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Abstract

In this study, we derive a reverse inequality of the triangle inequality under various con-
ditions. It is important that the condition is natural and is related to the meaning of original
inequality. We introduce an extension of Pythagorean theorem in order to understand the
necessity of the condition. The concept of convex and concave functions are related to
our consideration of reverse inequality. These novel reverse inequalities are interesting and
provide in-depth understanding of the original inequalities.

1 Introduction

Let a, b, ¢ be lengths of three sides of a triangle. Triangle inequality is represented as follows.
a+b>c, a,b,c> 0.
We consider the reverse inequality in the following type:
a+b< ke (1)

where k is a positive constant depending on the triangle in a certain way.
First, we consider elementary triangles. For a regular triangle, we have a4+ b = 2¢. Therefore
k = 2 in the inequality (1). For a right angled triangle with a® + b? = ¢, we have

(a+b)?  (a+0b)?  a®+b*+ 2ab - 2(a® + b?)
2 a?+br a2 +bh2 T a4 b2

=2.

When a = b, the equality holds. Therefore, k = v/2 is the lowest uniform bound for the right
angled triangles.

In section 2, we consider reverse inequalities about general triangles. We need a condition
to make reverse inequalities. The case of right angled triangle shows us a hint for the necessary
condition. We first consider an extension of Pythagorean theorem

a? + b’ =P (2)

as a condition on the lengths a, b, ¢, and we show a reverse inequality of triangle inequality using
the p.

In section 3, we generalize these results for any number of variables aq, aq, ..., a, instead of
a,b. These proofs contain those of Theorem 1 and Theorem 2 in section 2.
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2 Reverse inequality of triangle inequality

Theorem 1. Let a > 0,0 > 0,¢ > 0.

i

-a) a+b>ca<cb<cif and only if there exists a p € [1,00) such that aP + bP = cP.
i-b) a > ¢,b > ¢ if and only if there exists a p € (—00,0) such that a? + bP = cP.
i)

(

(

(ii) a4 b < c if and only if there exists a p € (0,1) such that a? + bP = cP.
(iii) a < ¢ < b if and only if there does not exist a p such that a? + bP = cP.

Each of Figures 1 to 4 corresponds respectively to the cases (i-a), (i-b), (ii), and (iii) in
Theorem 1 when ¢ = 1. In Figure 5 triangles are illustrated for various p when a = b. Figure

6 shows the relation between p and a when a = b and ¢ = 1. Then the Pythagorean equality

log 2

becomes 2a” = 1, that is a = exp | — ) This graph explains the situation of Figure 5. In

particular we can understand that regular triangles are the cases that p is 400 in a? + bP = .
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Figure 1. Case (i-a)

The existence of p € [1,00) such that
a? +bP =P whena < 1,b< 1,c =1,
a+b>c
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Figure 3. Case (ii)
The existence of p € (0,1) such that
aP +bP =P whenc=1,a+b < c.
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Figure 2. Case (i-b)
The existence of p € (—o0,0) such that
a? + b’ =P whena>1,b0>1,¢=1.
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Figure 4. Case (iii)
No p satisfies aP + bP = P when ¢ =1,
a<c<hb.
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Figure 5. Figure 6.
The equilateral triangles with ¢ = b and The relation of p and a : a? + bP = P,
aP + bP = ¢P for the various p. c=1,a=hb.

In Theorem 1, in the cases (i-a) and (i-b), triangle inequality a + b > ¢ holds and we
obtain a reverse inequality (3) below. In the case (ii), even though a, b, ¢ do not satisfy triangle
inequality because a + b < ¢, we also obtain a reverse inequality (4) below. In the case (iii),
triangle inequality a + b > ¢ holds. But we cannot represent a reverse inequality of this case in
the same method with cases (i-a), (i-b), and (ii).

Theorem 2. Leta > 0,b > 0,¢ > 0.

(i) In the cases (i-a) and (i-b) in Theorem 1, a reverse inequality
p=1
a+b<27r ¢ (3)

holds, where p € (—00,0) U [1,00) and aP + b = P. The equality holds if and only if a = b or
a+b=c.

(ii) In the case (ii) in Theorem 1, a reverse inequality
p—1
at+b>27vc (4)

holds, where p € (0,1) and af + bP = ¢P. The equality holds if and only if a = b.

3 A generalization and the proofs

The following theorem generalizes Theorem 1.

Theorem 3. Letn >2,a;, >0 (k=1,2,...,n), b> 0.

n
(i-a) Zak > byar < b (k= 1,2,....n) if and only if there exists a p € [1,00) such that
k=1

iak =P,
k=1

n
(i-b) ar > b (k=1,2,...,n) if and only if there exists a p € (—00,0) such that Zaz =P
k=1
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n n
(ii) Zak < b if and only if there exists a p € (0,1) such that Zai =
k=1 k=1
(iii) There exist i and j such that a; < b < a; if and only if there does not exist p such that

n
=1
Proof. We may assume that b = 1 without loss of generality. Put

felw)=af (k=1,2,....n), f(z)=> aj.

(i-a) Since 0 < ag < 1, fx(x) is a strictly decreasing continuous function and satisfies li_>m fr(x) =
r—00

n n
0 for each k, so is f(z). f(1) = Zak > 1. Then there exists a p € [1,00) such that Zai =1.
k=1 k=1
(i-b) Since ag > 1, fx(x) is a strictly increasing continuous function and lim fi(z) = 0 for each
T—r—00

n
k.sois f(z). f(0) = a =n. Then there exists a p € (—o0,0) such that Zaﬁ =1.
k=1 k=1
(i ) Since O <ap <1, fk( ) is a strictly decreasing continuous function for each k so is f(x).

a? =n and f(1 ap < 1. Then there exists a p € (0,1) such that al =
k kT
k=1 k=1

(iii) For x € ( o0, 0] there exists ¢ such that fj(z) > 1. For z € [0, 00) there exists j such that
fi(z) > 1. Since f(x) > fr(x) for each k, f(x) > 1 for any xz. Then there does not exist p such

P _
that Z a, = 1.
k=1
Since assumptions in (i) to (iii) exhaust all the cases, respective converses also hold. O

The following theorem generalizes Theorem 2.

Theorem 4. Letn >2,a;, >0 (k=1,2,...,n),b>0.

(i) In the cases (i-a) and (i-b) in Theorem 3, a reverse inequality
n
p—1
E ap<nve»b (5)
k=1

n
holds, where a p € (—o0,0) U [1,00) which satisfies Zai =bP. In (5) the equalities hold if and
k=1

only ifay = a9 = -+ =an OT’ZCLk:b.

(ii) In the case (ii) in Theorem 3, a reverse inequality

= o1
Zak >n v b (6)
k=1
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n
holds, where a p € (0,1) which satisfies Zai = bP. In (6) the equalities hold if and only if
a] = ag = -+ = Ap. =t
Proof. The following facts are well-known as Jensen’s inequality [1] for the function P : If p < 0
or p > 1, the function 2 (z > 0) is strictly convex. Then

1 n 1 n p
— P> (=
n 2= (n Z%) ’ Q

If 0 < p < 1, the function 2P (z > 0) is strictly concave. Then the opposite sense of inequality
of (7) holds. The equalities hold if and only if a1 = as = -+ = a,, for both cases. For the case
p = 1 also, the equality holds in (7).

In Theorem 3 we showed the existence and the uniqueness of p for the respective indicated
cases. Therefore we can immediately prove Theorem 4 by using Jensen’s inequality. O
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