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Abstract

A new numerical method that is suitable for the calculation of incompressible flow in a pipe of very

large aspect ratio is developed. The idea of the method is that the original flow is expressed as sum of

the ”main flow” and the variation from the main flow. We applied the new method for incompressible

2-dimensional pulsatile flows in a long pipe and obtained good results in the previous studies. In this

study, the new method is extended for 3-dimensional flows with heat and thermal convection in some

orthogonally bended pipes using some sub domain grids since such thermal convections in a very long

region are important for disaster prevention or manufacturing.

1 Introduction　

We can find a lot of incompressible fluid flows in very long regions such as rivers, blood vessels, tunnels and
pipes. The main problem to calculate flows in long regions is that it is quite difficult to satisfy the equation
of continuity precisely. If we use the method based on the stream-function and vorticity (ψ − ω method),
we are free from the problem mentioned above. However this method works only on the two dimensional
or axi-symmetric flows. Therefore the MAC method [1] and its variations [2] are preferred to treat 3-
dimensional flows and the flows in regions of complicated shapes. On the other hand, the conservation of
mass (i.e. the equation of continuity) is not satisfied very well by the method based on the Poisson equation
of pressure appearing in the MAC method. It is also difficult to solve the Poisson equation precisely by
using the iterative method. This disadvantage is emphasized in the case of the region of large aspect ratio
(length / diameter).

In the previous studies we presented a new numerical method that is suitable for the calculation of
incompressible fluid flow in a very long region [3, 4]. In the method, the original flow is expressed as sum
of the ”main flow” and the variation from the main flow. The former is obtained by solving 1-dimensional
Navier-Stokes equation analytically.

This method is extended for flows with heat and thermal convection in a vertical pipe on the assumption
that fire disaster in tunnels, metro stations or elevator shafts [5, 6]. In this study, 3-dimensional flows with
heat and thermal convection in some orthogonally bended pipes are calculated using some sub domain
grids.

2 Numerical Method　

The computational region is a long pipe standing vertically. The heat source locates on the wall as shown
in Fig.1 (note that figures of long pipes are rotated 90 degrees to save the space in this paper). The
convective flow is induced by this heat source.

Fig. 1: Computational domain and location of heat source.
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The basic equation for incompressible 3-dimentional flow under the Boussinesq approximation is as
follows:
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where (x, y, z) is the spatial coordinate (z means vertical direction as is shown in Fig.1), (u, v, w) is the
velocity, T is the temperature, p is the pressure, and parameters Re, Gr and Pr are Reynolds, Grashof and
Prandtl numbers respectively. Reynolds number is set to 50 and Grashof number is set to 5000 so as to
Gr/Re2 = 2. These values are determined by considering both the effect of turbulent eddy viscosity and
the generation of upward flow within a short period. Prandtl number is set to 0.71 assuming air.

A conceptual diagram of this method is shown in Fig.2. The original flow (continuous arrows) is
expressed as sum of the ”main flow (dashed arrows)” and the variation from the main flow (dotted arrows).
The ”main flow” satisfies the equation of continuity approximately.

Fig. 2: A conceptual diagram of proposed method.

If the computational region is very long in vertical direction (z direction), the vertical flow (w) is
dominant and can be treated as nearly 1-dimensional. In other words, We can assume

w = w(z, t), p = p(z, t), u = v = 0,
∂

∂x
=

∂

∂y
= 0 (6)

as the first approximation. Substituting equation (6) into equations (1), (4) with T = 0, we obtain
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(Equations (2), (3) and (5) become 0 = 0) We also neglect the buoyancy force, because we need a simple
one-dimensional flow here. From equation (7) and the first one of equation (6), we obtain

w = f(t) (9)

as a ”main flow” or ”dominant flow”. In our previous study, f(t) is determined from boundary condition
at the entrance of the long region (pulsatile inflow). In this case, there is no main flow that approximates
the original flow in the first stage of calculation. So, we determine it from the averaged velocity in the
region surrounded by the heat source [6].

If we substitute equation (9) into (8), we obtain

f ′(t) = −∂p
∂z

i.e. p = −f ′(t)z + C(t) (C(t) : Arbitraryfunction) (10)
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From equations (9), (10), we can express the original flow as sum of the ”main flow” and the ”variation of
the velocity and pressure (w̃, p̃)” as follows:

w = f(t) + w̃(x, y, z, t), p = −f ′(t)z + C(t) + p̃(x, y, z, t) (11)

After the substitution of equation (11) into the original equations (1)-(5), we obtain the basic equation in
this study as follows:
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These equations are nearly the same as the original equations (1)-(5) although unknowns are different.
These equations can be solved by the standard method such as the MAC method [1], SMAC method [2]
and so on. Note that the boundary condition on the wall (no-slip: w = 0) becomes w̃ = −f(t).

Thermal convection in three orthogonally bended pipe shown in Fig.3 is calculated using three sub
domain grids in this study. We call them sub domains A, B, C respectively.

Fig. 3: Orthogonally bended pipes expressed by three sub domains.

The ”main flow” of sub domains A and C is parallel to z-axis, the same direction of gravity, so that
equations (11) and (12)-(16) can be used. In sub domain B, since the ”main flow” is parallel to x-axis,
equations (17) and (18)-(22) can be used instead of them.

u = f(t) + ũ(x, y, z, t), p = −f ′(t)x+ C(t) + p̃(x, y, z, t) (17)
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If cross sectional areas of sub domains A, B and C are different, the ”main flows” in sub domains are
adjusted so that flow rates through the pipe at all cross sections in three sub domains become the same
value. For example, if cross sectional areas of sub domains A, B, C are 2: 1: 3, the ”main flows” in sub
domains A, B, C are 1

2f(t) : f(t) :
1
3f(t) respectively.

The physical quantities are calculated with respect to each sub domain independently. The quantities
on the boundary at the joint regions are given as boundary condition for each sub domain on every time
step [7]. The quantities are calculated by equation (23), i.e. arithmetic weighted mean between the joint
regions as shown in Fig.5.

dxB
dxA + dxB

UA +
dxA

dxA + dxB
UB (23)

When equation (23) is calculated, we use the physical quantity of the ”original flow” by equations (11)
and (17) as UA and UB, not the ”variations” calculated by equations (12)-(16) and (18)-(22).

Fig. 4: Grid points near the joint region. Fig. 5: Connection of sub domains.

3 Results

3.1 Pulsatile Inflow

First, calculations are carried out in the pipe with pulsatile inflow where good results were obtained in the
previous studies. Temperature is set to zero at all grid points in the region. Pulsatile flow 1 is assumed to
come in from the entrance of the sub domain A. The exit of the sub domain C is free outflow.

Figure 7 shows time history of variation of the flux 2 of the pipe at the entrance of the pipe and the
center of each sub domain. The position of measurement points are shown in Fig.6. The graph of flux
versus time, Fig.7 (a), shows that fluxes at all measurement points are the same. Compared to the result
of Fig.7 (b) by conventional MAC method whose computational cost is in the same range with proposed
method of Fig.7 (a), flux decreases with distance from the entrance of the pipe.

Flux calculated by the conventional method can be kept if the conservation of mass is satisfied very
well by the method based on the Poisson equation of pressure, of course. The result obtained by the
conventional MAC method with large iterative times is shown in Fig.7 (c).

Figures 8 and 9 show velocity vector at the cross section in center of y-direction. Pulsatile flow comes
in from the entrance of the sub domain A (left-hand side of Fig.8). Flux (i.e. the magnitude of vector, in
these figures) is kept from the entrance to the exit by the results of proposed method.

Fig. 6: Cross sections for calculation of flux.

1Pulsatile flow: w = a+ bsin(c× dt), a, b, c: reasonable constants.
2Flux:

∑
w × dxdy in the sub domains A and C,

∑
u× dydz in the sub domain B.
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(a) Proposed method. (b) Conventional method,
same computational cost with (a).

(c) Conventional method.

Fig. 7: Time history of variation of the flux of the pipe.

(a) Proposed method.

(b) Conventional method, same computational cost with (a).

Fig. 8: Velocity vector of the pipe.

(a) Proposed method. (b) Conventional method,
same computational cost with (a).

Fig. 9: Velocity vector of the pipe near the joint region.
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3.2 Thermal Convection

Next, thermal convection by heater near the entrance is calculated without pulsatile inflow. The wall
except the heater is assumed to be adiabatic, initial condition of temperature and velocity is zero, the
entrance and exit of the pipe is free inflow and outflow.

Figure 10 shows the position of the heater and measurement points for flux. Figure 11 is the graph
of flux versus time. Figures 12, 13 show temperature field and velocity vector at the cross section in the
center of y-direction respectively.

As shown in these figures, movement toward the exit flow increases gradually, and heated flow from the
heater reaches the exit of the pipe at timestep ≈ 5000, after that, the flow reaches nearly steady state. At
this time, fluxes at all measurement points are the same.

Compared to the result obtained by conventional MAC method whose computational cost is in the
same range with proposed method, the flow seems strange since it takes a while to reach the exit of the
pipe (Timestep ≈ 25000), after that the flow is accelerates unnaturally with distance from the entrance of
the pipe.

Flux calculated by the conventional method can be kept if the conservation of mass is satisfied very
well, of course.

Fig. 10: Cross sections for calculation of flux.

(a) Proposed method. (b) Conventional method,
same computational cost with (a).

(c) Conventional method.

Fig. 11: Time history of variation of the flux of the pipe.

6

28



(a) Proposed method (Timestep=15000).

(b) Conventional method, same computational cost with (a) (Timestep=15000, 50000).

Fig. 12: Temperature and velocity vector of the pipe.

(a) Proposed method (Timestep=15000). (b) Conventional method, same computational
cost with (a) (Timestep=15000, 50000).

Fig. 13: Temperature and velocity vector near the joint region.

3.3 Thermal Convection with Different Cross Sectional Area

Calculation is carried out in the pipe whose cross sectional areas of sub domains A, B, C are 1.0 : 0.8 : 1.5
respectively. Width of the pipe along the y-axis (vertical to the paper) of each sub domain is the same.
The ”main flows” in sub domains are f(t) : 1

0.8f(t) : 1
1.5f(t) respectively, so that flow rates through the

pipe at all cross sections in three sub domains become the same value. Results of calculation are shown in
Figs.15-17. The same results as 3.2 are confirmed.

Fig. 14: Cross sections for calculation of flux.
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(a) Proposed method. (b) Conventional method,
same computational cost with (a).

(c) Conventional method.
Fig. 15: Time history of variation of the flux of the pipe.

(a) Proposed method (Timestep=15000).

(b) Conventional method, same computational cost with (a) (Timestep=15000, 50000).

Fig. 16: Temperature and velocity vector of the pipe.

(a) Proposed method (Timestep=15000). (b) Conventional method, same computational
cost with (a) (Timestep=15000, 50000).

Fig. 17: Temperature and velocity vector near the joint region.
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4 Conclusion

The method that is effective for the calculations of incompressible flow in a long region is proposed. In
this study, 3-dimensional thermal convection in some orthogonally bended pipes is calculated using some
sub domain grids.

The idea of the method is that the original flow is expressed as sum of the ”main flow” and the variation
from the main flow. The ”main flow” is determined from the averaged velocity in the region surrounded
by the heat source.

It is found that the steady flow of upward direction with high temperature is maintained, while it is
not precisely by the calculation based on the conventional MAC method whose computational cost is the
same range with the proposed method.
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