss the various algebraic equations with this “operation” in
the following sections.
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FIGURE 4. The Angle Trisection attributed to Archimedes, and partly to Kasem et al.
[19]; Assume the segment piph of length equal to the radius of the circle Cy inclines
towards p;. Then the angle § = ZQp!ph trisects the angle 30 = ZQpap;. Kasem et
al. pointed this neusis construction can be replaced by an origami placing pi, ps onto
p) € Cy and the reflection Py, € Cy of py by Cy simultaneously. The dashed segment
P75 in red inclines towards the reflection p; of p1, and then /Qp}p, = —0 if we measure
the angle anti-clockwisely. There exist also three other folds placing py, ps onto Cy, Cs.
In fact, the origami folding placing p1, p2 onto Cp, Cs corresponds to a quartic equation
(Remark 1). For those folds, p}p} (or its reverse) inclines towards Py or py, and the angle
ZQp,ph is either w/3 —0,2m/3 — 6 or 30. The last case holds when p;, ps are transposed
by the folding.

3. DuaLITY

A non-vertical line L (non-parallel to the Y-axis) on a plane with the orthogonal coordinates X,Y is
presented by a linear equation Y = AX + B with real coefficients A, B, while (A, B) gives a point on the
AB-plane: the dual plane. We call (A, B) the dual point of L and denote (4, B) = LY. We denote also
L by (A, B)" and call the dual line of (A, B). Conversely X,Y being fixed, the equation B = —XA+Y
defines a (non vertical) dual line L' in the AB-plane, which we denote by (X,Y)Y. We call (X,Y) the
dual of L' and denote by L. The operations V, A enjoy the bi-duality

(va)\//\ = (Xv Y) and (Av B)Av - (AaB)

This argument provides a one-to-one correspondence of the space of non-vertical lines and the space of
their defining equations (dual points) as follows,

e Dual s
(a) Non-vertical lines in R%, <= Points in R,
o Dual C e
(b) Points in R3y < Non-vertical lines in R 5.

This correspondence extends naturally to that of the space of all lines including vertical lines, completing
the dual plane R? by glueing along the line at infinity to form the projective plane RP? (see e.g. [27]).
However, we will stay on the above imperfect projective duality, respecting Cartesian coordinate structure
of the dual plane.

A smooth curve C on a plane is vertical at a p € C' if the tangent line 1,C of C at p is vertical. In
this note the dual curve CV of a smooth plane curve C in the XY -plane is defined to be the set of duals
of tangent lines of C' at non-vertical points. Let C : (a(t),3(t)), t € R, be a C'-parameterization and
assume o/ (t) # 0. Then C is nonsingular, non-vertical, and the tangent line at C(¢) is given by

Y =§'(t) /o (t)X + B(t) — a(t)5'(1),

which determines a point in the dual AB-plane:

CY(0) = (700 -
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On the one hand, the tangent line of D : (a(t), 5(t)) in the dual AB-plane may be presented as
B=p(t)/a (t)A+B(t) —at)V'(t) or B(t) —at)s'(t) = (=F'(t)/'(t) A+ B.
Thus its dual curve denoted D” in the XY -plane is defined to be

Ay L / a(t) ()
0= (00 - |30 2]

If C (respectively D) is C2-smooth, CV (resp. D") is Cl-smooth by the above formulas. If o/(t) # 0
and the Wronskian of (o/(t), 5'(t)) (i.e. o/ —'a’’) is nonzero (in other words, the curvature of C' does
not vanish), the dual curve is smooth, non-vertical and moreover the curvature of C'V does not vanish.
Thus the repeated dual curve CV” is also well defined and smooth. Upon the non-vanishing condition of
o’ and Wronskian of (¢, 3’), we have the projective bi-duality of plane curves

(Bi-duality) CYN(t) = C(t) and DMV(t) = D(t).

By this bi-duality, the second dual curve regains the C2-differentiability. Remark that an isolated vertical
point of a C%-smooth curve C' is the dual of a non-vertical asymptotic line of C'V.

The dual LY of a linearly parameterized line L : (¢, At + B) is (A, B) according to the above definition
of dual curve. If we regard the lines passing through (A, B) are tangent to (4, B), we obtain LV" = L
and similarly L'"Y = L’ for lines L’ in the AB-plane. Thus the above bi-duality extends the duality in
(a), (b).

Let G denote the set (group) of affine transformations of the plane in the form g : (X,Y) — (pX +
q,r X +sY +t), ps # 0, preserving the fibration of the plane by vertical lines. For g € G, define ¢ (g) € G
by

br(g): (X,Y) = (X +2  +Lx 15y - L4y,
p p b p
These morphisms ¢4 are group isomorphisms of G: ¢4 (g) = id if and only if g = id, and for g, h € G,
pi(goh)=di(g)o¢s(h),

where o denotes the composite. Moreover, for curves C' in the XY -plane and D in the AB-plane,
9(C) = ¢1(9)(CY), WD) = ¢_(h)(D").

To prove these compatibilities it is enough to show each element of G is a product (composite) of three
elements (i.e. the generators of G) in the forms,

(X,Y) = (pX,sY), (X,Y) = (X.rX+Y), (X,Y)= (X+qY +1).

and the compatibility for these generators.

For an irreducible algebraic curve C of degree > 2 (i.e. defined by an irreducible polynomial equation
in X,Y), the dual of the non-vertical smooth part of C' defined above is dense in an algebraic curve: the
algebraic dual curve of C. It is not difficult to show the bi-duality for the algebraic dual curves.

Every smooth quadratic curve (conic) C' on the XY-plane is transformed to one of the following normal
forms by a suitable element in G,

(Conic) Y = X2, X=Y? XY=1 Y?’-X%=1, X?2-Y?=1, X?’+Y?=1.
The algebraic duals CV of these normal forms C' are respectively

(Dual) B = —%AZ, AB = i A= —%BQ, A4+ B?*=1, A>-B* =1, B?-A%>-1

The algebraic duals C* are given by substituting —A for A in the above list.

4. BI-TANGENT LINES TO A PAIR OF CONICS

Let C be a smooth plane curve. There is no origami axiom that enables us to fold a tangent line of C
at a ¢ € C. If there is given a pair of mirror images (p,p’),p # p’, with respect to the tangent line of C
at ¢, one can fold the tangent line by placing p onto p’. This fold is allowed by the second origami axiom.
Define the mirror image of a p by C to be the set of all mirror images of p with respect to tangent lines
of C, and denote it by C),.

Lemma 4.1. Fold p onto a p’ € Cp,p" # p. Then the folding line is tangent to C.
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The notion of mirror image of a point may not be of common interest, but the next lemma shows it
is a natural generalization of the directrix line of a parabola.

Lemma 4.2. Let C be a conic, and p one of the foci. If C' is an ellipse, C), is a circle centered at the
opposite focus, whose radius is the sum of the distances of a point on C' to the foci. If C' is a hyperbola,
Cp 1s a two-punctured circle centered at the opposite focus, whose radius is the difference of the distances
of a point on C' to the foci. If C' is a parabola, Cy, is the directriz.

Proof. Let C be an ellipse, fi, fo the foci and p = f5. Let d; denote the distance of a ¢ € C' to the focus
fi. The bisection of the angle Zf1qf> is perpendicular to the tangent line 7,C’. Thus the mirror image
14 of fa by the tangent line is on the line fiq. The distance of ¢ to f} is equal to da, and the distance
of f} to fi is equal to d; + da, that is independent of g. As ¢ moves over C, f4 rotates with the center
fi. Therefore C, is the circle centered at f; with the radius di + dp. If C' is a hyperbola, the tangent
line T'Cy is the bisector of Zfiqfo. Thus the mirror image f3 is on the line fi¢, and the distance of f) to
fi is |d1 — da|, which is constant. Therefore C), is contained in the circle centered at the opposite focus
f1. Since the asymptotic lines of C' are not tangent to C, the mirror images of fy by those two lines are
deleted from the circle by definition. |

Remark that if a focus of an ellipse or a hyperbola is placed onto its mirror image by a fold, then the
opposite focus is also placed onto its mirror image.

Let Cy,Cy C R%4 be C?-smooth curves. We will say C; is ordinary at a p € C'if the tangent line of C;
at p has contact of order 2 with C; at p, or in other words, the curvature is nonzero at p. By the definition
of dual curves provided in the previous section, we have the following one-to-one correspondences.

(a bis) Non-vertical lines tangent to C; and Cy in R%y at ordinary points

<= Points of CY N CY C R?%; where C} are ordinary and non-vertical,
(b bis) Points of C; N Cy C R%y where C; are ordinary and non-vertical

<= Non-vertical lines tangent to Cy and Cy in R at ordinary points.

In general, if (X,Y) € C is an isolated vertical point, (X,Y)Y is a (non-vertical) asymptotic line
of the dual curve CV. In particular, if C is either an ellipse or a hyperbola, CV is a hyperbola with
two asymptotic lines, one of which is (X,Y)" (see the list (Dual)). By Lemmas 4.1, 4.2, one can fold
the tangent lines (possibly vertical) of the dual hyperbola by placing a focus onto its mirror image: a
two-punctured circle. One can fold also asymptotic lines by placing a focus onto the punctured holes of
the mirror image.

Define the altered mirror image of a p by C C R? by firstly deleting the mirror images of p by the
vertical tangent lines of C' from C,, and secondly filling with the mirror images of p by non-vertical
asymptotic lines (see e.g. Dj in the next section and Figure 5 for the case C' is the hyperbola AB =1/4
and p is a focus).

From the above dualities (a bis) and (b bis) we obtain

Lemma 4.3. Let C; be a non-vertical line or a non-singular conic in the XY -plane and C}/ its (algebraic)
dual fori =1,2. If C} is a point, let f; = D; = CY. If CY is a conic, let f; be a focus and D; its altered
mirror image by C} . Fold the AB-plane placing f; onto D; simultaneously for i =1,2. Then the folding
line is not vertical. Write the folding line as L : Y = AX + B. Then the dual L = (X,Y) is a point of
intersection of C and Co. Conversely if (X,Y) is an intersection point of Cy and Cs, the fold along the
dual line L = (X,Y)V places f; onto D; simultaneously for i =1,2.

Proof. We prove only the first statement. By Lemma 4.1 and the definition of the altered mirror image,
the folding line is either tangent or asymptotic to C} for i = 1,2. Write the folding lineas L : Y = AX+B.
Then its dual L" = (X,Y) is an intersection point of C; and Cy by the above duality (b bis) and the
subsequent argument for the case L is asymptotic to C}Y. The converse is seen similarly. 0

In particular, Y-coordinate of a point of intersection of Cy and Cs is read off from the B-intercept of
the folding line L in the dual AB-plane placing p; onto D;.

In the following sections, we seek intersection points of the various C7, C5 in the XY-plane. Due to the
above imperfect duality it is sufficient to deal with only non-vertical lines in the dual AB-plane, which
are bi-tangent (or possibly asymptotic) to their dual curves.



November 2015 FINDING ROOTS BY A SIMPLE ORIGAMI 7

5. QUADRATIC EQUATION

Let Oy : X = Y2 be a parabola in the XY-plane. Then its dual CY is a hyperbola with foci f1,¢;:

1 1 1 -1 -1
Ci:X=Y? CY:AB=-, :(—, —), g1 : <——>
1 ] 1 4 fl \/5 \/5 g1 \/§ ) \/§
The altered mirror image of f; by C} is by definition the one-punctured circle

1. 1 .. 1 1
Di:(A+—=)*+(B+—Fx)*=2 <__, _>
The pair of f; and Dy will be used as a universal template for solving equations of degrees 2,3,4 in
§5,6,7,8.
Consider first the quadratic equation

(Quad) Y2 4+aY +b=0.
This is equivalent to

C,:X=Y? and Cy: X +aY +b=0.
An intersection point of C, Cs is an (X,Y) = (Y2,Y), Y being a solution of (Quad). The line Cs is not
vertical if a # 0, and its dual is C5 : (—é, —g).
Proposition 5.1. Fold fi onto Dy fizing Cy. Then the coordinate of the B-intercept of the folding line
is a solution of (Quad). This method gives all the real solutions.
Proof. The statement follows from Lemma 4.3. |

Taking the limit as a — 0, we obtain

Proposition 5.2. Assume a = 0, b # 0. Let Ly be the line with slope —% passing through the origin.
Fold f1 onto Dy and Ly onto itself simultaneously. Then the coordinate of the B-intercept of the folding
line is a solution of the equation Y2 +b = 0. This construction gives all the real solutions.

Proof. As L is folded onto itself, the folding line has slope b. The folding line is tangent to the dual
curve CY : AB = 1 by Lemmas 4.1, 4.2. The tangent line of C} with slope b is B = bA + +/=b, that has
the B-intercept (0,+/—b). O

FIGURE 5. Left: Y2 — Y = 0. The region shaded in blue is the region of f; for which
the equation Y2 + aY + b = 0 has real solutions; Right: Y2 — 2 = 0. The dashed lines
are the folding lines. The B-intersepts are the solutions of the equations.
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Example 1. Consider the equation Y? —Y = 0. Then Cy = (1,0). The folding lines passing through
(1,0) and placing f1 onto D1 have the B-intercepts O and 1, which are the roots of the equation (Fig. 5,
left). The horizontal folding line passing through the origin is an asymptotic line of the dual curve CY,
and the fold along it places fi1 onto the point of the altered mirror image D1, that is appended to fill-in
the hole of the mirror image of f1 by CY. In order to solve Y? —2 = 0, draw the line Ly with slope %

passing through the origin. The parallel folding lines given in the proposition have the B-intercepts v/2
and —/2 (Fig. 5, right).

6. QUARTIC EQUATION: ASYMMETRIC CASE
Consider the real quartic equation

(Quartic) Y44+ aY? +0Y? +¢Y +d=0.

This is equivalent to

C1:X=Y?  C3:X*+aXY +bX +¢V +d=0.
By substituting YV with ¥ — %a (i.e. a Tschirnhaus transformation of degree 1 defined in §9), we may
assume a = 0. Thus our equation will be

(Reduced Quartic) Yi4bY24+cY +d=0 or X?2+4+bX +cY +d=0.

Assume ¢ # 0. (The case b # 0,¢ = 0 will be dealt in the next section.) Then an intersection point of
the parabolas C7 and

—1
Cg:Y:T(X2+bX+d)

is (X,Y) = (Y2Y), where Y is a solution of the equation (Reduced Quartic). The dual of C3 is the
vertical parabola

SpoCasted b 1-d
03.3_4(A+C) - with focus  f3: ( i ),
and its mirror image by CY is the directrix
1+d
Dy:B—
C

Proposition 6.1. Fold fi1, fs onto Dy, D3 simultaneously. Then the folding line is transverse to the
B-axis. The coordinate of the B-intercept of the folding line is a solution of (Reduced Quartic). This
method gives all the real solutions.

Proof. Since the B-coordinate of f3 is different from those of points on Dg, the folding line is not vertical.
The statement follows from Lemma 4.3. O

Example 2. Consider the quartic equation with a =0,b=—-4,c=1,d =2,
V' —4v?4Y +2=0.

This has two real solutions ¥ = —2,—0.618...,1,1.618.... These solutions are obtained by folding f1
onto Dy and

b 1—-d
(== =(4,-1
f3 ( o’ c ) (7 )
onto 14d
Dy:B=—-1%_ 3
c

simultaneously. These curves and folding lines are presented in Fig.6, left.

Remark 1. As mentioned in §2, simultaneous folding (in the 6th axiom) of distinct points p1 # pa onto
non-parallel lines Ly # Lo is equivalent to a cubic equation. More in general let S; be a circle or a line
fori=1,2 and assume p; ¢ S; and Sy, So are not simultaneously lines. Then simultaneous folding of p;
onto S;, 1 = 1,2, is equivalent to a quartic equation. But the space of configurations of two points and two
“circles” is of dimension 10 while the space of reduced quartic equations is of dimension 3. Proposition
6.1 reduces the problem to the special configuration: a point, a horizontal line and a pre-fixed set of a
point and a circle; the space of such configurations is of dimension 3 and corresponds in one-to-one to
the space of the reduced quartics with ¢ # 0.
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2L

4L

FIGURE 6. Left: Solving Y* —4Y? 4+ Y 4 2 = 0; Right: Solving Y? —4Y +3 = 0: The
reflection of fy about B-axis is the foot of perpendicular to D, from the origin. The
folding line in black dashed line is vertical and does not give a solution of the cubic
equation.

7. QUARTIC EQUATION: SYMMETRIC CASE (¢ = 0)
Assume b # 0,¢ =0 and d # 0. In order to solve X2 + bX + d = 0 first, consider the curves
C:Y=X% Cy:Y+bX+d=0.
The duals of these curves are
1
C!Y:B= _ZAz’ CyY 2 (—b, —d)
and C7V has
focus  f5:(0,—1)  and directrix = Dj: B =1.
Fold the plane fixing C4" and placing (0, —1) onto Dj. Then the folding line is tangent to C]Y and
passing through C3Y, hence its dual is a point of intersection of Cf,C}, that is an (a,a?), a being a
solution of the quadratic equation X2 + bX + ¢ = 0. Thus the slope of the folding line is —a. Consider
now the —7/2-rotations of f5, D5, C'5V:
2 (—1,0), Dy:A=1, C'LY 1 (—d,b).
Proposition 7.1. (1) Fold f5 : (—1,0) onto DY : A =1 fizing C4V : (—d,b). Then the folding line Lo
has a slope é, where o is a solution of X% +bX +d = 0.
(2) Fold f1 onto Dy and the folding line Lo in (1) with a positive slope onto itself simultaneously. Then

the coordinate of the B-intercept of a folding line is a solution of the equation.
All the real solutions of (Reduced Quartic) are obtained by this method.

Proof. The statement (1) is clear by the argument before the proposition. The statement (2) follows
from Proposition 5.2. O

Example 3. Consider a quartic equation with a =c =0 and b =2,d = -3,

Yi42Y?2 -3 =0.
Clearly Y? = 1,-3. Fold fy : (—1,0) onto Dy : A =1 fizing CYV : (—d,b) = (3,2). Then the folding
lines have slopes 1 and —% (see the figure on the left in Fig. 7). Let Lo be the folding line with positive

slope: i.e. 1. Neat fold f1 onto Dy and (—d,b) = (3,2) onto Lo simultaneously. The folding lines have
the B-intercepts with coordinates 1 and —1, that are the real solutions of the equation.
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FIGURE 7. Solving Y* 4 2Y?2 — 3 = 0 by two foldings.

8. CUBIC EQUATIONS

We apply the same template to the real cubic equation Y2 +aY? +bY + ¢ = 0. This does not provide
the simplest solving method, but enables us to discriminate between the cubic and the quartic equations
in a common perspective.

Again by a suitable real Tschirnhaus transformation we may assume a = 0:

(Reduced Cubic) Y3 4+bY 4 ¢=0.

Using X = Y2 this equation becomes XY + bY + ¢ = 0. Therefore the (X,Y’), Y being a solution of the
equation (Reduced Cubic), is an intersection point of the parabola C; : X = Y2 and the hyperbola

—c
Cy:Y = .
! X+0b
The dual of Cy is, assuming ¢ # 0,
B —bA)?
Cl A= —(
4 4c )
which has the focus and the directrix
c —be A+e
(— , —— d Dy:B=— A= —c if b=0).
ol ) ™ 4 o ol )

Proposition 8.1. Fold the AB-plane placing f1, fa onto Dy, Dy simultaneously. Then the folding line is
transverse to the B-axis, and the coordinate of its B-intercept is a solution of the cubic equation (Reduced
Cubic). This method gives all the real solutions of (Reduced Cubic).

Proof. The statement follows from Lemma 4.3. O

Example 4. Consider the cubic equation with a = 0,b = —4,¢ = 3:

Y? -4y +3=0.
This has real solutions Y = —2.302...,1 and 1.302..., which are obtained by folding simultaneously fi
onto D1 and

c —be 3 12 A4+c A+3
R S T A D,:B=— _ a0
ooy =) oo 4 b 1

These curves and folding lines are presented in Fig.6, right. The folding along the B-axis also places fy
onto Dy but also fi onto the punctured hole of the template D1.
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A “generic” pair of plane conics has four points of intersection counting multiplicity and intersections
at infinity by Bézout theorem. For instance the above C7,Cy intersect on the line at infinity. This may
be better understood if we look at the dual curves CY,C). Clearly the B-axis is tangent to C), but
also “tangent” to the hyperbola C} at infinity. Thus the B-axis is a common “tangent line”, which is
excluded from our space of non-vertical lines and not constructed by the scheme of Lemma 4.3. Thus one
intersection point of Cp,C} is always missing on our XY -plane. This phenomenon is also seen from the
configuration of the above fy, Dy: the mirror image of fy by the B-axis is always on the directrix Dy.

Remark 2. In general simultaneous folding of f1 and a point fy onto D1 and a line Dy is equivalent
to solving a quartic equation by Lemma 4.3 and Remark 1. If the configuration of fy, Dy is symmetric,
i.e. Dy is mon-horizontal and the reflection about the B-axis places f1 onto Dy, the equation reduces to
a cubic equation. Proposition 8.1 reduces all cubic equations to special configurations among symmetric
configurations, such that the reflection about B-axis places f, onto the foot of perpendicular line to Dy
from the origin. Thus the space of such configurations coincides with the space of non-horizontal lines,
that is of dimension 2 and corresponds to the space of reduced real cubic equations in one-to-one.

9. QUINTIC EQUATIONS

Consider the real quintic equation
(Quintic) Yo +aVt 4+ 0Y3 4 ¢Y? +dY +e=0.

Tschirnhaus transformation by a polynomial (or possibly an analytic function) f(Y) is an operation on
polynomials, respecting degree, defined by

Y —a)(Y —az)-- (Y —aq)  — (¥ = fla)(Y = fla)) - (Y = f(aa))
It is known [7, 20] that a suitable Tschirnhaus transformation of degree four f(Y) = kY4 + k3Y?3 +

koY + k1Y + ko (with complex coefficients) reduces the quintic equation to the (complex) Bring-Jerrard
quintic form

(Bring-Jerrard form) Y5 +dY +e=0.

One obtains a root Y = q; of the original (Quintic) from a root f(«;) of Bring-Jerrard form, by solving
the quartic equation f(Y) = f(a;) in Y. Although Tschirnhaus transformation has been long investigated
since it was introduced in [30], real Tschirnhaus transformation of higher degree seems not to be explored
in depth yet from our view point, and would be an interesting research subject. Thus in the current
paper, we restrict ourselves to employing rather ad-hoc real transformations to eliminate the various
terms of the equations.

If the Bring-Jerrard form is real and d # 0, one may reduce d = +1 by a real linear rescaling of Y.
The branch Y of Y® +Y + e = 0 which is real for real e is known as the ultra-radical or Bring radical
of e. Although a real Bring-Jerrard quintic form admits at most three real solutions, we will first give a
nomogram solution to this prototypical equation.

Define two curves C5, Cg in the XY -plane by

Cs:X=Y® C5:X=-dY —e or Y:—éX—g
and consider their duals CY : AB* = g—i : (514, ‘—ét) and Cy : (—4,—%). In order to fold a tangent line
(possibly a non-vertical asymptotic line) of C¥' it is enough to fold a point p off C onto its altered mirror
image by CY (Lemma 4.1).

Now let us consider the dual of C': X = Y™ in general for n > 2. The curve C has a parameterization
(t,t) and the tangent line Y = —L=X + %=1t at C(t), thus the dual is C¥ : AB"~! = (n_;—)l and its

ntn—1

tangent line is B = —t"A +t at CV(¢) by the dualities (b) and (Bi-duality) in §3. We choose the origin
as p in general for n > 2, since there seems to be no other appropriate choice (except for the case n = 2).

2t" 2t
1+t2n b 1+t2n

assuming d # 0

The reflection of the origin by the tangent line at CV(t) is (
origin by CV is given by

B, :2"AB" ' = (A? + B*)" or 2" cos fsin™ ! H ="
in the polar coordinates (r,6). We fill-in the origin and we assume the folding of the origin onto itself is
the horizontal fold about A-axis. Bs is well known as the lemniscate (see Figure 8).

), thus the mirror image of the
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FIGURE 8. B, is defined by 7" = 2" cosfsin” ' 6 in the polar coordinates, in other
word, the inversion of the curve AB"~! = 27" by the unit circle centered at the origin.
Bs is the lemniscate.

Similarly to Proposition 5.1, we obtain

Proposition 9.1. If d # 0, fold the origin onto Bs fizing Cy : (—é, —%). Then the coordinate of the
B-intercept of the folding line is a solution of real (Bring-Jerrard form). This method gives all the real
solutions.

~~
~
~~
~
~
~
L ~
~
~
~
~
~<
~
~
~
~~
~]

N

2L

FIGURE 9. Left: solving y° — 2/3y + 1/5 = 0 by one single fold; Right: the fifth root of 5

Example 5. Consider the quintic equation with d = —%,e = %,
2 1
Y?-ZY +-=0.
3 - 5
This has three real roots Y = —0.966765---, 0.303887---, 0.804032---. These roots are obtained by
folding the origin onto Bs firing C§ = (%, 1—30) (see Fig. 9, left).
For the case d = 0, we seek a folding line with slope e that places the origin onto Bs as in the course

of proof of Proposition 5.2.

Proposition 9.2. Assume d = 0, and let L3 be the line with slope —% passing through the origin. Fold
the origin onto the point of intersection of Bs and Ls. Then the coordinate of the B-intercept of the
folding line is the fifth root of —e.
Example 6. Consider the quintic equation with d = 0,e = —5:

Y®—-5=0.
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Draw the line Ls with slope é passing through the origin. Fold the origin onto the point of intersection of
Ds and Ls. The B-intercept of the folding line is the fifth root of 5, that is 1.3797--- (see Fig. 9, right).

Now let us consider the real quintic equation (Quintic). By a suitable real Tschirnhaus transformation
in the form Y — kY + ¢, the equation can be reduced to either the canonical form

(Reduced form) Y5+ Y34 cY24+dY +e=0
or
(Canonical form) Y5 +cY?4dY +e=0.

Note that if the alternative sign in the left hand side of (Reduced form) is positive, the equation admits
at most 3 real solutions like Bring-Jerrard form. Thus the case of negative will be our major interest.
Following the argument for (Bring-Jerrard form) let us prepare the duals of the curves

Ost: X =Y +V3 Cr: X =—(cY?+dY +e).
Assume ¢ # 0 . Then the dual Cy is a hyperbola such that the B-axis is an asymptotic line. Put

d? — 4ce d
a=— B=—5-
Then
1 . Lo 5
f7:<¥{m( L+a?xa)}?, /3+{m( 1+a2ia)}2>

is a focus of the dual hyperbola, where the sign + is determined to be that of ¢ and F denotes its opposite.
The altered mirror image of f7 by the dual curve CY is a one-punctured circle

2
D7 : radius {|—|( 1+a2+a)}?
&
tered at [ +{—
centered a —
2]
1
2]

(V1+a2Fa)}?, B—{—( 1+a2ia)}%)

1

2]c]
1 )

The altered mirror image of the origin by the dual curve C’g/’ . is the trajectory of the reflection of the

2]¢|
origin by B = —(t° £t3)A + ¢, i.e.
Bs 1 : 2°ABY = (A% + B?)?((A* + B?)* + 2°B?).

[SIE

puncturedat(:i:{ ( 1+oz2:Foz)}%,ﬁ—|—{ (Vi+a?ta)}

Proposition 9.3. If ¢ # 0, fold the origin onto Bs + (respectively Bs) and fr onto D7 simultaneously,
and if ¢ = 0, fold the origin onto Bs y+ (resp. Bs) fizing C - (—é, —9). Then the coordinate of the
B-intercept of the folding line is a solution of the equation (Reduced form) (resp. (Canonical form)).
All the real solutions are obtained in this method.

Remark 3. The real (Canonical form) is a spacial case of the real (Alternative reduced form) defined
below in this section. Thus the real (Canonical form) is solvable with By by Proposition 9.4,

Example 7. (Bs 1) Consider the equation
YP4+Y?-3Y? -3y +2=0,
which 1s equivalent to
Cs4: X =Y"+V3 C7: X =3Y243Y -2

and has three real solutions —1, 0.480...,1.396..., two other non-real roots, and a negative discriminant
—564223. Let us employ the method in Proposition 9.3. Similarly to Proposition 9.1, fold the origin onto
Bs.y and f7:(—=0.171...,—-1.472...) onto

Dy circle with radius 1.945 ... centered at (0.171...,0.472... and punctured at (0.171...,—1.472...).

Then the coordinate of the B-intercept of the folding line is is a real oot of the equation (see Figure 10,

left).
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Example 8. (B; _ as a Quintsectrix)  The Chebyshev polynomial of degree 5 of the first kind is
T5(Y) = 16Y° — 20V + 5Y,
which is defined by the relation Ts(cos @) = cos50. Solving the equation
16Y° — 20Y° +5Y — cosf =0

one obtains cos(0/5) and also cos(0/5+27/5), cos(0/5+4m/5), cos(0/5+67/5), cos(0/5+8n/5). Although
this equation can be transformed to (Alternative reduced form), let us employ the method in Proposition
9.3 for simplicity, as Proposition 9.4 does not provide a reasonable procedure in this case. Replacing Y
with ‘/TgY, the equation is reduced to the following reduced form

2cos0

1
Yo V34V - —
5 25v/5

which is equivalent to

- 1 2 cosf
Cs_:X=Y"-Y?3 Cg: X =—Y+—"1.
5, 3 5 2575
Similarly to Proposition 9.1, fold the origin onto Bs _ fizing C¢ : (-5, 2;—\‘}550) Then the coordinate of
the B-intercept of the folding line is 2= cos(6/5 + 2n7/5) for an n =0,1,2,3, 4.

NG

The real quintic form (Quintic) can be deformed also to the following alternative form by a real
Tschirnhaus transformation of degree < 4 under a certain condition.

(Alternative reduced form) VP +a¥Vt 4cY?4+dY +e=0.

For instance, if 2a® — 5b > 0 or particularly the sign in the left hand side of our (Reduced form) is
negative, the transformation is found in the form Y — Y + k with a real k.
The above (Alternative reduced form) is equivalent to

Co: X =Y"  Ci: XY +aX+cY?+dY +e=0.
Assume C}y is non-degenerate, and let fig be one of the foci of the dual curve C};.

Proposition 9.4. (Quintic equation)  Fold the origin onto By and fi19 onto its altered mirror image
D1y by Cio simultaneously. Then the coordinate of the B-intercept of the folding line is a solution of
(Alternative reduced form). All the real solutions of the equation are obtained by this method.

Example 9. The Regular Hendecagon (11-gon) inscribed in a wunit circle is spanned by the vertices
on the circle w™ = exp2nm /11, n = 0,1,...,10. In order to fold the hendecagon, it suffices to fold
Zp=w"+w™ ™ =2cos2n7/11,n=1,...,5. Clearly w,...,w' fulfill

WO LW Wws.. W1 =0,
from which, putting Z =W + WL,
204+ 7% — 473 —37° +3Z+1=0,
and putting Z =Y — (1 ++/11)/5, we arrive at the alternative reduced form
11(—34 -g;um) o

This equation is known to be solvable using radicals. Here we give a origami procedure of solving this
equaltion by Proposition 9.4. Let

11 , 11
Yo - V11y?t + -1+ 4VID)Y? + (13 + 2V/11)Y —

11 11 11(—34 + 11111
a=—V11, b=(-1+4V11), d:5(_13+2m>, e (=344 ‘/_).

e 55
Then fio = (—0.555 ..., —0.601...) and the circle D1g has radius 1.319 - - - and center (—0.370--- ,0.704 - -).
The five folding lines given by Proposition 9.4 have the B-intercepts with coordinates

—1.055---, —0.446---, 0.578---, 1.694---, 2545,
and the last one is 2cos 2w /11 4+ %ﬁ (see Figure 10, right).
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-2 -1 0 1 2

FIGURE 10. Left: Solving Y® + Y3 —3Y?2 — 3Y + 2 = 0 with Bs, (Example 7), Right:
Folding 2 cos2n7 /11 + %ﬁ, n=1,2,34,5 (Example 9).

By a result of Cayley [9] in 1861, a real quintic equation with a non-negative discriminant is reduced
to a real sextic equation (see [23] for the details). Here the discriminant of a quintic equation is defined to
be IT; « ; (a; — ozj)2 with the roots aq, . .., as of the equation. So if the roots are all real, the discriminant is
positive. Surprisingly real sextic equations are solvable by origami with the curve Bs (Proposition 10.1).
Thus we have

Proposition 9.5. All quintic equations with non-negative discriminants are solvable by origami with Bs.

10. SEXTIC EQUATIONS

Let us consider the real sextic equation
(Sextic) YO +aY® 40Vt + Y3 +dY2+eY + f=0.

Again by a suitable real Tschirnhaus transformation one can reduce a to 0. The resulting equation is
equivalent to

Ci:X=Y3 Cro: X2+ bXY +cX +dY?+eY + f=0.
Assuming Cj2 is non-degenerate: neither a union of two lines nor a double-line, its dual C, is a non
singular conic. Let f13 be one of the foci of CY.

Proposition 10.1. (Sextic equation) Fold the origin onto Bs and fi2 onto its altered mirror image by
CY, simultaneously. Then the coordinate of the B-intercept of the folding line is a solution of (Sextic).
All the real solutions of the equation are obtained by this method.

The degenerated case can be also treated as in the previous sections.
Example 10. Let us consider
YO -7yt 4 4¥3 4 10Y2 -2 =0,
which is equivalent to
Cii: X =Y  Cip:X?-7XY +10Y?+X -2=0.

The curve Chia is a hyperbola, and its dual is an ellipse with the center at (7/20,0), the foci at
(0.235...,0.436...), (0.464...,—0.436...) and the major azis 0.900 . ... Let f15 = (0.464...,—0.436...).
Then its altered mirror image by CY, is the circle Dia centered at (0.235...,0.436...) with radius
0.900.... There exist siz folds that place fio onto Dio and the origin onto Bs simultaneously. The
coordinates of the B-intercepts of those folding lines are

~92.394..., —1.129..., —0.507..., 0.472..., 1.485..., 2.073...,
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which are the real solutions of the equation (see Figure 11).

-
i
i

FIGURE 11. Left: Solving Y% — 7Y% + +Y3 4 10Y? — 2 = 0 by one single-fold with Bs.
The focus fi2 is slightly inside the circle Do in blue (see Example 10 for the details),
Right: The figure shows the folding lines are tangent to the dual curves of C1; and Cys.

Our results exhibit importance of the graphical use of the curves B,,. For instance, Propositions 9.4
10.1 allow us the use of real Tschirnhaus transformations of degree 5 and 6, in order to explore the
algebraic equations of degree > 7. Then, the drawing of B,, for n > 3 in an effective method would be
our next issue.
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