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Pythagorean Triples. III. Systematic generation of primitive
Pythagorean triples by the topological index and caterpillar graphs,

Haruo Hosoya
(Received April 10, 2009)

Abstract Primitive Pythagorean triples (pPT7s) are known to be represented by the topological indices
Z's of caterpillar graphs of misror symmetry. Algorithms for generting these caterpillar graphs are
presented with the list of all the pPT’s whose hypotenuse is smaller than 1000, together with the relevant
caterpitlar graphs. Relevant number theoretic discussion including the continuant proposed by Euler is

also given,

1. Introduction

In I of the present series of papers” it has been shown that all the family members of the primitive
Pythagorean triples (pPT’s) can be represented by triplet caterpillar graphsz’S) whose topological indices*™ (Z,
here abbreviated as Toplx) just correspond to the edge values of these PT’s. The present author has also recently
shown® that the continuantf's) which was proposed by Euler for facile manipulation of continued fractjons, is
nothing else but a Z-caterpiilar, i.e., a TopIx for a caterpillar graph. This means that the concept of the continuant
is contained in the Toplx which is defined for all the tree and non-tree graphs.

Although many interesting mathematical properties of the Z-caterpillars have been demonstrated in I, no
systematic atgorithm for deriving these caterpillar grapis has been given. The main purpose of the present paper
is to explain the algorithm for obtaining the caterpillar graphs for pPT’s. Further, by giving their extensive

tabulation several interesting consequences of these problems in the number theory will be discussed.

2. Pythagorean triples and caterpillar graphs

A pPT, <a, b, c>, can uniquely be represented by a pair of integers (m, n) as
a= m2 - n2
b=2mn 2.1)
c= m2 + nz,
where a and b are called legs and ¢ hypotenuse, and m>n>0 is assumed.”"" The following are the necessary and
sufficient conditions for the set of m and » to give a pPT:
i) m and n belong to different parities, and 22)
if) m and n are prime to each other, i.e., (m, n)=1. 2.3)
Condition i) ensures that the hypotenuse ¢ of a pPT is 1 modulo 4, but it is not so straightforward how the
addition of Condition ii) restricts the values of c. On the other hand, it has long been known that such a prime p=

1 (mod 4) can be expressed by the sum of two squares. Although the proof is not so simple, several important
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conclusions have been derived from this property.w’m Here they will be introduced as theorems without proof.

[Theorem 1]
An integer ¢ appears as the hypotenuse of a pPT if and only if ¢ is a product of primes each of

which is congruent to 1 module 4, Namely,

B Pzaz in' (Pk =1 (mOd 4)a ap, 09, ***, op0, 0‘1+a2+"’+an>0)- (2'4)

{Theorem 2}

If ¢ has a total of n distinct prime divisors and each is I modulo 4, there exist o=l pPT’s.

[Collorary 1]

Such an integer, either prime or composite, that contains at least one divisor of 3 modulo 4 cannot

become a hypotenuse of a pPT.

In graph theory a star graph S, is defined as a complete bipartite graph Ky -1, which is composed of a
central vertex and n~1 emanating edges of length 1 thereof, and a path graph P, as composed of n vertices joined
consecutively by #n-1 edges. Suppose such P, whose vertices are numbered sequentially either from left or right
to another end, prepare a set of n star graphs X, (x;, x2, ", X») with each x; representing Sx;, and mount X, one

by one on the corresponding vertices of P, to give a caterpillar graph C,(x, x3, -+, x,,) (See Fig. 1).2’ %)

e = = = e e Path
1 2 n-1 n P,
xl-l xa—l xn_l—l x,, -1 +
Xn (xl, ,\'2, veey xn)
Xl *n
"71"1 -752“ x,,_l—-l x,,—-l l
gl? ‘iz &E gl? Caterpillar
Cilxy, xp, ooy X))
Xy I

Fig. 1. Path, Stars, and Caterpillar

The topological index Toplx Z was proposed to be defined by the present author in 1971* for graph G
as the total sum of the non-adjacent number p(G,k), which is the number of ways for choosing 4 disjoint edges
from G. Originally ToplIx was invented for characterizing the topological nature of the carbon atom skeleton of
hydrocarbon molecules and has been used for correlating molecular properties and structures, but later its deep
mathematical meaning was clarified and now it is registered as Hosoya index in several data bases in

mathematics.! > Fundamental properties and application to number theory are explained elsewhere 519
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Although the continnant was proposed by Euler for facile treatment of continued fractions,7’8) it was
recently found to be nothing else but the Toplx of a caterpillar graph.ﬁ) Thanks to the efficient recursive relations
for Toplx, calculation of continuants and continued fractions was dramatically sped up.

Based on these facts and information it was found that the three edges, <a, b, ¢> of all the family
members of pPT’s are expressed by the Toplces of triplet caterpillars of mirror symmctry,') which will be called
here SymCats. By using the algorithm which will be explained later one can obtain the triplet caterpillars {C(a),
C(d), C(c)} representing a given PT from the set of (m, n)-codes in (2.1), as long as (m, n)=1 (Condition ii)).
Table 1 gives the list of the SymCats of all the pPT's whose edges are shorter than 1000. The abbreviated
symbols of the Z-caterpillars, C(a), efc., are explained in the caption of Table 1. The listed pPT’s in Table 1
coincide with the ones which were already documented as long as the comparison is possible.”' 18) One can
realize that the selection of the pPT’s by (2.4) yields the same result obtained by using Conditions 1) and ii) for m
and n. It is obvious in Table 1 that the numbers of the vertices of a and b in the main trunk of the caterpillar are
odd, while those of ¢ even. Let us call these two groups o- and e-SymCats, respectively.

Although the number of pPT’s for a given integer as the length of the hypotenuse is determined by
Theorem 2, Table 1 accommodates only the cases of pz, pa, p4, P P2, and p12 pa. Then Table 2 was prepared,
where more highly composite ¢ values are selected and the corresponding Z-caterpillars are derived to
supplement Table 1. Before analyzing these data, several necessary explanations for the structure of the

Z-caterpillars will be given.

3. Fundamental structure and calculation of SymCats

In this study we are concerned only with the e~ and 0-SymCats, which can be expressed, respectively, us
Cas{x1, ¥2,7) X5y Xg, *++, X1) and Cage1(x1, X2,77, Xg-1, X, Xs-1, =", X1 ). As remarked in the caption of Table 1 they
are abbreviated, respectively, as [ xy, xa,"*, x5, and { xi, X2,"**, ¥s-1, &, Note the underline for the last term of
0-SymCat. As has been mentioned in II, the set of triplet caterpillars representing a PT belongs cither to T~ or
W-type with respect to their kernels. See Fig. 2, where the schematic diagrams and the Toplces of the two types
of the tripiet Z-caterpillars of pPT’s are shown. The encircled n represents a moiety of a caterpillar and a

indicates the number of edges of a unit length emanating from a certain vertex of the caterpillar.

op olo o0

T-type
a=m?—-n? b=2mn c=m?+n?
m
—A—
a a g a

v L@ é%ff@ @

—_—
m M s
a=m*—n? b=2mn c=m*+n?

Fig.2 Structure and Toplces of T- and W-type Z-caterpillars and their kernels (thick edges).
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In T-type a larger caterpillar m is constructed by joining an edge to one of the terminal vertices of n, while
in W-type the set of (a+1) edges of a unit length (a=0), or a star graph Sg42, is joined to form m. The most
important parts of the Z-caterpillars of pPT’s of both the T- and W-types are the kernels drawn in thick edges,
whose Toplces form the set of <3, 4, 5>, the progenitor of the whole family tree oprT’s.'g'm

Although a number of PT’s and their triplet caterpillars are caiculated as in Tabies 1 and 2, no other type
than T and W has ever been found. Thus what the present author believes in this problem wiil be stated as the

following conjecture:

[Conjecture 13

The three edges, a, b, and ¢, of a pPT can be represented by the Toplces of the triplet
caterpillars of either T- or W-type.

This conjecture may be paraphrased into a shorler statement as
“A pPT can be represented by the Z-caterpillars of T- or W-type.”

If the restriction of “primitive” is removed from this conjecture, one can prove the following Theorem,

which is essentiaily the same as the union of Theorems | and 2 in ref, 1

[Theorem 3]

The Toplces of the set of both the T- and W-type caterpillar graphs, a, b, and ¢, represent the
three edges of PTs.

The proof of Theorem 3 is given in Figs. 3a and b, where the values of Toplces of all the structures given
in Figs, 28 and b are calculated by using the recursive formulas of Toplces as explained in Appendix. In

following the calculation scheme for the proof it is to be noted that the TopIx of a vertex is unity.

@"""@ @“‘ 2,,,(@,)2___ 2. 2

m-+n

sl D+ @D
n(2@+@)+nn' = 2n(n+n')=2mn

(n) 2@x@- @Y xEn) = 2mn— w2

=n@2m-n)=(m-n)(n+n) = m?-n?

where O—@ c@ @ (m=n+n") isused

nv

v

)

o

Fig. 3a. T-type-caterpillars and their calculation scheme.
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w® OK
a+4)@+@) tnn'= 2p{(a+2)n+n']l=2mn
o lle - oY e %@

=[(a+D)n+n'] X{[(a+2)n+n‘]+n} =(m—n) (m+n)= m*—n?

at]

where m= YL@ = (a+ 2)@ + @ {m=(at+2)n+n") is used.

Fig. 3b. W-type caterpillars and their calculation scheme.

Contrary to the hypotenuse ¢, mathematical conditions for a given integer to appear as one of the legs, i.e.,

odd a and even b, of pPT’s is rather complicated.m) At this point we have not yet reached a clear-cut conclusion

as to this problem. Here the algorithm for finding the Z-caterpillars will be explained in some detail.

4. Algorithms for obtaining the Z-caterpillars of a given pPT
Case i) N=p*(a=1) with p=1 (mod 4)

Example 1) N =317

i) There is a unique expression for a natural number N to be the sum of two squares, ¥ = mt ot {m>n).
In this case we get m= 14 and n= 11 as 317 = 14% + 112, For this purpose several algorithms, such as the
“descent procedure” proposed by Fermat, have already been known,

ii) The targeted pPT is obtained to be <m® - nz, 2m n, m* + nt>= <75, 308, 317>,

iii) The corresponding caterpillar graph whose Toplx is m® + n® can be obtained as follows:
From the set of (m, n) one can simultaneously obtain ¢ and rey undern > ry 9

m=tXn+ren 14=1X11+3 (ts=1)

and similarly we can get the sets of t;and r; as follows;

n=ts_]><r5—2 +)‘.,-_3 11=3x3+2 (f3=3)
Fed =t Xbs-3+ Fsg 3=1X2+1 (n=1)
2=2X1 t=2)

rm=nXrn+tr
ri=HXrg,

where m = rs and n = ry_y. This stepwise calculation guite similar to the GCD algorithm of Euclid
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terminates after » gets down to 1 (=rg), and the value of s (size of the set of {r;}) is determined {4 in this
example) as the number of sieps in this iteration. It is to be noted that this algorithm is just the trace back
of the calculation of the Toplx of the caterpillar graph, C{1y, #, -+, £;), where #; denotesthe number of
edges of unit length emanating from the kth vertex of the path graph as the main trunk of the caterpitlar
plus one. In Fig. 4 iterative steps for calculating the TopIx of Cs(2, 1, 3, 1) are compared with the
calculation scheme of the continuant proposed by Euler, showing the same mathematical structure of both
the concepts. However, in the actual calculation of the former efficient recursive relations are available,

whereas until recently no such technique has been introduced for the latter.”

Caterpitlar Z-Caterpillar Continuant
. C0=1 Koh=1

f C@ =2 K(2)=2
A Cy2,1)=Cy +Cp=3 K2, ) =K, +K;=3

C3(2,1,3)=3C2+C]=11 K3(2)113)=3K?_+K1=11

[l conanmcromie  K@L3D=KKe=14

Fig. 4. Parallelism between the calculation of Z-caterpillar and that of continuant. Dashed straight
and curved lines indicate, respectively, the first and second deletions of edges for applying

the recursive formulas. Both Cy() and Ko() are defined to be unity.

The caterpillar graph C(c) for the hypotenuse ¢ is constructed by joining two Cs graphs as follow:
Cas( 1 2, st syt 1) Cs(2,1,3,1,1,3,1,2)
={min, i, =[2,1,3,1,
The open square-bracket notations in the second line above are the abbreviated ones for representing
e-SymCats as alrendy explained before. In this case, since t;= 1, the triplet caterpillars belong to T-type.

Then one can construct the two legs, a and b, of the Pythagorean triple as follows:

T (R YO Y

f.=1
§ ] T o G2, 1,3, 1)
C. i

' \ (2, 1,3)

§=4 T-type
VN
b: [ : %_l _:_O_I a: | >:< i

Note that the kernels of the T-type triplets drawn by thick edges are sandwiched by the common pair of

caterpillar Cs1(#1, #3,***, ts-1) . The calculation of Toplces of these caterpillars are illustrated as below.



Augusi 2009

Pythagorean Triples. [l. Systematic generation of primitive 21
Pythagorean triples by the topological index and caterpillar graphs

e

= 142+ 112 =317

=25xtl+11x3=308

Ll L L]

=23x3+3x2=75

Then we can get the pPT <735, 308, 317>,
Example 2) N =349
iiYInthiscase wegetm=18and n=35as 349 = 187 + 5%
ii} The targeted pPT is obtained to be <299, 180, 349>,
iv}) One can obtain the sets of fyand ry as follows:
18=3X5+3, 5=1X3+2, 3=1X2+1, 2=2IX1 {&=4)
Thuswepget C4(2, 1,1, 3)
The caterpillar graph for the hypotenuse ¢ is obtained to be Cg{ 2, 1,1, 3,3, 1, 1,2).
={i, 12, In ={2,1,13,
As ty=1 in this case, the triplet caterpillars belong 1o W-type. The pair of caterpifiars sandwiching the
kemnels are not Cgy but Cg'(fy, f2 -+, £,—1). Then one can construct the two legs, @ and b, of the

Pythagorean triangle as follows:

Cyl1yotgpenly)
i

5=4 C C42,1,1,3)
’s=3“""""—'-/ N\ Ciz,1,1,2)
W-type =2

G (ttaet=l) ~a
3 N | [ &] WV |
AN

The calculation of these Toplces are illustrated as below.

et

= 182+ 52= 349
L el 1=1. 1 (f I +,_.,__I)
: = 13(18+ 5)= 299

— (Y. )

= 333+3)= 180
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Then we can get the pPT <299, 180, 349>.

2 py™ where py =1 (mod 4).

Case i) N =p;* py

In this case there exist 2" distinct Pythagorean triples irrespective of the distribution of oy ~ O
Example 3) N=145=5 X29

There are two ways for expressing this number as the sum of two squares, Namely, 145 = 9% + g

=12+ 1~

By using the recipe used as above for both the pairs of integers one getse=[8, 1, and [ 12, .

Note that the former and latter, respectively, belong to T- and W-types. Then we get the two

sets of caterpillar triplets as

(17, (8,2, [8,1, for <17, 144, 145> (A1, 88, d127)
(11,1, (24, [12, for <143,24, 145> (A1, 81, dI19).

The notations in the parentheses are their classification codes for the PT family proposed by the present

author.m Here Al and 81, respectively, mean c—171=12 and c—a=2 - 12.

5, Discussion
As has been shown that many series of pPT’s can be represented by the special series of Z-caterpillars.

Tables 3 and 4 were prepared by picking up the Al and 8! groups from Table 1. Their general expressions are

also given.

Table 3. Z-caterpillars of A1 series pPT’s.

<3,4, 5> (3 (1,29 (1,1%
<5,12, 13> (5, (2,2 (2,1,
<7,24, 25> (2, (3,2 (3,1,
<9, 40, 41> (9, (4,2, [4,1,
<ntl, 2n(n+l), 2642k 1> (Qutl, (n,2, (a1,

=l (}k) nel n-|(>—-|—<) al et [

a) ldentical to (4,. b) Identical to [ 2, .

Table 4. Z-caterpillars of 81 series pPT’s.

<3,4,5> (L L (4 = (2,0 [2,
<l15,8,17> (3, L, (& =L [4,
<35, 12, 37> (5, L  (l2 =2 [6,
<63, 16, 65> (7, L (16, = (2,3, [8,
<dnP-1, dn, dnt+1> @n-1,1, (4n, = Qp=l, [2n,
And) (S——)atm1) MU(*) Ard) 2l > 2t
-2

\/
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The series of pPT’s with consecutive legs have also been known to be expressed by a series of

caterpillars with some regular structure. However, for other series of graphs, such as An and 8n (n>1), several

different series of caterpillar graphs are involved. Analysis along this line is still in progress, but it goes without

saying that the introduction of Z-caterpillar has presented quite a new view in the mathematical structure of PT’s.
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13
1)

29
37
41
53
61
65
=5X13
73
85
=5X17
80
97
101
109
113
125=5°

137
145
=5 X29
149
1587
169=13
173
181
185
=8§X37
193
197

2

Table 1,

2,12
mn

2412
32422
4212
4*43*
52422
6212
52442
7242
62452
72442
g2+12
gle3?
72+62
9%42?
g%+52
9%+42
10%+1?
10%+3?
g7
112422
(102455
112442
9%g?
12212
16%4+72
11%+6?
12%+5°
13%42°
10%4+9%
11%+8?
13%+4
123472
14%+1?

Haruo Hosoya

List of primitive Pythagorean triples and the corresponding

caterpiliar graphs whose edges are shorter than 1000

<a, b, c> C(a)
<3,4,5> (3,
<5,12,13> (5%
<15, 8, 17> (3,1
<7, 24, 25> (1,
<21, 20, 29> (2,11,
<35, 12,37> (5,1
<9, 40, 41> (9,
<45, 28, 53> (2,2, 1,
<11, 60, 61> (11,
<33, 56, 65> (3,3
<63, 16, 65> (7,1,
<55, 48, 73> (2,1,1,1,
<13, 84, 85> (13,
<77, 36, 85> (2,3, 1,
<39, 80, 89> (2,1,3,
<65, 72, 97> (4,1, 1
<99, 20, 101> (9,1,
<91, 60, 109> (3,2,L
<15, 112, 113> {13,
<117, 44,125> (2,4, 1,

52<3, 4, 5>
<105,88,137> (3,1, 1,1,
<17, 144, 145> (17,
<143,24, 145> (1., L
<51, 140, 149> (3,3
<85, 132, 157> (5,3,
<119, 120, 169> (2,2, 1,1,
<165, 52, 173> (2,51,
<19, 180, 181> (19,
<57,176, 185>  (2,1,5,
<153, 104, 185> (4,2,1,
<93, 168, 193> (2,2,3,
<193, 28, 197> (13, 1,

C)

(4,
(2,2
(8,
(32
(2,4,
(12,
(4,2,
(2,6,
(5,2
(3,1,
(16,
(2,1,4,
(6,2
(2,8
(2,1, 1,2
(44
(20,
(3,86,
(7.2
(2,10,

(3,14
(8,2
(24,
(3,22
(5, 1,2
(2,2,4
(2, 12,
(9,2
(2,122,
(4,6
(2,2,1,2
(28,

C(e)

[z,
[z1,
[4,
[3,1,

[2,2,

L6,
(41
[2.3,
[s 1L
[3, 1,1,
[

[2, 1.2,
[6,1
[2.4,
[2,L,1,1,
[42,
Lo,
[3.3,
(7.1
[2.5,

[3, 1,2,
[81,
[12,
[3.2,1,
(51,1,
[2,2,2,
[2,6,
(%1,
[2,1,21,
[4.3,
[2,2.1,1,
[14,

NSR. O., Vol. 60
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337
349

353

365
=5%73
373

377
=13x29
389

397

401

409

421

425
=517

433
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133467
142432
11%4+10%
142452
157422
137482
152442
16°+12
1224112
162+32
1324102
142492
162452
15%+8°
17%42*
627
17%+4?
13%+12°
142112
17246
182412

(15%+10%)

162+9*
18%+5°
17%+8*
142413
19%+2°
18%+7°
1624112
192442

172102
19%+6°

20%+1

202432

152+142
1624132
192482

20%4+5%)
17%+122

2

<133, 156, 205>
<187, 84, 205>
<21, 220, 221>
<171, 140, 221>
<221, 60, 229>
<105, 208, 233>
<209, 120, 241>
<255, 32, 257>
<23, 264, 265>
<247, 96, 265>
<69, 260, 269>
<115, 252,277>
<231, 160, 281>
<161, 240, 289>
<285, 68, 293>
<207, 224, 305>
<273, 136, 305>
<25, 312, 313>
<75, 308, 317>
<253, 204, 325>
<323, 36, 325>
5%<5, 12, 13>
<175, 288, 337>
<299, 180, 349>
<225,272, 353>
<27, 364, 365>
<357, 76, 365>
<275, 252, 373>
<135, 352,377>
<345, 152, 377>
<189, 340, 389>
<325, 228, 397>
<399, 40, 401>
<391, 120, 409>
<29, 420, 421>
<87, 416, 425>
<297, 304, 425>
5%<15, 8, 17>
<145, 408, 433>

(6, 1, L,
(2,1,3,1
(2L
(4,1,1,1
(2,6, 1,
(2,1,1,3
(3, 1,2,1,
(15,1,
(23,
(3,41,
(3,1

(4, 1,3,
(52,1
(7.3,
(27,1
(2,3,1,1,
(43,1,
(23,
(21,L

(5 1L1,1L
(17, L,

(2,3,3,
(2,1,1,2,1,
(8 1,L
(21,
(2,8, 1

(3, L1,1,1
(5,3

(3, 1,3, L
(3,2,3
(6,2, L,
(19, L,
(2,1,5 1
(22,

(3,9
(2,1,2,1,1,

(2,2,3

(6,4,

(2, 1,8,
(10,2,
(4, 1,4,
(2,14,
(2,1,1, 1,2,
(3, 1,6,
(32,
(11,2,
(3,10,
(3,3,2,
(4,1,1,2,
(56
(7,1, 2,
(2,16,
(2,3,4,
(4,8
(12,2,
(2,1,3,2,
(5, 1,4,
(36,

(2,3,1,2
(2,1, 1,8
(3,4,
(13,2,
(2,18,
(3,1,1,4,
(52,2
(3, 1,8,
(3,2,1,2,
(6,6,
(40,

(2, 1,12,
(14,2,
(3,4,2,
(2,1,2,4,

(2,2,2,2,

[ 6,2,
[2,1,4,
[10, 1,
[4,1,2,
(2,7,
[2,1,1,1,1,
{3, 13,
i16,
(11,1,
[3,5,
[3,3,1,
[4,1,1,1,
[53,
(71,1,
[2,8,
[2,3,2,
[4.4,
[12,1,
[2,1,3,1,
[5,1,2,
[18,

[2,3,1,1,
[2,1,1,3,
[8.2,
[13,1,
[2,9,
[3,1,1,2,
[5,21,
[3,1,4,
3,2, 1,1,
(6,3,
{20,
[2,1,6,
[14,1,
[3,4,1,
[2,1,2,2,

(2,2,2,1,

£ =273 2233493 =£ 73243 z2 <

€ "3 €£<€ €323 -3 g3
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445
=5x89
449
457
461
481
=13X37
485
=5%97
493
=17X29
505
=5X101
509
521
533
=13 X 41
541
545
=5X109
557
565
=5 113
569
577
593
601
613
657
625 =5

629
=17X3¥7
641
653
661
673
677

232412

18%+11?
21%42°
20%+72
212447
19%+102
16%+15%
202+92
17514
227412
18%+13
22%+3?
19%+12?
213482
222452
20%+112
225477
232422
21210
174162
232447
19%+14
2%+9?
23%+67
20%+13?
24%41?
23%48%
24%45°
18%4172
19%+16*
24247

2

2

(20%+15%)

23%+10°
25%4+2?
25%+4?
22%+13
252462

2

2

26%41%

Haruo Hosoya

<203, 396, 445>
<437, 84, 445>
<351, 280, 449>
<425, 168, 457>
<261, 380, 461>
<31, 480, 481>
<319, 360, 481>
<93, 476, 485>
<483, 44, 485>
<155, 468, 493>
<475, 132, 493>
<217, 456, 505>
<377, 336, 505>
<459, 220, 509>
<279, 440, 521>
<435, 308, 533>
<525, 92, 533>
<341, 420, 541>
<33, 544, 545>
<513, 184, 545>
<165, 532, 557>
<403, 396, 565>
<493, 276, 565>
<231, 520, 569>
<575, 48, 577>
<465, 368, 593>
<551, 240, 601>
<35, 612, 613>
<105, 608, 617>
<527, 336, 625>
5%<7, 24, 25>
<429, 460, 629>
<621, 100, 629>
<609, 200, 641>
<315, 572, 653>
<589, 300, 661>
<385, 552, 673>
<675, 52, 677>

(3,1,1,3
(2,9, L
6,1,1,1,
(44,1,
(%3
(3L
(2,4,1, 1
(2,1,9,
(21,1,
(20 155
(3,61
(2,2,1,3
QL1 LLL
(2,2,3,1,
(2,4,3
(7,2, L,
(2,10,1,
(10,1, 1,
(33,
(3,1,4,1,
(41,5
(4,2, 1, 1,
(5,1,2,1,
(6, 1,3,
(23,1,
(7,1,1,1
(4,1,3, L,
(35,

(3, 1L
(3,2,2,1,

(3,3,1,1
(2,11, L,
(4,5, 1,
(4.2,3,
(6,3, L,
(11,3,
(25,1,

(3,1,1,1,2,
(2,20,
(6,1,4,
(4,10,

(9, 1,2,
(15,2,
(2,4, 4,
(2,1,4,2
(44,
(2,1,1,2,2,
(3, 14,
(2,2,1,1,2,
(2,1,1,1,4,
(2,2,8,
(2,4,1,2
(7,6
(2,22,
(10,4,
(16,2,

(3, 1, 10,
(4,1,2,2,
(4,2,4,

(5 1,8,
(6,1,1,2
(48,

(7, 1,4,
(4,1,8,
(17,2,
(3,52,
(3,2, 6,

(3,3,4,
(2,24,
(4,12
(4,2,1,2,
(6, 8,
(14,1, 2,
(52,

{3, L1,1,1,
[2, 10,

[6, 1,2,
[4,5,
[9,1,1,
[15,1,
[2,4,2,
[2,1,4,1,
[22,
[2,1,1,2,1,
[3.7,
[2,2,1,1,1,
[2,1,1,1,2,
[2,2,4,
[2,4,1,1,
[7,3,

[2, 11,
[10,2,
[16,1,
[3,1,5,
[4,1,2,1,
[4,2,2,

[5, 1,3,
[6,1,1.1,
[24,

[7, 1,2,

[4, 1,4,
[17,1,
[3,5,1,
[3,2,3,

[3,3,2,
(2,12,
{46
{42, 1,1,
[6.4,
[1,1,1,
[26,

NSR. 0., Vol. 60
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685
=5X137
689
=13 %53
697
=17x41
701
709
725
=57%29

733
745

=5X 149
757

761

769

773

785
=5X157
793
=13%61
797

809

821

829
841=129*
845
=5x137

853
857
865
=5X173
877
881
901
=17 X53

Pythagorean Triples.ll. Systematic generation of primitive

Pythagorean triples by the topological index and caterpillar graphs

19%+18>
26%+3%
20%+17°
252487
212416
2424112
26°+5°
22%+15°
2324142
26247
@5*+10%
27%4+22
2424132
277442
26%+9%
20%+19°
2524122
2224177
23%+16
28%+12
27°+8?
282432
26%+112
28%+5°
25%+14*
27%+10°
21%+20°
22%+19*
292422
026%+13%)
23%+18
297442
24%+17°
28%+9*
29%+6%
25%+162
26%+15*
30%+12

<37, 684, 685>
<667, 156, 685>
<111, 680, 689>
<561, 400, 689>
<185, 672, 697>
<455, 528, 697>
<651, 260, 701>
<259, 660, 709>
<333, 644, 725>
<627, 364, 725>
13%<21, 20, 29>
<725, 108, 733>
<407, 624, 745>
<713, 216, 745>
<595, 468, 757>
<39, 760, 761>
<481, 600, 769>
<195, 748, 773>
<273, 736, 785>
<783, 56, 785>
<665, 432, 793>
<775, 168, 793>
<555, 572, 797>
<759, 280, 809>
<429, 700, 821>
<629, 540, 829>
<41, 840, 841>
<123, 836, 845>
<837, 116, 845>
1323, 4, 5>
<205, 828, 853>
<825, 232, 857>
<287, 816, 865>
<703, 504, 865>
<805, 348, 877>
<369, 800, 881>
<451, 780, 901>
<899, 60, 901>

(32,
(2,,7, L,
(2,1, 1L
(8,2, L,
(5L

(2,5 1,14
(5,4, L,
(7,5
(41,13
(2,2,1,2,1,

(2,12, 1,
(2,53,
(31,51,
(8,1,1,1,
(3%,
(12,1, 1,
(2,2, 7,
(2,3,5,
(27, L
(2,1,2,2,1,
(3,8, 1,

(3, 1,2, 1,1,
(2,1,1,4,1,
(2,1,3,3
(3,2,1,1,1,
(41,

(3,13,
(2,13, 1,

(2,1, 1,1
(4,6, L,
(3,235
(9,21,

(2% L

(18,2,

(2, 1,16,
(2,152
(8.6,
(33,2
(2,54
(3, 16,
(7.2, 2
(41,1, 1,2
(2,2,1,8,

(2,26,
(2,5.1,2
(3,1, 12,
(8, 1,4,
(19,2,
(12,4,
(2,2,3,2,
(2,3,2,2
(36,
(2,1,2,6,
(3,18
(3,1,2,4,
(2,1, 1, 10,
(2518 1t
(3,2, 1,4,
(20,2,
(3.6,2,
(2,28,

(2,1,1,3,2
(4, 14,
(3,2,2,2
(9, 6
(51,8
(2,3,1,1,2,
(3,1,2,1,2,
(89,

[18,1,
[2, 1,8,
[2, 1,5,
(8,3,
(53,1,
[2,5,2,
£33
[7,2,1,
f4,1,1, 1,1,
[2,2,1,3,

—
-

[2, 13,
[2,5. 1,1,
[3,1,6,
[8,1,2,
[19,1,
[12,2,
[2,2,3, 1,
[2,3,2,1,
[28,
[2,1,2,3,
[3,9,
[3,1,2,2,
[2,1,1,5,
[2,1,3,1,
[3,2,1,2,
[20, 1,
[3,6,1,
[2, 14,

—

[2,1,1,3,1,
(4,7,
{3,2,2,1,
[9.3,
[5,1,4,
[2,3,1,1,1,
[3,1,2,1,1,
[30,

€3 3£ £ £ 3£ -3

g =€ £ € -1 €3£ 3£
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905

=5X181

925

=52%37

929
937
941
949

=13X73

953
963

=5X193

977
985

=5X197

997

28%+112
29%+8?

22%421?
2724142

(30%+52)

2324207
2421197
29%+107
30%+7%
25%+18
28%+132
26217
312427

312447

27%+16*
29%+12?
31%46

2

Haruo Hosoya

<663, 616, 905>
<777, 464, 905>
<43, 924, 925>
<533, 756, 925>
5%<35, 12, 37>
<129, 920, 929>
<215, 912,937>
<741, 580, 941>
<851, 420, 949>
<301, 900, 949>
<615, 728, 953>
<387, 884, 965>
<057, 124, 965>
<945, 248, 977>
<473, 864, 985>
<697, 696, 985>
<925,372,997>

(51LLLL

(5 1,1,4

(2,1,,1,2,1,(2,1, 1, 1,6,

(43,
(13,3,

(2,1,13
(41,1
(%L1, 1
(2,3,3,L
(3,1,1,5
(2,6,1,1L
(81,3
(2,14, 1,
(3,1,6,1,
(52,3,
(2,:2,2,1, 1
(64,1,

(21,2
(13,1, 2

(2,1,6,2,
(4,1,3,2
(914
(2,38
(31, 52,2
(2,6, 4,
(8,1,1,2
(2,30,
(3,1, 14,
(5,2,1,2
(2,2,2,4,
(6, 10,

[5,1,1,2,
[2,1,1,1,3,
[21,1,
[13,1,1,

[2,1,6,1,
[4,.1,3,1,
[9.1,2,
[2,3,4,
[3,1,1,2,1,
[2,6,2,
{8, 1,11,
[2, 15,
[3,1,7,
[5.2, 1,1,
[2,2,2,2,
(6,3,

£ € 3£ €3£ 3£ £33
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p=1(mod 4) and the composites of those p’s, which appear as the hypotenuse c. Prime p’s are printed in

bold.

2

= (See (2.1)). Non co-prime pairs, which do not give a pPT are parenthesized.

Examples of C(a), C(d), and C(c) are given fm'pr=3l’7=l42+112 1Ca)=(2,1,2,=Cs(2,1,7,1,2),
Cy=(2,1,3,2,=C7(2,1,3,2,3,1,2),and C(c)=[2,1,3,1,=Cg(2,1,3,1,1,3,1,2).

a




August 2009 Pythagorean Triples.lll. Systematic generation of primitive
Pythagorean triples by the topological index and caterpillar graplhs
Table 2. Examples of primitive Pythagorean triples and the corresponding
caterpillar graphs whose hypotenuses are highly composite
p mn <a, b, c> Ca) C(b) Cle)
1105 33244 <1073,264,1105> (4,7, 1, (4, 16, [4,8,
=5X13  32%49°  <943,576, 1105> (4,1,1,2,1, (4, 1,1,6 [4,1,1,3
x17 312412 <817, 744, 1105> (2,2,1,1,LL (2,2,1,1,4 [2,2,1,1,2
2424232 <47, 1104, 1105> (41, (23,2, [23,1,
1445 382412 <1443, 76, 1445> (37,1, (186, [38,
=5X170  31%422°  <477,1364,1445> (4,2, 5, (4,2,2,2, [4,2,2 1
34*17% 17<3, 4, 5>
2197 46°+9%  <2035,828,2197> (9,41, (9, 10, [9, s,
=13 (39%+26%) 13%<5, 12, 13>
2873 53487 <2745,848,2873>  (2,1,1,1,5,1, (2,1,1,1,12 [2,1,1,1,6,
=132x17 43%432%  <825,2752,2873> (10,1, 5, (10,1,2,2, [10,1,2,1,
(s2%+13%) 13%<15, 8, 17>
4225 63*+167 <3713, 2016,4225>  (15,1,2, 1, (15,1, 6, [15,1,3,
=52x13% 564337 <2047, 3696,4225> (3,3,2,3, (3,3,2,1,2,  [3,3,2,1,1,
(60%+25%)  52<129, 120, 169>
(52%439%)  13%<7,24,25>
32045 = 5X 13 X17X29
179742 <32037, 716, 32045> (2,88, L (2, 178, [2, 89,
17874197 <31323,6764,32045>  (2,2,1,2,8,1,  (2,2,1,2,18, [2,2,1,2,9,
173%+46>  <27813, 15916, 32045>  (2,5,3,1,2,1,  (2,5,3, 1,6, [2,5,3,1,3,
1667+67°  <23067,22244,32045>  (2,1,10,2,1,1, (2,1,10,2,4, (2,1,10,2,2,
1637474 <21093,24124,32045>  (2,8,1,3,1,1,  (2,8,1,3,4, [2,8,1,3,2,
157°+86°  <17253,27004,32045>  (3,1,2, 1,4,3, (3,1,2,1,4,1,2,  [3,1,2, 1,4,1,1,
142241097 <8283, 30956, 32045>  (3,3,3,7, (3,3,3,3,2, [3,3.3,3,1,
131241227 <2277, 31964, 32045> (4,1, 1,27, (4,1,1,13,2, [4,1,1,13,1,

See the captions of Table 1.
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30 Harue Hosoya

Appendix

Two fundamental recursive relations for calculating Toplces of caterpillar graphs.4'5)

a) Edge deletion. A, B, C, and D are stars. b) Vertex deletion. A and B are stars,

a)

@—@—@—@ =@—®x0O—0O+B®xD®
G
G=A—B-C-D=(A-B)X (C-D) + A XD

) ®k®-0 {00 o 010
M

e —
G L

G=AXL+MXB-AXB
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