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Abstract

We propose a simple phenomenological model for the ordered and disordered phases of the multi-
lamellar vesicles (onions) induced by shear flow. In experiments on a nonionic surfactant (C12E4)
system, the order-disorder transition accompanied with a size jump has observed in the onion phases
under a fixed shear flow within a certain range by changing temperature. Our model can simulate
ordered and disordered onion phases with different onion sizes. We show numerical results of the
onion formation simulated by the model and also discuss what factors in this system are critical to
cause the transition between these two different onion phases.

1 Introduction

Surfactants in water form various kinds of assemblies such as lamellar, micelles and vesicles. Multi-
lamellar vesicles, which are also called onions, are one of the interesting morphologies induced by shear
flow. The onion formation under shear flow has been, in fact, observed in experiments [1, 2, 3, 4].
Onions fill space with various sizes and forms of polyhedra. Each onion consists of concentric lamellar
membranes, which were observed by electro-microscopy [5]. The size of an onion depends on the shear
rate and the characteristics of a surfactant membrane. Several theories have been proposed to estimate
onion size. Diat et al. proposed the model in which applied shear stress is balanced by the elastic stress
given by the curvature energy of membrane [1]. On the other hand, van der Linden et al. proposed the
idea that applied shear stress is balanced by the energy cost to deform an onion [6]. These models have
been examined by experiments especially concerning shear-rate dependence. The formation of onions, i.e.
closed-packed or disordered structure, is another problem to be investigated. Panizza et al. suggested that
the disordered onion phase is made of randomly oriented monodomains which consist of closed-packed
onions [7].

The characteristics of a surfactant membrane, e.g. elasticity, depend on temperature as well as
substances. An interesting behavior related to the temperature dependence has been observed in the
shear-induced ordering of onions in a nonionic surfactant (C12E4) system: Onions form a two-dimensional
(2D) close-packed honeycomb structure in a certain temperature interval and they are disordered below
and above the temperature interval [8, 9]. Moreover, in recent experiments, it has been revealed that the
order-disorder transition is accompanied by a size jump [9]. The size of onions is 5–6 times larger in the
ordered phase than in the disordered one. To our knowledge, no theoretical model about the transition
has been proposed, though the order-disorder transition with a size jump had already been reported in
other systems [2, 10].

In this paper, we propose a model to simulate ordered and disordered onion phases with different
onion sizes from the view point of pattern formation. The model provides the means to demonstrate the
formation of an onion phase in real space. Experiments by the small-angle light scattering (SALS) and
small-angle X-ray scattering (SAXS) give only images in reciprocal space. It is difficult in those scattering
experiments to see what structure onions form in three dimensions. Simulations in real space will give a
clue to analyze the structure of the onion phase which is observed experimentally. In this paper, we focus
on the onion formation induced by shear flow. Our model illustrates the onion pattern which is stable
under shear flow, although the model is not suitable to discuss the lamellar-onion transition.

From the view point of pattern formation, 2D hexagonal structure such as the ordered onion phase
appears ubiquitously. One of the most famous examples is nonequilibrium fluid dynamics known as
Rayleigh-Bénard convection, of which pattern formation is well described by the Swift-Hohenberg (SH)
equation. The SH equation is a well-known model equation for nonequilibrium pattern formation phenom-
ena [11], and it has a property of so-called potential dynamics. Our focus is on the derivation of a simple
phenomenological model, which is similar to the SH equation, of the onion formation by constructing the
free energy of onion phases under shear flow.
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Figure 1: Schematic representation of the shear-induced onion phase in our model.

δR ε

R
z

Figure 2: Schematic representation of a distorted vesicle surface. Solid and dot-dash curves denote the
surface of a distorted vesicle and that of a spherical one, respectively.

The rest of this paper is organized as follows. In Sec. 2, we introduce a phenomenological model
describing the onion formation induced by shear flow. In Sec. 3, we show numerical results of ordered
and disordered onion phases with different onion sizes. Section 4 is devoted to the discussion about how
the onion size and the ordering structure of onions are selected. Finally, we conclude this paper in Sec. 5.

2 Model

We here construct a phenomenological model for the shear-induced onion phase. We mainly focus on
the transition of the onion formation (size and ordering structure) and do not consider the transition
between lamellar and onion phases in our model. To simulate the onion formation under shear flow, we
derive the free energy of onion phases including the contribution from shear flow, so that we can realize
the stationary distribution of onions by minimizing the free energy.

We first assume that onions, which have a certain identical size R, are packed to form a 2D board.
The centers of onions are placed on the x-y plane. The spatial distribution of onions is expressed as the
distribution of the height of onion surface, z(x, y) (see Fig. 1).

Second, considering onions are closed-packed to form a 2D honeycomb structure (Fig. 1), we assume
that the shape of an onion is a slightly-distorted sphere (see Fig. 2) because spherical onions cannot
fill space without deformations. In fact, actual onions show a polyhedral structure in the experimental
observation [5], and the distortion of the membranes is localized at corners. However, we assume the
distortion of membranes is uniformly distributed over slightly-distorted spherical vesicles for simplicity.
The validity of this assumption is discussed in the Sec. 4.

2.1 Free energy for the onion phase under shear flow

On the above assumptions, we give the following Gibbs free energy G including the contribution from
shear flow.

G = Fonion + Fsurface − σA. (1)

2



The free energy G, which is a function of z(x, y), consists of two parts: (i) the contribution from the
free energy of a deformed onion (Fonion) and (ii) the contribution from the stress applied to the surface
membrane of packed onions under shear flow (Fsurface − σA), where Fsurface is the bending free energy
of the onion surface, and σ and A denote the effective stress and the total area of the membrane,
respectively. The effective stress σ comes from not only surface tension but also shear stress. The detail
of σ is explained later. We derive these two parts of the free energy in what follows.

2.1.1 Contribution from a deformed onion

We first derive the bending free energy of a deformed onion Fonion in a similar manner to that of Ref. [12].
The bending free energy per area F/A for a bilayer membrane is represented as the following function of
the mean and Gaussian curvatures, H and H̄, respectively.

F

A
= 2κH2 + κ̄H̄ +

1
4
c1H

4 +
1
4
c2H̄

2 + 2c3H
2H̄, (2)

where κ and κ̄ are the conventional bending and Gaussian curvature moduli, respectively, c1, c2 and c3

are nonlinear moduli. We here consider a vesicle which has a spherical shape, which indicates that H2

and H̄ are equivalent. Thus, the free energy, Fshell(r), of a spherical shell with radius r is given by

Fshell(r) = 4πκ̃H2r2 + πc̃H4r2, (3)

where κ̃ ≡ 2κ + κ̄ and c̃ ≡ c1 + c2 + 8c3.
We next consider distortion of the spherical shell due to packed-onion formation. We assume that the

radius of curvature changes from an ideal radius r to that of a distorted spherical shell r + δr (Fig. 2).
Since the degree of distortion is quite smaller than the ideal radius (r � δr), we expand the mean
curvature H in α = δr/r and keep terms up to the third order.

H =
1

r + δr
� 1

r
(1 − α + α2 − α3). (4)

Similarly, we have H2 and H4 as follows.

H2 =
1
r2

(1 − 2α + 3α2 − 4α3), (5)

H4 =
1
r4

(1 − 4α + 10α2 − 20α3). (6)

Substituting these expressions into eq. (3), we have

Fshell(r) = 4πκ̃(1 − 2α + 3α2 − 4α3) +
πc̃

r2
(1 − 4α + 10α2 − 20α3). (7)

Thus, the free energy fonion(R) (per unit volume of an onion with radius R made of n vesicles with layer
spacing d) is given by

fonion(R = nd) =
n∑

j=1

Fshell(r = jd)
4
3πR3

=
3κ̃

dR2
(1 − 2ᾱ + 3ᾱ2 − 4ᾱ3) +

3c̃

4d2R3

(
1 − d

R

)
(1 − 4ᾱ + 10ᾱ2 − 20ᾱ3), (8)

where ᾱ = δR/R is the ratio of distortion on the outermost shell of an onion. Let us consider here
the distortion of the onion surface. As illustrated in Fig. 2, the difference between the height of the
distorted outermost shell and that of the spherical one is taken to be ε, which leads the following relation:
R2 − (z− ε)2 = (R+ δR)2 − z2. Under the conditions of slight distortion (R � δR and z � ε), we obtain
the following relation

ᾱ = δR/R = (ε/R2)z ≡ α̃z. (9)
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By using the above relation, we finally obtain the free energy of a deformed onion Fonion as a function
of z(x, y),

Fonion =
∫

dxdy
[
fonion(R) · z

]

=
∫

dxdy
[ 3κ̃

dR2

(−(4 + 20λ)α̃3z4 + (3 + 10λ)α̃2z3 − (2 + 4λ)α̃z2 + (1 + λ)z
)]

, (10)

where λ = (R−d)c̃
4dR2κ̃ .

2.1.2 Contribution from the stress applied to the surface membrane under shear flow

We next consider the free energy from the stress applied to the surface membrane of packed onions under
shear flow. Suppose that onion surfaces are covered by a single membrane as if the membrane is a part
of each onion surface, and also that the membrane is subjected to an effective stress that comes from
surface tension and shear stress. From these assumptions, the free energy contribution from the effective
stress is written as

Fsurface − σA =
∫

dA(2κH2 − σ), (11)

where σ and A denote the effective stress and the total area of the membrane, respectively. The first term
is the bending free energy of the onion surface as a single membrane and the second term is the effective
stress applied to the membrane under shear flow. We assume the effective stress σ includes contributions
not only from effective surface tension but also from shear stress. Actually, since there is no method to
distinguish between the contribution from effective surface tension and the contribution from shear stress
in the shear-induced onion formation, the effective stress σ may be an indefinite parameter. Nevertheless,
we consider σ as one of important factors to form the onion phase. Although the shear can affect vesicle
membranes inside onions, we impose the effect from shear stress on only the surface membrane for
simplicity.

Using s = ∇z, we have the following expressions [13]

dA =
√

1 + s2dxdy, (12)

H =
∇ · s√
1 + s2

. (13)

Substituting these expressions into eq. (11) and assuming s2 � 1, we finally obtain

Fsurface − σA =
∫

dxdy
[
2κ(∇2z)2 − σ

2
(∇z)2 − σ

]
. (14)

2.2 Distribution of the onion surface z(x, y)

To simulate the stationary distribution of the onion surface z(x, y), we use the following Ginzburg-Landau
(GL) equation [14], in which time evolution is given by the variation of the free energy G,

∂z

∂t
= −L

δG

δz
= −f̃onion(z) + σ∇2z − 4κ∇4z, (15)

where

f̃onion(z) =
3κ̃

dR2

[
−(16 + 80λ)α̃3z3 + (9 + 30λ)α̃2z2 − (4 + 8λ)α̃z + (1 + λ)

]
. (16)

Here, the phenomenological coefficient L has the dimension of time over mass and we fix L = 1 in the
following. By solving the above equation, we finally obtain the stationary distribution of the onion surface
z(x, y). Since the stationary distribution is realized by minimizing the free energy G of onion phases under
shear flow, we can simulate the onion pattern formation under shear flow by solving eq. (15).
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Table 1: System parameters

σ effective stress R radius of an onion
κ bending modulus d layer spacing
κ̄ saddle-splay modulus ε shift of z caused
c̃ nonlinear modulus by distortion

Table 2: System parameters chosen for large (case A) and small (case B) onion phases.

σ κ̄ c̃ d ε
case A 20.0 −13.0 −3.9 0.014 1.20
case B 200.0 −1.0 −3.0 0.013 0.35

It should be noted that eq. (15) has essentially the same form as the SH equation. In other words,
the equation we have derived is in the same class as the SH equation, although the mechanism of onion
pattern formation is different from that of the system in which the SH equation was originally derived.

In fact, the free energy of a deformed onion Fonion consists of bending energy and interaction energy
coming from compression of the layers, although we consider only the bending free energy in the above.
The lammellar interaction between layers is given by B0

2 (Δd
d )2, where B0 is the compression modulus

and Δd/d is relative variation of layer spacing [2]. We assume that Δd
d can be estimated by the relative

deformation of the radius of an onion δR
R , Δd

d ∼ δR
R = α̃z. The interaction energy can be expressed as a

correction term of z3 in eq. (10), and the correction term does not change the mathematical properties
of eq. (15). In other words, the correction term is involved in the SH equation. We thus ignore the
interaction term for simplicity.

3 Results

We here show numerical results obtained from our model to demonstrate the change between a small-
disordered onion phase and a large-ordered one. Table 1 lists the system parameters of the model. The
system size is 200× 200 (lattice) with the periodic boundary condition. To integrate the model equation,
we have used the Crank-Nicolson scheme. Since we are mainly interested in the packed-onion ordering,
we focus only on the stationary distribution of the surface height z(x, y) after a sufficiently long time.
In our numerical simulations, κ is fixed (κ = 10.0), because it is considered to be almost constant under
experimental conditions for onion phases [15]. R is set by using following relation: R = 4π

√
2κ/3σ. The

validity of the relation is discussed in the next section. Two different sets of the other parameters (cases
A and B) are listed in Table 2.

Figure 3 shows the distributions of z(x, y) and spatial power spectra for case A and case B. For
case A, the size of onions is large (R � 7.3) and onions show a honeycomb structure (panel (a)). By
contrast, for case B, the size of onions is quite small (R � 2.3), although the distribution of onions looks
an almost perfect honeycomb structure (panel (b)). However, spatial power spectra for these cases are
totally different. Panel (c) shows a perfect six-fold symmetry for case A, although panel (d) shows an
isotropic circular spectrum for case B. This isotropic ring indicates that the onion phase consists of some
small domains of packed onions (i.e. onion texture [7, 16]): Each small domain has the perfect six-fold
symmetry but has different directions. These random directions of small domains result in the isotropic
ring spectrum.

Furthermore, the time duration before the distribution of z(x, y) falls into a stationary state is totally
different for cases A and B. While the ordered onion phase gradually appears in case A, some small
domains appear very quickly in case B. The difference can be explained in terms of the linear-growth rate,
which is estimated from the linear stability analysis. Since the linear-growth rate is a very small positive
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Figure 3: (Upper panels) Spatial distributions of the surface height z(x, y) for (a) case A, and (b) case
B. The brighter the color, the larger the value of z. (Lower panels) Spatial power spectra for (c) case A
and (d) case B.

value in case A, the stationary pattern can reach the potential minimum, where the ordered honeycomb
structure is stable. On the other hand, in case B, because the linear-growth rate is a relatively large
positive value, the stationary pattern quickly reaches a metastable state, where some randomly-directed
monodomains coexist, and stays there.

We have also checked the robustness of these results by simulations in a larger system size. These
results indicate that our model is able to reproduce the change between the large-ordered onion phase and
the small-disordered one by changing the system parameters. We next discuss the validity of changing
these parameters.

4 Discussion

We here discuss what factors in our model are essential to induce the change between the large-ordered
onion phase and the small-disordered one, focusing on the validity and temperature dependence of the
parameters in our model.

4.1 Onion size

At first, we focus on how to determine onion size R in our model. As mentioned above, eq. (15) has a
similar mathematical structure to that of the SH equation, which is a model equation to simulate periodic
domain patterns. The characteristic length λ0 of the domain pattern produced by the SH equation can
be estimated effectively from the linear stability analysis. In the case of eq. (15), λ0 = 2π

√
8κ/σ. λ0

represents the distance between the centers of neighboring onions and it also has a relation λ0 =
√

3R
because of the geometrical structure of packed onions (see Fig. 1). Therefore, the estimated onion size is
given by

R =
λ0√

3
= 4π

√
2κ

3σ
. (17)

This equation indicates that the onion size in our model is determined by the ratio of κ and σ. We set
R in our simulations by using eq. (17).
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Figure 4: Phase diagram of onion phase as a function of onion size R and layer spacing d. The solid
curve indicates the boundary between the onion phase (“Onion”) and a phase where no pattern appears
(“No pattern”), which is calculated from the linear stability analysis. The slope of the dashed line is −1

2 .

Actually, only the effective stress σ that comes from surface tension and shear flow is the essential
parameter to determine the onion size, because κ is fixed in our simulations. Under a fixed shear rate,
it is assumed that the change of σ is caused by only the change of the surface tension. According
to experimental studies [7, 17], the elastic modulus G′ measured in linear viscoelastic experiments is
associated with the surface tension σs and onion size R: G′ ∼ σs/R. Assuming σs � σ and substituting

eq. (17) into the above relation, we have G′ ∼ σ
3
2
s . In the experiment of the C12E4 system, on the other

hand, G′ decreases as the radius of onions increases [15]. These experimental results indicate that σs

in the large-ordered onion phase is smaller than that in the small-disordered one. This property of the
surface tension σs corresponds qualitatively to that of the parameter σ in our simulations (σ = 20.0 and
200.0 in cases A and B, respectively).

We further discuss the change in onion size as a function of shear rate γ̇ and layer spacing d. Diat et
al. estimated onion size R by considering a balance between the elastic stress and the viscous stress as
follows [1].

R �
√

4πκ̄

ηdγ̇
, (18)

where η is the solvent viscosity. For a fixed η (i.e. Newtonian fluid), this relation implies R ∼ (dγ̇)−
1
2 .

This estimation accords with the γ̇− 1
2 dependence which was experimentally observed by themselves.

Assuming the effective stress σ in our model is estimated as σ ∼ ηγ̇ and substituting it into eq. (17),
we also have R ∼ γ̇− 1

2 for a fixed η. We further estimate the relation between onion size R and layer
spacing d from the linear stability analysis of eq. (15). Figure 4 shows a phase diagram of onion phase
as a function of R and d. The boundary of onion phase, which is calculated from the linear stability
analysis, has a slope −1

2 . It indicates the relation R ∼ d− 1
2 , because the ordered onion phase appear near

the boundary, that is, the region where the linear-growth rate is very small.
Actually, the order-disorder transition with a size jump is related to the compression of the onion

layers. It causes a discontinuous change of the viscosity [18]. The experimental result of Ref. [18] also
shows the shear thinning, that is, the viscosity η depends on the shear rate γ̇. However, the effective
stress σ in our model includes not only the shear stress but also η, γ̇, and d. Thus, we cannot discuss the
compression or shear thinning in our model.
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4.2 Degree of the distortion

We next consider the validity of the distortion of vesicle membranes due to packing of onions. Although
we assume that membranes of packed onions are slightly distorted from a sphere, actual onions have
a polyhedral structure [5]. We clarify the validity of the assumption by estimating the degree of the
distortion ε/R. Inside an onion formed by polyhedral vesicles, the effective surface tension σeff and
the penetration length ξ, which corresponds to the distortion of vesicle membranes, can be estimated
as σeff � √

KB and ξ ∼ √
K/B, respectively, where K is the bending modulus K = κ/d and B is the

compression modulus [7, 19]. We here assume that the effective surface tension corresponds approximately
to the effective stress σ in our model, namely σeff � σ. We thus have ξ ∼ κ/σd.

On the other hand, the onion size R can be estimated to be R ∼ √
κ/σ as mentioned above. We thus

obtain the following relation: ξ/R ∼ R. This indicates that the larger the onion size R the larger the
distortion ε, if one assumes ξ ∼ ε. The above relation is also equivalent to the relation ξ/R2 = constant.
This corresponds to our assumption α̃ = ε/R2 = constant. Therefore, the assumption for the distortion
of vesicle membranes due to packing of onions is consistent with other assumptions. In addition, we set
ε in our simulations to satisfy the above relation that the larger onion has larger distortion.

4.3 Elastic properties of vesicle membranes in packed onions

Elastic properties of vesicle membranes in packed onions, such as κ, κ̄, and c̃, should also be considered.
We first focus on the signs of coefficients of the bending free energy such as κ and κ̄. In general, the
saddle-splay modulus κ̄ has a negative value unless the sponge (L3) phase is stable, and an isolated
spherical vesicle is stabilized for κ̃ = 2κ + κ̄ < 0. However, the effects of shear flow are not taken into
account in this condition. Thus, it is not necessary in our model to satisfy the condition. We have
actually checked simulations for different sets of parameters κ, κ̄, and c̃ and consequently found that the
onion phase can be obtained only when κ̄ < 0 and κ̃ > 0. This result suggests that the shear stress
stabilizes unstable spherical vesicles for κ̃ > 0.

We further refer two important nonlinear effects of the bending free energy to simulate onion phases
in our model: nonlinear modulus in the bending energy and the distortion of membranes due to packing
of onions. The usual expression of the Helfrich curvature free energy does not include the nonlinear
coefficient c̃. However, c̃ should be considered in an onion phase, because high curvatures are expected
near the core of an onion [12]. Also in our model, c̃ is one of the essential parameters to simulate onion
phases. Actually, no onion phase is generated from our model if c̃ is taken to be 0. With regard to the
distortion of membranes, it is also necessary to consider the distortion of vesicle membranes in our model
from the mathematical point of view. The third-order expansion of the curvature on a distorted vesicle
leads to the non-linear terms of z in eq. (16), which play a similar role of a double-well potential.

4.4 Temperature dependence of the parameters

We further consider the relation between the temperature dependence of the system parameters in our
simulations and that of the physical quantities in experimental studies. Since σ is the critical parameter
to determine the onion size in our simulations, it should have a similar temperature dependence to that
of the onion size. In other words, σ should be minimized in a certain temperature interval and have larger
values above and below the interval.

On the other hand, Kosaka et al. [20] reported that layer spacing d can change around the lamellar-
onion transition, and also they discussed temperature dependence of κ̄. They measured d at different
concentrations of the surfactant and showed that the ratio δ/d of d and the thickness of bilayers δ has a
temperature dependence. Although they focused on the lamellar-onion transition in their experiments,
the temperature dependence of δ/d may be one of the important factors to cause the order-disorder
transition in onion phases. We therefore change the value of κ̄ and d in our simulations, assuming the
temperature dependence of these parameters. Actually, they are not essential parameters to determine
the onion size, but important parameters to determine the linear-growth rate, that is, to determine
whether onion phases appear or not.
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5 Conclusion

We have proposed the simple phenomenological model, which has the same form as the SH equation, for
the onion pattern formation induced by shear flow. We have derived the free energy of an onion phase
by considering contributions from deformed packed onions and from the stress applied to the surface
membrane on packed onions under shear flow. Our model includes two important nonlinear effects,
that is, nonlinear modulus c̃ in the bending energy and the distortion of membranes due to packing of
onions. These nonlinearity are crucial in simulations to reproduce onion phases in our model. Then,
we have demonstrated that the two different onion phases, large-ordered one and small-disordered one,
can be simulated by adjusting the system parameters in our model. The ordered onion phase has a
clean honeycomb structure made of packed onions. The disordered onion phase consists of small domains
of ordered packed onions. Each domain has the six-fold symmetry, and domains are laid in random
directions. The size of packed onions is determined by the ratio of the bending modulus κ and the
effective stress σ. Thus, σ is the main control parameter under the fixed-κ condition, though other
parameters, such as κ̄ and d, are also important for emergence of onion phases. In fact, the system
parameters in our model, such as σ, are difficult to compare with the physical quantities which can be
measured in experiments. In that sense, our model can be improved, nevertheless, it is useful as a simple
model for the shear-induced onion formation.
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