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Abstract

Switching graphs describe the structure of the solution set for the two projection binary tomog-
raphy. It is made of vertices corresponding to the reconstructions and edges corresponding to the
switching operations. In our former works we examined basic properties of this graph. Here we prove
an estimation theorem for the minimal size of figures corresponding to the given switching graph. We
thereby execute enumeration of the switching graphs of small orders by means of computer search.
These would serve as a basic data for the complete characterization of the switching graph.

1 Introduction

Two projection discrete tomography for discrete plane figures studies the relation of a plane figure with
its z- and y-projections, that is the counting data of the constructing cells of the figure in these directions.
As in our pevious works, we assume the cells to be fitted to the integral lattice, and refer to the positions
by the coordinates of their lower-left corners.
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Fig. 1. z- and y-projection data.

Because of the fewness of the projection direction, the figure is generally not determined uniquely, and
there are many reconstruction solutions for the same projection data. A switching graph was introduced
to study the structure of the whole solution sets. It consists of vertices corresponding to the reconstruction
solutions and of edges corresponding to the switching operations. Here a switching operation means the
modification of the type of a switching component: A pair of cells (z1,91), (%2, ¥2) in a figure F is called
a switching component if the two positions (1,%a), (x2,y1) are vacant in I7. It is said to be of type 1 or
type 2, respectively, if z2 — 21 and y2 — 71 have the same or the opposite sign.
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Fig. 2. Switching operation, from type 2 to type 1.

The switching operation obviously preserves the two projection data, and conversely, the existence of such
a pair is equivalent to the non-uniqueness of the reconstruction. Also, we can make the graph directed,
by assigning the arrow of the edge to the above direction of modification.

This graph was first introduced by Brualdi {1] under the name of interchange graph. Later, [6]
re-introduced it and called Ryser graph. Similar graphs are also used in statistics to study marginal
distributions. Unaware of these, we called it the switching graph and studied its properties. The notion
of switching digraph seems to have been introduced by us [3] for the first time. Also we considered a
version with constraint [4].

1Partially supported by Grant-in-Aid for Scientific Research No. 20540157
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In this article we prove an estimation theorem for the minimal size of figures which generate a given
switching graph. This enables to confine the search region to a finite size. We thereby executed enumer-
ation of the switching graphs up to order 20 with the aid of computers. The obtained list would serve as
a basic data for the complete characterization of the switching graph. Though similar study is possible
for the case with constraint or for the directed version. Here we only treat the original switching graphs.

For general exposition on discrete tomography see [8], although we do not employ any further knowl-
edge about it.

2 Basic examples of general order

In this section we gather examples of switching graphs which constitute series of graphs with parame-
terized orders. in enumeration of switching graphs, we first have to take into account ones coming from
these. In the description below, we denote the place of a unit cell by the coordinates of, say, its lower-left
corner as in [3]. (1) to (5) are given there, and (6) to (8) are newly given here.

(1) The switching graph A, of a simple diagonal linear figure F' = {(i,1);i = 1,2,...,n} (Fig. 3 left)
- 2(, _ 112
y M(n — 9)! edges. ([3);

Lemma3.1.) The order sequence for this is 2, 6,24, .. ..

(2) The switching graph Zn,» of two slided shells each of size m, n, F = {(4,1) | i = 1,...,m} U
!
- vertices, and

is a bipartite regular graph of degree with n! vertices and

{tm+4,2) | s =1,...,n} (Fig. 3 center), is a regular of degree mn with mm-:-n?
(m + n)! o
2(m —1(n-1
n=1)is6(m=n=2),10m=3,n=2),15(m=4,n=2),20(m =n=3),.. ..
(3) As a special case of the above, m — n — 1, n ~ 1 of the above, the switching graph Z. —1,1 of
F={G1)]i=1,...,n-1}U{(n,2)} (Fig. 3 right) is the complete graph K, of order n. The
order sequence is 2,3,4,5,6,7,8,9,10,11,.. ..

7 edges. ([3], Lemma3.4.) The order sequence for this (cther than the special case

v O I:I:I

Fig. 3. A,, Zm» and K,.
(4) The switching graph Spn of F = {(i,5) | i =1,...,m,j = L..,n}U{(m+1,n+1)} (Fig. 4
left) is a suspension of a regular graph of order mn and degree m 4+ n — 2 by another vertex, hence

m’n(m + n) edges ([3}’ Lemma 3.5)' ESPeCiaHy, Sl,'n. = Apq1. The order

sequence (except for the special casem = 1) is 5 (n=n=2), 7 (m = 3,n = 2), 10 (m =n=23),
Bm=4n=3m=6n=2),15(m="7n= 2), 16 {m = 5,n = 3),.... By the invariance
property of Lemma 3.1, the same graph is obtained by a figure of Fig. 4 center. Since this latter is
simpler, we shall rather denote by Sy, » this one in the sequel.
(8) The switching graph Ly, of F = {(,1) |1 <i < m}U{(j+m,j+1)[1<j < n} (Fig. 4 right) isa
n(n+2m ~ 1) with T :n)! vertices and n(n+ 2m4—— })(n + m)!
obtained by contraction from A,,,, by reducingz‘each subgraph A,, in the lart%ér to one vertex.
(See (3], Corollary 4.6. We changed the parameterization of this figure F' there a little. Anyway
the original definition was incorrectly starting from the cell (0, 1), which should be (1,1).)The order
sequence {except for the special cases Lo, = A, Lip = Anya, Lipy = K1) 18 12(m = 2,n =
2),20(m =3,n=2),....

has mn + 1 vertices and

regular graph of degree edges,

Fig. 4. Spn and Ly, .
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(6) The switching graph Sm, i of the figure to the left of Fig. 5 below consists of (mn—n+1)k+mn+1
kE(k+1) mn(m+n) —n{n —1) + mn{m + n)

vertices and has ——9——(mn—n+ 1}+k

a composite graph made by setting Sy, n to each vertex of Ky11, pasting each other by the common
subgraph K, corresponding to the figures where the last k+ 1 cells are all in the ground state. See
the right of Fig. 5 below, where the case m = 3, n = 2, k = 2 is shown, and the shadowed cells
do not move inside the respective groups. Thus denoting by v(G) resp. e(G) the vertex resp. edge
sets of G and by |S| the cardinal of the set S, the number of vertices is calculated as

edges. In fact, thisis

(k4 D|v(Smn) \ v(En)| + [0(Kp)| = (k+ L)(mn+1-n)+n= k(mn—n+1)+mn+1,
and the number of edges is equal to

le(K i 1)10(Smn) \ 0(En)| + [0(K k1 )lle(Sm,n) \ e(Kn)| + le(Kn)]

= ——-—k(k; ) (mn+1-n)+(k+ 1)mn(m + n)2— nn—1) + n(nz— L
= _——k(k; ) (mn-n+1)+ kmn(m + n)g— n(n—1) + mn(g +n)

/—R—\ a
e O
{ i1k
Fig. 5. Smnk-

Obviously Sm.n,0 reduces to Spm,n of (4). Also, Sm,1,k is equivalent t0 Sm k41- Furthermore, S n.1
is reduced to Sm.2n-1 by taking the complement and switching once. Since the latter always has
smaller number of cells for m > 2, n > 3, we shall abandon the former. Omitting these, the order
sequence for this begins with 8 {52,2,1)1 11 (52,2,2), 12 (83,2,1), 14 (82‘2!3), 15 (32,3,2), 16 (54‘2,1),
17 (S2,2,45 S3,2,2): 19 (S2,3,8), 20 (S5.2,1, S2.25)- - -

(7) More generally, the switching graph Smn,ix of Fig. 6 left has ki(mn —In+ 1) + mn+ 1 vertices and

k Ik
ﬂﬂ(—;L)(nf;m,— In+1)+ Ek[— {(m+nn+n—-1}{+mn(m+n+1)+2n—1]+ manfm + ) edges.
In fact, this is a composite graph of ! copies of Sm—t41,nk pasted together with the common

subgraph Sp—1,» corresponding to those in which the upper-right free cell is above the I-th row.
Thus & calculation similar to the above yields

[o(G)} = U{|v(Sm—t41,n,6) \ V(Sm—t,0)]) + [V(Sma—t;n)]
= l[{(m—l+1)n—n+1}k+(m—l+1)n+1»—{(m—l)n+l}]+(m—l)n+1
=klilmn—In+1)+mn+1.
The number of edges is more complicated. The first group of edges is I copies of those of Sm—141,n.k

except for those inside Sm—_i» Which appear only once. The second group is those between these
independent ! subgraphs which appear as switchings like Fig. 6 right.

.- =
il =

Fig. 6. SmnLk
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(m—-Il+1nm—-Il+14+n)—nn—-1)
2

Je(G)E = Zle(Sm—l+l.n,k) \ e(Sm—l,n)i + |e(sm—l,n)[ +

=4ﬂ%;9um—z+nnmn+n+k
4 (m—l+Lnm—i+1+n) (m—l)n(m—l+n)]

2 2
+(m—l)n(;n—l+n)
-E-!—(—l—-—z—i)[{(m—l%— n—n+1}k+(m—-l+1n+1—{(m-n+1)}
-——y-c—(—liz-ni”-l—)(mn—ln-i-l)
+l2—k[—{(m+n)'n,+n—1}l+mn(m+n+1)+2n—1}
+mn(m+n)

2
Obviously Spn,1,k = Sm,n,k- Also, by passing to the symmetry, Sm 1k changes to Spik in,m—t1-
Especially, Sm,1,1,x reduces to Sgt1.1m—1-
(8) The switching graph of T = {(1,j+ 1) [1 < <m}U{(i+ 1L, 1)|1<i<n}U(n+2,2) asin

- 1
Fig. 7 has (n+1)@mn —n +2) vertices and M(mz + 2mn — n+ 1) edges.

2
In fact, this is a concatenation of n + 1 copies of Sy, which doubly have each of the figures with
two cells at (7,2), 2 <4 <n+ 2. Thus

nn+1) (n+1)(2mn—n+2)
2 2 '

{o(Tnn)l = [W(Eng)|[v(Smn)| — [0(Zn—1,2)] = (n+1)(mn+1) -

The edges come from Sy, » except for the doubly counted ones plus those between the corresponding
pairs of vertices in the different copies of S, . Thus

|e{Tm,n)l = [o(Kn+1)lle(Sm,n)| — le(Zn-1,2)l + [e(Kns1){[v(Smn)| — 1} + [e(Zn1,2)]
mn(m + n) + n(n+1)
2 2

=(n+1) (mn—n+1)=n(L;-1—)-(m2+2mn—n+l)

Fig. 7. Trn.

"The order sequence of this series contains 12 (m =n=2), 18 (m =3, n=2), 22 (m =2, n = 3),
24(m=4,n=2),....

3 Basic invariance properties of switching graphs

In this section we gather basic properties of switching graphs which are useful to enumerate them. We
also review some standard way of constructing switching graphs from known ones.

Lemma 3.1 The switching graph of F° does not change if we apply the following transformation to F:

(i) Translation to z or y directions.
(ii) Reflection with respect to a horizontal, vertical or diagonal line (equivalently, exchange of  and y
coordinates).
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(iii) Rotation by 90 degrees.
(iv) Permutation of columns or rows.

(v) The complement CF of F, obtained by changing cells to blank and vice versa in its enclosing
rectangle, has the same switching graph as F.

Proposition 3.2 (Direct product; |3], Proposition 4.8) The switching graph of the block figure as
in the figure below, where G resp. H (by abuse of notation) stands for a figure corresponding to the
switching graph G resp. H, is the direct product G x H of the two graphs: Its vertices are the product
set v(G) x v(H), and its edges are those between (a,c) and (b,¢) inherited from the one between a and
b in G, and those between {a,c) and (a,d) inherited from the one between ¢ and d in H.

Fig. 8. Direct product

Remark 1. The transformations of Lemma 3.1 applied separately to the factors G, H obviously make
the switching graph of the product G x H invariant. These transformations are, however, not realizable
as those of Lemma 3.1 applied to the whole G x H except for the permutation of columns or rows. We
shall extend the meaning of the transformations in Lemma 3.1 as allowed to apply separately to the
components of the direct product.

Proposition 3.3 (Contraction; [3], Proposition 4.12) Assume that a row of a pattern contains m cells,
each of which is unique in their columns. Then the switching graph G for this pattern can be obtained
from the graph H of the new pattern which has these m cells in new independent m rows as follows:
Search the vertices of H which correspond to the permutations of m cells in these new m rows. Contract
these to one vertex and make a reduced graph. If these m cells are not in separate columns, delete the
corresponding vertices, together with the edges emanating from these to other vertices. The degree at

L -1 . . . .
each vertex is diminished by Zn(m_) by this contraction, and if there are deleted vertices, more edges

are deleted. Thus a regular graph produces a regular graph again by this process if and only if the
remaining cells are all in different columns. The same assertion holds for a column.

4 Estimate of the minimal size of figures for a given switching
graph

In this section, we give a fundamental estimate on the minimal size of figures which have a given switching
graph.

First we prepare several terms. A column in a figure, of which all the cells are immobile throughout the
switchings, will be called redundant. Obviously, we can delete redundant columns without changing the
associated switching graph. (Note, however, that we cannot necessarily delete immobile cells individually,
as those appearing in the product type figure.) A column which is not redundant will be called effective.
We use the same terminology for rows.

1t is clear that a column which contain a cell switching with another one in a figure is effective. The
following converse, however, is not obvious, because a cell initially immobile might become movable after
switchings of the cells in the other columns.

Lemma 4.1 Assume that a column C of a figure F has no cells which can switch with another cell.
Then C is redundant, that is, its cells do not switch in any figure obtained from F by a series of switching
operations.

Proof Assume that after a series of switching operations in the other columns, a cell P of C' becomes
switchable with, say Q. We consider the shortest one among such series of switchings. By permutations
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of columns and rows, we can assume without loss of generality that C is the first column, its cells filling
the continuous positions from the bottom line of which P is the top, whereas @ is in the second column
and above P. (We can also assume without loss of generality, that @ is one cell above P.) See Fig. 9
center.

Assume that just before the switching of P, @, the cell R where @ should go switches with another
cell S in a column other than the first two, thereby offering the place for the switching of P, Q. * S
is below P as in Fig. 9 left (which we can also assume without loss of generality to be one cell below
P), then the place where R should go is vacant, hence @ can switch with the cell in the first column at
the height S at one step earlier. This contradicts to the choice of shortest series. If S is above P as in
Fig. 9 right, then $ can switch with P also at one step earlier, again contradicting to the assumption of
shortest series. Thus P should be able to switch with another cell from the beginning.

P e Hs @Péﬂg = PEBEES

u| O 0
Fig. 9. Proof of Lernma 4.2,

saae

It remains the case where the position R is vacant but @ comes to this place in one step earlier
switching with say, 7. Then T should be at the height of present Q. If the former place Q' of @Q is
below P, then the cell of C at this height switches with T at one step earlier. If Q' is above P, then it
can switch with P at one step earlier, because there are no cells above P in €. Thus in any case they
contradict to the shortestness assumption. QED

After [6] two figures F and F” are equivalent if they can be transformed from one to the other by a series
of switching operations. We shall extend this notion and say that two figures F' and F’ are T-equivalent if
after transformations of Lemma 3.1 (including Remark 1) and omission or adding of redundant columns
or rows, they become equivalent. We shall further say that F and F' are G-equivalent if their switching
graphs G(F), G(F') are isomorphic. We shall denote the equivalence, T-equivalence, and G-equivalence
by F'=F', F= F', and F ~ F', respectively. Obviously,

F=F o, Fr F — F e~ F

One of the fundamental open questions about switching graphs is if conversely ¥ ~ F' implies F' =~ F'.
Theorem 4.2 A switching graph of order n can be realized by a figure of cells contained in n x n square.

Proof We prove the following contraposition to the theorem, employing an induction on the number of
effective columns n:

Claim The switching graph G(F) of a figure F with n effective col umns has order > n.

In the sequel, for a graph G, let 0rd(G) denote its order [u(G)|. For any figure F with n = 2 effective
columns, ord(G(F)) > 2 is obvious, because the existence of an effective column implies existence of at
least two different figures. Assume that the Claim holds for any figure with up to n— 1 effective columns,
and take a figure F' with n columns, all effective. Consider the first column C, and the figure ' obtained
by deleting C from F. G(F') can obviously be regarded as 2 full subgraph of G(F).

If all the columns of F' are still effective, then by the induction hypothesis G(F”) has order > n — 1.
The fact that C is effective implies the existence of another figure with different pattern at the first
column, which is clearly a vertex of G(F) not contained in G{F’). Thus in this case ord(G(F)) >
ord{G(F")) + 12 n.

Assume next that F’ contains a redundant column, say €. This means that ¢’ contains no cell
switching with the other columns of F'. Since it was effective in F, this means, in view of Lemma 4.1,
that a cell of C' must switch with some cell of C. If the figure, obtained from F by deleting C' instead of
C, has no redundant columns, then the induction works just as above. If not, it means that the cells of
C switches only with C' and vice versa. In this case, the figure F” obtained from F by deleting the two
columns O, O must consist of n — 2 effective columns. In fack, they were effective in F', hence in view of
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Lemma 4.1 they must contain a cell switching with a cell in another column, which is neither C nor C'
by what is mentioned above.

Thus two columns C, C’ contain a switching component which switches independently of the cells in
F". Thus by the induction hypothesis ord G(F") > n — 2, and G(F) has at least 2 x ord G(F) vertices
corresponding to the switching in the columns C, C'. Thus ord G(F) > 2(n—2). Thisis > nifn >4. On
the other hand, in case n = 3, the present situation does not occur, because the only remaining column
would then be redundant in F.

Thus the claim was proved. It follows that we can realize a switching graph of order n by a figure

with at most n effective columns. The argument applies also to the rows with obvious paraphrase. Thus
the theorem is proved. QED

By this theorem, the list of examples of the switching graphs of small orders which we reported earlier
was justified with the aid of the computer search. The above proof, when precisely examined, implies the
following, which is less elegant but it is practically meaningful and makes further search more effective. In
the description below, for the sake of simplicity we shall denote (2) and (3) for K> and K3, respectively.
(This is the label given in the list of switching graphs in §5.)

Corollary 4.3 A switching graph of order n. is realized by a figure in [g— +2| x Lg + 2| square of cells
except for the case of the complete graph of order n realized by the figure K,,. Furthermore, It is realized

5 . ‘
by a figure in [213___] X [n+ SJ square of cells except for K, Knjo1a X (2), Stn-1)/2,2: Knya % (3),

Ky % S1,2, Kpya % (2) % (2) forn =8,12,16,20, and (2) x (2) % (2) x (2). (The case where the fraction
in the index is non-integer is omitted.)

Proof We also prove the contraposition:

Claim The order n of the switching graph G(F) of a figure I with k effective columns Is 2 3k —5 except
for the following (neglecting redundant rows):

(i) k of Ky, for k > 38,

(i) 2k — 4 of Kg_g % (2), for k > 4,

(iil) 2k — 1 of Sg—1,2, for k& > 3,

(iv) 3k — 9 of K3 x (3), for k 2 5,

(V) 3k —6 of Ko % SLg, for k >4,

(vi) 4k — 16 of K4 % (2) x (2), for 6 < k <10,

(vii) 28/2 of (2) x (2) x (2) x (2), for k = 8.

k2 k3 .7
k=1 BH ._J\—[k—l E Baﬂ 0 :::,: A7 f/? 3 /A
sane O:--- rees 1N :/1?5 e 7
.o I:L'.JDgjj o 2Bl -
K, Sk-1.2 77 KRRY7
K% (2) ' K, %(3)

Kig=§,, Kiax@%xQ Qx@=@)x%@)
Fig. 10. Exceptional figures.

Practically we can omit (v) from our enumeration because it is essentially equivalent to (iv). (As remarked
in Remark 1 after Proposition 3.2, the notion of T-equivalence is extended to these two figures.)

Now we prove Claim. For k < 4 the assertion is obvious from the list given in the next section (which
is easily verified by the estimate of Theorem 4.2 only). Assume & 2> 5, and the assertion holds up to
kE—1.

- Consider first the case where there is a column C such that the deletion of C produces a figure F'
with no redundant columns. We divide the cases.

(i) Case where F' is equal to Kj—i.
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(a) If the column C contains only one cell and it is at the height of the major group of cells of Kj_1,
then F is equal to Kj, whence reduces to the exceptional case (i).

(b) If C contains only one cell but it is at the height of the minor one, then F is equivalent to Zg_z 2,

lv-(lé_i), which is > 3k — 5 for ¥ > 5. Thus the
induction proceeds in this case. This estimate is valid even if there exist cells at the heights other
than these two of Kj_1.

(¢) If C is vacant at the two heights of Kk_, then it contains at least one cell at the third height,
and G(F) contains a subgraph corresponding to Lx_o2 of order k(k — 1), which is > 3k ~ 5 for
all k. Thus the induction proceeds also in this case.

(d) If C consists of a cell at the height of the major group and another cell at a third height, then after
one switching operation the figure becomes equivalent to Sx_j 2, hence G(F) has order 2k — 1,
being the exceptional case (iii).

(e) If C has still other cells besides (d), then after one switching operation the figure contains a
subfigure equivalent to S3x_; whose switching graph has order 3k — 2. Hence the induction
proceeds. Note that C' does not have cells at both heights of F’, because then it would be
redundant.

hence the switching graph G(F) has order

k2 k=2 k2 k2 k=2
(i)-(2) (i)-(b) (- W) @-(e
Fig. 11. Proof of Claim; Case (i). (Cells of C are shadowed.)

(ii) Case where F” is equal to Ki_3 % (2).

(a) If the deleted column C is such that it extends the part Kx_3 to Ky, then F' = Kj_o x (2) and
the switching graph has order 2(k — 2) = 2k — 4, reducing to the exceptional case (ii).

(b) If C is such that it extends the part (2) of F” to (3), then F' = Kj_3 x (3) and the switching
graph has order 3(k — 3) = 3k — 9, which is the exceptional case (iv).

(c) For all the other configurations of C, the switching graph of F' has more vertices, as is verified in
an elementary way. To verify this the most delicate case will be one giving rise to the product
Zy—a,2 % (2). But then G(F) has order 2(k — 2)(k — 3), which is > 3k — 5 for k£ > 5.

(iii) Case where F’ is equal to Sk—2 2. Then the switching graph of F' has at least 2(k — 1) — 1 == 2k — 3
vertices.

(a) If C has only one cell at the height of the major part of Sk—3,2, then F is equal to Sx_g,2, being
the exceptional case (ii).

(b) If C has one cell at the height of one of the minor parts of Sk_3.2, then F contains a subfigure

equivalent to Zg._z 2, of which the switching graph has order &2-——1) >3k —5fork > 5as

before.
In all the other cases G(F) has order > 3k — 5 provided that C is effective.

(iv) Case where F' = Kj_4 x (3). If C consists of a cell at the height of the major part of Ki—4, then
F is equivalent to K3 x (3), the exceptional case (iv). For all the other configurations of C the
resulting F' has the switching graph of order > 3k — 5, as is easily verified.

(v) Case where F' = Kj_3 x Sy,2. In this case, the adding of a cell in C to the height of the major
part of the factor Ki_3 gives an exception of the type Kj_o x S1,2. All the other cases, as is easily
- verified, produces a figure F such that G(F) has order > 3k — 5.

(vi) Case where Kj_5 x (2) x (2). In this case, the adding of a cell in C to the height of the major part
of the factor K5 gives an exception of the type Ky_4 x (2) x (2). All the other cases, as is easily
verified, produces a figure F' such that G(F) has order > 3k — 5.
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(vii) The other cases. By the induction hypothesis, the switching graph G(F’) of F’ has at least
3(k—1)— 5 = 3k — 8 vertices. Thus it suffices to show that G(F') has at least 3 more vertices than
G{F"). Assume that G{F’) has order < 3k — 5, since otherwise we have nothing to do at this step.

(a) If there exist three cells in C which move by switching operations, then the obtained patterns are
distinct from those of the subgraph G(F') already at the first column, as in Fig. 12 (a). Thus
we assume hereafter that at most two cells of C can switch.

(b) Since C is effective in F, there is at least one switching component P, @ with P € C, Q € F/,
Whi(f_l:ll without loss of generality, we can assume to be at the upper-left corner as in Fig. 12 (b).
Let F” be the figure obtained by deleting the first column after switching this. It differs from F’
only by the position of . If F admits two switching operations, we obtain three new patterns,
and the induction proceeds. Thus assume that F” admits at most one switching.

(c) Assume first that F’ has no switching components. The structure of such a figure is well known
and re-described in Lemma 4.4 below. F” differs, however, with F only by the position of @, and
the latter has no redundant columns. Thus F' should be T-equivalent to a figure as in Fig. 12
(c). Since the case F' = Kj_; is now omitted, F' thus contains at least a subfigure T-equivalent
to Sa,1,k—2 whose switching graph has (k — 2)(k — 1) > 3k — 5 vertices for £ > 5.

(d) Assume next that F' has only one switching component. Such a figure is described in Lemma
4.4 below. Since again F”, differing from it only by the position of @, has no redundant columns,
(2 should belong to the unique switching component or the longest row, and it should occupy a
place as in Fig. 12 (d), omitting redundant rows. Then it is easily verified that the switching
graph of F' has more vertices than the case (c), irrespective of the pattern of C.

k=3
Q
- 2B E _ JgTTTT BT [ o
A o 2 4 ¢ > 4 ’_M‘ EEIE EEEBIP
el A | 72 I i 7 S EI L i
01 2 3 F* 7 .o’ u-0 o~
(vii)-(a) (vii)-(b) (vii)-(c) {vii)-(d)

Fig. 12. Proof of Claim; Case (vii). (Cells of C are shadowed.)

Next consider the case where deletion of any column produces a redundant column. In this case, as
was discussed in the proof of Theorem 4.2, the columns of F are grouped to pairs such that each pair
contains an independent switching component. Thus ¥ = 2! and G(F) has order at least 2! = ok/2,
This is > 3k — 5 for k > 10. The cases k = 4, k = 6 are contained in the exceptional cases (ii), (vi),
respectively. Thus k = 8 is the final exception.

Thus we have proved the contraposition. The obtained inequality n > 3k - 5, when solved for &

becomes k < —+—E Since k is integer, this can be replaced by & < L J Thus the main part of

Corollary is proved. For the first assertion of simpler estimate, it suffices to verify that the exceptional
cases (ii) to (vii) all satisfies the weaker estimate > 2k —4. QED

Lemma 4.4 A figure is unique, that is, admits no switching operations and hence has switching graph
with only one vertex, if and only if via permutation of columns and of rows, it reduces to the union of
rectangular rows with decreasing widths. A figure has switching graph with only one edge, that is, admits
only one switching operation, if and only if via permutation of columns and of rows it reduces to the
form as in Fig. 13 right. Namely, it contains a switching component, the columns and rows containing
it consist of pairs of cells, and the remaining part at the lower-right corner is a unique figure which is
filled with cells at the position of which the column and row both have cells at those of the switching
component.

Fig. 13. Figures with zero or one switching.
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Proof The first assertion is already noticed in Lemma 2.1 of [4], with columns instead of rows.
The second assertion follows by an elementary argument: Let the switching component be placed at the
upper-left corner. Then the part of rows in the columns of these two should be either both filled with
cells or both empty, otherwise a second switching occurs using the cells of the first switching component.
Also the part with these two columns or rows omitted should be a unique figure. The final point to be
noted is that if there is a hole at a position of which the column and row both have cells at those of
the switching component, a new switching occurs using the cells of the first switching component too.
QED

We may continue to refine the classification of Corollary 4.3. But the above estimate suffices to do
the search up to n = 21, since the range by the computer search can thereby be limited to 8 x 8, which
is favorable for programming. Thus we applied our program developped for [3] to construct a switching
graph to every figure realized in this square and picked up those with the indicated order n, besides
those exceptional patterns listed in Corollary 4.3. In practice, to annihilate the duplication in search,
we assumed that the height of the initial figure is < the width, the Hamming weight of the rows are in
non-increasing order upward, the lowest row has cells concentrated to the left, the second row has cells
concentrated to the left in both regions above the cells of the first row and outside. We further avoided
the transformation to the complement by assuming that the total number of cells does not exceed the half
of that of the enclosing square. Also we can omit the case where the lowest row is full of cells, because
then it would be redundant.

5 enumeration of switching graphs up to order 20

Now we list up switching graphs up to order 20 searched by means of both theory and computation as
described at the end of the preceding section. We joined the total number of edges and arranged the
graphs in the decreasing order thereof for each assigned order.

Order 2 to 4

& =f BB

Tt ol ¥ gl |
gu= b ob feee /Z @ 2.4 7%
(2) (K2 = 81,1) 1 edge (3) (K3) 3 edges (4-1) (K4) 6 edges (%-2) ((2) x (2)) 4 edges

i

(6-1) (K3) 10 edges (5 -2) (S2,2) 8 edges

EYp Forth b o &
& s

o oo 8
- B &

(6-1) (Kg) 15 edges  (6-2) (2, 2) 12 edges (6-3) (As) 9 edges

Order 5
El

Order 6
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Order 7
o g
m dd
a}

e oFh
' o a
ooHtm B o

(7-1) (K7) 21 edges _(7-2) (S3,2) 15 edges

(8-3) (Kax (2)) (8-4) ((2)x(2)x(2))
16 edges 12 edges

(8—1) (Kg) 28 edges (8—2) (82‘2,1) 18 edges

Order 9

Order 10

Ky
generated by

Z3,2
generated by

S3.3
generated by

I{5 X (2)
(10-4) 25 edges

SQ’QX (2)
(10-5) 21 edges

(10-1) 45 edges| {{10-2) 30 edges

{(10-3) 27 edges

Order 11

Ku 35,2

generated by

(11-1) 55 edges

generated by

(11-2) 35 edges
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K2
generated by

(12-1) 66 edges

I(ﬁX(Q)
(12-2) 36 edges

53,21
generated by

ﬁjﬂ

(12-3) 34 edges

T35 generated
by

B

Loy generated

by
(12-5) 30 edges

(12-4) 33 edges

Zs2%(2) Kix(3) A3x(2) (3)x(2)%(2)

(12-6) 30 edges | |(12-7) 30 edges | |(12-8) 24 edges | |(12-9) 24 edges
Order 13

K3 Se,2 Saa generated by

(13-1) 78 edges

(138-2) 48 edges

(13-3) 42 edges

a
%3 = 83221

(13-4) 38 edges

Order 14
Kiq K7 % (2) S2,23 .5'3'2 X (2)
(14-1) 91 edges | |(14-2) 49 edges | |(14-3) 47 edges | |(14-4) 37 edges
Order 15
Kis Sv.2 Z4,2 Sa,3,2 K5 x (3)
(15-1) 105 edges | |(15-2) 63 edges | | (15-3) 60 edges | [(15-4) 51 edges | |(15-5) 45 edges
SQ,Q X (3)
(15-6) 39 edges
Order 16
Kig Ky x (2) Ss,3 Sa21 | Ks x Ky

(16-1) 120 edges

(16-2) 64 edges

(16-3) 60 edges

(16-4) 54 edges

(16-5) 48 edges

32,2,1 x (2)

(16-6) 44 edges

Kix (2) % (2)
(16-7) 40 edges

(2) % (2) x (2) x (2)

(16-8) 32 edges

Order 17

Kiz Ss,2 59,24 S4,4 53,22

(17-1) 136 edges | | (17-2) 80 edges | |(17-3) 66 edges | |(17-4) 64 edges (17-5) 58 edges
Order 18

Kig Kg x (2) generated by Kg x (3) T3,

(18-1) 153 edges

(18-2) 81 edges

EEa

(18-3) 63 edges

(18-4) 63 edges

Se2 % (2) Z22 % (3) A3 % (3) 3) x 3) x (2)
(18-6) 57 edges | | (18-7) 54 edges | |(18-8) 45 edges (18-9) 45 edges
Order 19
Kig So,2 Se,3 82,33 53,2,9,2

(19-1) 171 edges

(19-2) 99 edges

(19-3) 81 edges

(19-4) 75 edges

(19-5) 67 edges

(18-5) 60 edges
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Ko
(20-1) 190 edges

Km x (2)
(20-2) 100 edges

Z3,3
(20-3) 90 edges

Sa2.2,5
(20-4) 88 edges

Ss21 ~ 53,1,2.4
(20-5) 78 edges

L3
(20-6) 70 edges

Zg,g X (2)
{20-7) 70 edges

f(s X I{‘;
(20-8) 70 edges

S3,3 X (2)
(20-9) 64 edges

5'2,2 X K'q

K5 x (2) x (2)
(20-11) 60 edges

S % (2) x (2)
(20-12) 52 edges

(20-10) 62 edges

‘We shall make a little consideration on the obtained list.

Remark 2. (i) We cannot completely classify the switching graphs only by means of the order and the
edge number, and even by the degree sequence at the vertices. This is seen from the two graphs (6-3),
(6-4). They reappear at order 12 as factors, producing another example. Such an example might be seen
exceptional when locking only at the small orders. But it might become abondant for larger orders, and
we might need a deeper criterion for the isomorphism.

(i) The figures (12-5) to (12-7) constitute another example of non-isomorphism. Although they are
all regular of degree 5, their matroid structures are different, that is, in (12-5) the maximal size of the
set of common vertices adjacent to two different vertices is 3, whereas it is 4 for the other. Besides, for
the latter two the number of vertices with this maximal size of common adjacent vertices from a fixed
vertex is different, being 6, 5, respectively. Similarly, we can see that although (18-3) and (18-4) are both
regular of degree 7, they are non-isomorphic from the difference of the maximal size of common adjacency
5, 6, respectively. Also, although (20-6) ~ (20-8} are all regular of degree 7, the first is distinguished
from the other by the maximal size 4 vs 5. The latter two have the same maximal size, but the number
of vertices with this maximal size of common adjacent vertices from a fixed vertex is different, being 7
and 5, respectively. ’

(iif) On the contrary, the figure of (13-4) and S3 99,1 are T-equivalent, as shown in the figure below.
This is why we omitted adding a new series of figures containing the former.

By o> W o> B oo B

complement  rotation by 180° switching

Fig. 14. Example of T-equivalent deformations.

(iv) For each order n, the graph with the maximal number of edges is obviously given by the complete
graph K. There is an interesting problem of determining the graph with the minimal number of edges.
As is expected from the above list, for composite n it seems to be given by the product of those factors
with minimal number of edges. For a prime n, however, it will be much mysterious.

There are similar problems of enumerating switching graphs with constraint (|4]), and switching
digraphs ([3}). We shall undertake these in a forthcoming paper.

Acknowledgements The authors are much obliged to the referee for the careful reading and valuable
suggestions for improvement.
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