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Abstract 

Numerical simulations of two-dimensional flows around a Savonius rotor with various curvature of the blade are 

investigated. The governing equations are the incompressible Navier-Stokes equations. A rotating coordinate system, 

that rotates at the same speed of the rotor, is used in order to simplify the boundary conditions on the blades of the 

rotor. Boundary fitted coordinate systems are employed to express the shape of the blades precisely. The fractional 

step method is used for solving basic equations. The shape of the blade is a part of ellipse. The shape of the blade is 

defined by changing one axis of the ellipse to investigate the effect of the blade shape on the performance of the rotor. 

As the result of the calculations, the relations of the blade shape and the power coefficient was found. 

1. Introduction 

The use of a renewable energy is one of the important issues to solve the energy shortage and to contribute the 

environmental protection. A wind turbine can produce the renewable energies by the wind. This wind turbine 

system has several features such as low power generation cost, the relatively easy introduction of equipment, and 

working all day without depending on the sunshine. Actually, the number of the wind turbine is increasing year 

by year all over the world.  

A propeller shape of a horizontal type wind turbine has been chosen by the electric power industry because of 

its high power efficiency. On the other hand, a vertical type wind turbine, especially Savonius rotor type wind 

turbine, can be running without any direction control system and any starting support system, so this type is 

suitable for using in small scale or for a simple generator for domestic use. 

Savonius rotor was designed as the vertical axis wind turbine in 1931 by S.J.Savonius.[1] Recently, Savonius 

rotor is expected to be used as an emergency power supplier for its easy operation. 

Previous studies on Savonius rotor are carried out to optimize the designing of the blades for acquiring the high 

power efficiency. Ushiyama et al.[2] studied the variables of aspect ratio, overlap ratio and separation gap of two 

buckets. Fujisawa[3] and Ishimatsu et al.[4] investigated overlap ratios. Kuwana et al.[5] and Kamoji[6] proposed 
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the twisted blade shape Savonius rotor to improve the problem of large torque variation. Sato et al.[7] studied 

S-shaped rotor with varying the blade curvature and separation gap.

In this study, the effect of the curvature of the blade is continued to examine. 

2. Preparation of the calculation  

2.1 Blade shapes of the Savonius rotor  

The schematic of Savonius rotor is shown in Figure 1. 

Fig. 1 The schematic of Savonius rotor 

R:Bucket chord 

D:Rotor diameter 

OL:Overlap (o/R) 

SG:Separation gap (g/R) 

�:Tip speed ratio 

In this study, three shapes of the Savonius rotors blades are compared. The curvature of the blade is defined by 

the equation of an ellipse(Eq.1).  
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� 	     Eq. 1

The parameter a is fixed at 1.00 and the parameter b is variable. If b is equal to 1.00, the shape of the blade is 

semicircular and the conventional shape of Savonius rotor.  Figure 2 shows the blade shapes which are 

calculated in this study. The conventional shape(b=1.00) and other two shapes(b=0.75,1.25) are calculated. 
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b=0.75                      b=1.00                     b=1.25 

Fig. 2 The blade shapes of the rotor 

Ushiyama et.al. reported the overlap ratio(o/D) of 0.20-0.30 and no separation gap(g/D) give the best 

performance[2]. The overlap ratio and the separation gap are fixed to 0.28 and zero respectively in this study.  

2.2 Numerical method 

The governing equations are given by the two-dimensional incompressible form of the Navier-Stokes equations 

and continuity equations described below.  
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� � � � �      Eq. 3

These equations are expressed in the stationary coordinate system. 

The rotational coordinate system which rotate at the same angular velocity with the turbine are used to calculate. 

Equations are expressed in the rotational coordinate system which are as follows. 

� � � ��� � � � ��� �    Eq. 4 

� � � ��� � � � ��� �    Eq. 5 
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(x,y): stationary coordinate system 

(u,v): velocity in the stationary coordinate system

(X,Y): rotational coordinate system 

(U,V): relative velocity  

�:rotational angular 

�: angular velocity ; �t=�

p: pressure 

Re: Reynolds number 

Fig. 3 The coordinate systems 

The Fractional step method which can split the pressure term and the others are used. The pressure is derived 

from the Poisson equation. The linear spatial derivatives are approximated by the central differences. The third 

order upwind differences are used for the nonlinear derivatives. With this method, stable solutions are provided 

without any turbulence models. 

Figure 4 shows the partial view of computational grid. In this figure, the lines are drawn every three to be 

shown clearly. This grid is made with using transfinite interpolation which can be applied for complex 

boundaries, that is one of the grid generation method. The number of grid points are 189 × 153.  

Initially, the boundary conditions on the blade are set to no-slip, and a far-field is uniform-flow velocity. The 

Reynolds number is fixed to 2000 based on the rotor diameter and uniform-flow velocity in this study. 
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Fig. 4 The partial view of computational grid  

3.Results and Discussions 

The torque T of the rotor is calculated as the product of the force which applies to the blade and the distance 

from the center of the rotor. The torque coefficient Ct is calculated from the following equation(Eq.11). The 

power coefficient Cp means the energy which can extract from the wind(Eq.12). 

%� �
&

'()
      Eq. 11 

%� � *%�              Eq. 12 

Ct: torque coefficient  

q: dynamic pressure 

A: swept area 

Cp: power coefficient 

Figure 5 shows the torque coefficient variations of the rotor in a revolution at �=0.8. Under the condition of the 

blade shape at b=1.25, the negative value region of Ct is reduced compared with others. 
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Fig. 5 The variation of torque coefficients(�=0.8) 

  

Fig. 6 The power coefficients of three types of blade 

The power coefficients of various tip speed ratio are shown in Figure 6. This result is qualitatively in agreement 

with the experimental result.[2] The blade shape of b=1.25 has the maximum power coefficient value of 0.28 at 

�=0.8. 
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Fig. 7 The pressure contours and velocity fields (b=0.75, �=0.8) 
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Fig. 8 The pressure contours and velocity fields (b=1.00, �=0.8)  
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Fig. 9 The pressure contours and velocity fields (b=1.25, �=0.8) 
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Figure 7 to 9 show the pressure contours and velocity fields of three types of blades at �=0.8. The blade shape 

of b=1.25 has the maximum power coefficient value and the shape of b=0.75 had the minimum, and then these 

two types are compared in details as follows. 

                b=0.75                                                b=1.25 
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� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � � ������������ ������������������������������������������������(+180 × k ; k=0,1,2,…,N)[deg]�������� ���� ���� ���� ���� 

The blade shape of b=0.75, the vortex formation starts around �=40(+180 × k ; k=0,1,2,…,N)[deg] and released 

from tip of the blade around �=110(+180 × k ; k=0,1,2,…,N) [deg]. On the other hand, b=1.25, the vortex 

formation starts around �=50(+180 × k ; k=0,1,2,…,N) [deg] and released �=110(+180 × k ; k=0,1,2,…,N) [deg]. 

Furthermore, under the condition of b=0.75, other vortexes are formatted near the center of the rotor. For these 

reasons, the blade shape of b=1.25 has the maximum power coefficient and b=0.75 has the minimum. 
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4.Conclusions  

The modified Savonius rotors are numerically investigated in this study. The results of the calculation 

qualitatively agrees well with the experimental data. In terms of the power coefficient, the condition of the blade 

shape at b=0.75 has the lower value and the shape at b=1.25 has the higher value compared with the 

conventional Savonius rotor. From the observation of the pressure fields, the vortex which forms on the tip of the 

blade is released earlier than others at the blade shape of b=1.25. For this reason, the blade shape of b=1.25 has 

the maximum power coefficient.  
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