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Abstract A Pythagorean triple (PT) composed of & pair of legs, a and b, and hypotenuse, ¢, is
trebly classified and registered by using three differences (A, 8, d) among (g b ¢). Recursive
relations among the members of the same group thus classified are extensively studied. These
recursive propertics are found to be related to the Hall’s matrices, U, A, and D, by the operator
technique which has been proposed by the present author in 1983, The complicated mathematical
structure of PT’s under U, A, and D can be greatly simplified by using U™ and D"", which were
found to have simple analytical expressions. Further, a number of newly found interesting

mathematical properties of PT’s are introduced.

1. Introduction

A Pythagorean triple (PT) is a rectangular triangle composed of integral edges and has
continuously been a target of professional and amateur mathematicians for more than 4000 years.l'a) A
PT whose edges have no common factor is called a primitive PT and denoted here as pPT. It has long
been known that a pPT (a, b, ¢) can be represented by a pair of integers, or an {m, n)-code, as
a=nm*-n*
b=2mn (.n
c=m+ nz,

where a and & are called legs and ¢ hypotenuse.

Hall has shown that by operating the following three matrices, U, A, and D, on the column vector,
3 4 S)T, of the smallest pPT (called the progenitor),

1 -2 2 1.2 2 (-1 2 2\
U-lz -1 2J, A-Lz 1 2J, D-L-z 1 ZJ
2 2 3 2 23 -2 2 3

three pPT children are derived as

(1.2)

UE 457=6 12137, AG 4 57=212029, and DG 4 5 =(15 8 17)'?

Further, by doing the same process to each of these three children nine grand children of the pPT family
are generated. By repeating this procedure he could obtain the genealogy, or the family tree, of pPT’s as
shown in Fig. 1.
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~U— (7 24 25) (4,3)
~U— (5 12 13) (3,2)—+A— (55 48 73)  (8,3)
_D— (45 28 53) (7,2
—~U— (39 80 89) (8,5)

(G 45 2,1)—FA— (212029 (52) —A— (119120169) (12,5)

LD— (77 36 85) (8,2)
-U— (33 56 65) (7,4)
LD ——(15 8 17) (4, 1)—FA— (65 72 97) (9, 4)
Lp— (35 1237) (6, 1)

Fig. 1. The family tree of the Pythagorean triples (@ & ¢) and their (m, n)-codes. The U, A, and D
indicate that the PT which follow can be derived by operating them on the parent triple.

The necessary and sufficient conditions for (m, n) to represent a pPT are:
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i) m and n belong to different parities
i) m and m are prime to each other

(1.3)
(1.4)

All the (m, n)-codes appearing in Fig. 1 are shown to fulfill (1.3) and (1.4). By imposing ancther

condition, m > r = 1, the whole family of pPT’s can be represented by the set of black dots in the (m,

m)-plane in Fig, 2, where two sets of (horizontal and slanted) paralle! lines forming a slant grid are added

for convenience sake of the later discussion.

o
n 3 ‘_ U (r,n) =»{2m—n,m)
8 | A (mn) = (2minm)
s |- 6 D {m,n) == (m+2n,n)
4 3 +r
./ X4 5

I3 | | \ N 3 ] ] ] 1 [l 1

0 2 4 6 8 10 12m 0 2 4 6 8 10 12 m

Fig. 2. The family of pPT dots on the -
(s, my-grid.
® :pPT’s, @+C : gpPT’s.

Fig. 3. The pPT genealogy of Fig. 2 mapped
on the (m, n)-plane. Many arrows (see

text) are omitted from the figure.

Note that the white points in the slant grid in Fig. 2 correspond to those non-pPT’s which do not
meet just condition ii), or (1.4). For example, they are (27 36 45) (6,3), (45 108 117)(9,6), etc.
The weakest point in the Hall’s theory is demonstrated in Fig. 3, where lower members of the

nodes and branches of the family tree of Fig. 2 are mapped on the grid of the (m, n)-plane. While the
actions (represented by arrows) of the two matrices, U and D, are directed, respectively, 45 degree
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ascending and horizontally creeping toward right, that of A is unpredictably quaking in between the angle
determined by the other two matrices. Further, since a single action of U shifts {(m, n) to (2m-n, m), the
length of the arrow for U in Fig. 3 is rapidly increasing with the values of m and n. This is also the cases
with A and D, whose corresponding shifts are, respectively, (2m+n, m) and (m+2n, n). Thus, although it
has been proved that the (m, n)-point of any pPT can be reached from the progenitor (3 4 5) through a
unique path, ie., a finite product of U, A and D,4’5) the (m, n)-map of the family tree of Fig. 3 becomes
rapidly entangled with the increase of the values of i and n.

One of the main purposes of the present paper is to obtain mathematically clearer relations among
the whole family of pPT’s. In this respect a possible reason for making the family tree of pPT thus
complicated is suspected to be the segregation of the white points in Fig. 2. Then let us try to deem al} the

" lattice points in the grid of the (m, n)-plane of Fig. 2 as equal members of the greater pPT family, or
simply gpPT.
It is quite an easy task to obtain the following three 2 X2 matrices, u, a, and d, to change the

column vector (m n)T corresponding to the (m, n)-point to what U, A and D matrices cause as explained

above:
"'(i :)) a“(f (1)) d'((l} ?) - (1.5)

The (m, n)-codes attached to the pPT’s in the family tree of Fig. 1 can, of course, be reproduced by'
operating (1.5) to the progenitor (2, 1). These matrices will play an important role in the later discussion,

2. Classification of PT
First consider a PT (@ b ¢), and take the three kinds of differences, (A, 8, d), between pairs of

edges as shown in Fig. 4.
A=c-b, ©b=c-a, d==|a—b|. @1
Note that as long as the condition i), or (1.3), holds, a and ¢ are odd, while & is even. Further, it can
easily be shown that A and 8, respectively, take only square of odd number and double of square number,
each of which forms a group of pPT with this property. It is not so straightforward but has already been
known that fora pPT d takes only the limited numbers as given in Fig. 4. However, this is not the

Sd=c—-a
/ a, ¢ odd,
c
a b even
- ' A=c-b
group code
A=1,9,25,49,681,121, 169, -- (2k+1)2 square of an odd integer Ak
8=2,8,18,32,50,72,98, - 24 double of a square number ok
d=1,7,17,23,31,41,47, -« p (prime) = % 1 (mod. 8) ©dp

and the product of these numbers (49, 119, ---)
Flg 4. Definitions of three different edge differences for assigning a gpPT to its group codes.
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case with a non-primitive gpPT. Thus for a given pPT three group codes are assigned, while for a
non-primitive gpPT only A and 3 are assigned. For a member of Akand 8k groups a serial number is
added following the group code and hyphen. For example, (5 12 13) is assigned as Al-2 and 82-1
meaning the second and first smallest members of Al and 82 groups, respectively.

Except for dl1 group all the groups of d have more than one sub-groups. In this case the serial
number is assigned in each sub-group. This serial number is often omitted in the discussion on the d
group.

By these assignment rules and (1.2) there is one-to-one correspondence between (m, n)-code and
A- and d-codes as shown in Table 1 (Distinguish between minus sign and hyphen).

Table 1, Interrelationship between the (m, n)-code and family register codes
{m, n) > A(m—n)-n, dn-(m-n+1) /2
(k). ) <——— Bk
2j+k1, k) < Ok-j

Thus by using these three edge differences a given pPT is trebly assigned and given three famity
register codes, whereas a non-primitive gpPT is assigned only A and 8 codes. In Table 2 sixteen pPTs
whose ¢ is smaller than 100 are listed together with their (1, r)- and register codes. In this region there is
only one non-primitive gpPT, (27 36 45) (6,3), whose register codes are A3-3, 83-2, and no d code,
although the actual value of d is 9 in this case.

In a later discussion there appear trios of (X, Y, Z) satisfying X+P=7 but containing zero or a
negative integer. Although these trios are not the members of gpPT defined above, they will be included
in a formal discussion of Pythagorean triples.

Table 2. Smaller members of pPT’s and their (m, n)- and family register codes

a b c mn A & d a b c m n A O d

3 4 5 21 1-1 1-1 1-1 63 16 65 g 1 7-1 1-4 471
5 12 13 3 2 12 2-1 7.1 21 20 29 5 2 32 2212
7 24 25 4 3 13 3-117-1 45 28 53 7 2 352 2-317-2
15 8 17 4 1 31 12 72 33 56 65 7 4 3-4 4-2 23-2
9 40 41 S 4 14 4-1 31-1 77 36 85 9 2 72 2-4 41-1
11 60 61 6 5 1-5 5-1 49-1 39 80 89 8 5 3-5 52412
35 12 37 6 1 5-1 1-3 23-1 55 48 73 8 3 5-3 3-3 7-3
13 84 8 7 6 1-6 6-171-1 65 72 97 9 4 54 43 74

3. Recursive relations of PT

That the classification criterion adopted above is mathematically meaningful can be supported by
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the universality of the recursive relations among the family members in each group. See Table 3, where
smaller members of gpPT’s are listed in the six groups, Al, A3, 31, 83, 41, and 47, from which several
recursive properties can be observed. Non-primitive gpPT’s are italicized in the table. Several important
properties of the recursive nature of PT’s can be deduced not only from Table 3 but also from larger data
set of gpPT’s.

i) Within each group a pair of recursive formulés of second and third orders hold for the three

edges (g, b, ¢).

if) For the edge not relevant to assign the group code a second-order recursive formula holds.

iii) For the remaining edges a third-order recursive formula commeonly holds.

iv) The pair of recursive formulas above are common for the big groups of A and d.

v) The pair of recursive formulas for the big group of d are different from the case of A and &.

vi) While all the members of d1 group are related by the pair of recursive formulas as mentioned

in v), ail the members of other groups of d are divided into two or more sub-groups within
which the pair of recursive formulas in v) respectively hold.

It is then remarked here that, as long as the recursive relations given in Table 3 are applied, the (m,
n)-codes of the two A group members rise along the slanted lines in Fig. 2 with an equal step of the unit
grid, and those of the two & group members creep along the horizontal lines toward right similarly with an
equal step. Further, in the cases of A3 and 43 all the non-primitive gpPT members (marked with a white

dot in Fig. 2) behave equally as a member in the recursive chain of their respective group.

Table 3. Several groups of gpPT’s and their recursive relations (ltalicized are non-pPT’s)

Al A3 81 63 dl d7
a b ¢ a b ¢ a b ¢ b ¢ a b ¢ a b ¢
3 5 15 17 3 4 5 7 24 25 3 4 3 15 8 17
5 12 13 21 20 29 15 8 17 27 36 45 21 20 29 65 72 97
7 24 25 27 36 45 35 12 37 55 48 73 [119 120 169 | 403 396 565
9 40 41 33 56 65 63 16 65 91 60 109 | 697 696 985
11 60 61 39 80 89 99 20 101 | 135 72 153 5 12 13
13 84 85 45 108 117 | 143 24 145 | 187 84 205 55 48 73
297 304 425
a: fn =2 fo-1~frn2 a,cfp=3fa1-3m2t/h3 | ab:fn=5f1+5ma-fns
b,eifu=3fu-1-3f2t/n3 b:fn =2 fa-1—fn2 ¢ fn=6fu-1—Jn-2
A=c-b d=c-a d=la— b}

On the other hand, the behavior of each d group in the (m, n)-grid is different from that of
A and 6 groups. Although the set of the recursive formulas is common to each sub-group, it does not seem
to be possible to combine the two sub-groups of 47 into a single recursive chain. Before discussing this

point let us consider the relation between the recursive properties observed above and the three matrices

proposed by Hall using the operator technique proposed by the present author in 19836’7).
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4. Relation between the recursive properties and Hall’s matrices

Try to define a step-up operator O with the following property:

O fn=tr1, (4.1)
Where f can be a series of functions or variables.
When this O is applied to aPT (g, b, c), we have
a, 0 0 0\(a, 8y

ols,1=|0 0 ol|s|=|b

n+l
c 0 0 O/\c, c

"

A+l . (42)
However, we already know the following relation for some special pair of pPT’s connected by a matrix
proposed by Hall, for example, U, as

U (@ bn )" = (@me1 bt €ri). (4.3)
Then by combining (4.2) and (4.3) we have
(U=0K) (a, b, ¢,)" =0, (4.4)

where E is the 3 X 3 unit matrix.
In order for (4.4) to have a non-trivial solution the following equation should hold,
det (U - OE)=0. (4.5)
Actually the following result can be obtained,
det (U - OE) =—(0-1)°
=—(0-1)(0*-20+1)
=—(0°-30*+30-1)=0. (4.6)
By operating the operator polynomials of the second and third orders in (4.6) on f;; in (4.1) one can obtain
the pair of recursive formulas for the A group in Table 3 as

In=2fa-1—f2,

Jn=3 fu-1 =3 fa2t faa. @7
Note that D has the same property as U,

det (D - OE) =—(0-1)>=0, (4.8)

whereas A has a different property as
det (A-OE)=—(0+1)(0°-60+1)

= (0’ -50%-50+1) =0, (4.9)
giving the recursive formulas for the d group given in Table 3 as
Jn=6fn1-fu2
Jo=S5fo-1+ 5 fr2 — fs. (4.10)

That (4.3) is applicable also to gpPT’s can be demonstrated for many cases. Now mathematical
relation between the recursive formulas and the set of matrices proposed by Hall for the gpPT family is
clarified

5. Recursive structure of d groups of gpPT family
By operating matrix A repeatedly all the members of 41 group are generated from the progenitor
as follows:
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AB45) =(212029)", A 2120 29)" = (119 120 169)", A (119 120 169)" = (697 696 985)", erc.,
just in accordance with the recursive chain given in Table 3. However, as have already been shown in

Table 3, other higher d groups are divided into more than two sub-groups, in each of which successive

operation of A gives the recursive chain correctly.

Instead of exploring the descendants of the PT family let us go back to its prehistoric roots. For this

purpose one can use the recursion formulas in the opposite direction, and also use the reciprocal matrices,

1 2 -2 1 2 =2 -1 2 2
Al=|2 1 -2), U'af-2 -1 2], D"-( 2 1 -]
-2 -2 3 -2 -2 3 2 -2 3 5.1
for(a b c¢)and
a_lm(() I) “_1_(0 1) 4 ==(] —2)
1 =2 -1 27 0 1 (5.2)
for (i, n)-codes. The results of the two sub-groups of 7 are given in Table 4.
Table 4. Mirror relation between the two sub-groups of d7.
i -4 -3 -2 -1 0 1 2 3 4
a —1755 -297 -55 -5 -3 15 65 403 2325
b -1748 -304 —48 -12 4 8 72 396 2332
e 2477 425 73 I3 5 17 97 565 3293
m -19 8 -3 2 i 4 9 22 53
n 46 -19 8 -3 2 1 4 9 22

—

a —2325 —403 —65 ~15 3 5 55 287 1755
b -2332 ~396 ~72 -8 ~4 12 48 304 1748
¢ 3293 565 97 17 5 13 73 425 2477
m 22 -9 4 -1 2 3 i 19 46
n ~53 22 -9 4 -1 2 3 8 19

¢ fa=6f-1—fa2, ab f1i=5fn1+5f2~ o3
m, 1 fu=2 fo-1+ a2

As evident from Table 4, the two sub-groups are found to be the twins with pseudo-mirror

symmetry. Two more examples are shown in Tables 5.and 6 for 449 and d127 groups, respectively. The

latter number belongs to p as given in Fig. 4, while the former number is a square of p. On the other hand,

d119 has a pair of twins, ie., four sub-groups in all. This number is not a prime, but the smallest
composite number (7X17), a product of two different p’s specified in Fig. 4. In those d groups of such

composite numbers an interesting property has been observed as follows:
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The number of sub-groups of dk group is given as

1: k=1, 2: k=p,p", 4:k=pp’, etc., where p,p'= x1 (mod. 8).

Table 5. Twin sub-groups of 449

NSR. O., Vol. 59

Table 6. Twin sub-groups of 4127

! =2 ] 0 i 2 -2 -1 0 1 2
a -253 -11 -9 153 731 2117 —435 15 17 595
b -204 ~60 40 104 780 ~2244 -308 -112 144 468
c 325 61 41 185 1069 3085 533 113 145 757

" -6 5 4 13 30 22 -7 8 9 26
n 17 -6 5 4 13 -51 22 -7 8 9
a -731  -I53 ] T 253 -595 —17 —15 435 2117

b 780 =104 -40 60 204 ~468 -144 112 308 2244
e 1069 185 41 61 325 757 145 113 533 3085
m 13 -4 5 6 17 -9 8 7 22 51
" -30 13 -4 5 6 26 -9 8 7 22

Table 7. A pair of twin sub-groups of 119

7 -2 -1 0 1 2 -2 -1 0 I 2
a 1357 =299 39 57 79 —-1943 -261 -59 143 481
b -1476 ~180 ~30 176 660 -1824 -380 20 24 600
¢ 2005 349 89 185 1021 2665 461 101 145 769
m 18 =5 8 11 30 -19 10 1 12 25
n —41 18 -5 8 11 43 ~19 10 1 12
1 -2 -1 0 1 2 -2 -1 0 1 2
a ~779 -57 -39 299 1357 —481 -143 99 261 1943
b ~660 -176 80 180 1476 -600 -24 =20 380 1824
¢ 1021 185 89 349 2005 769 145 101 461 2665

m -11 8 5 18 41 12 -1 10 19 48
n 30 -11 8 s 13 -25 12 -1 10 19
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6. Complicated structure of A and 8 groups of PT family

As already mentioned that all the members of Al group can be generated from the progenitor by
successive operation of U matrix as

UE457=61213)% UG 12 13)7=7 24 25", U7 24 257 =9 40 41)T, erc.
This is also the case with 81 group by using D matrix as

DG 45 =058 177, D58 17)7=(35 12 37, D35 12 37) =(63 16 65)", etc.

However, this is not the case with all other A and & groups. Let us ake A3 group as an example.
Although all the members are nicely connected by the pair of recursive formulas given in Table 3, U
matrix divides them into two primitive and one non-primitive sub-groups. Table 8 demonstrates the
interesting property of the pair of primitive sub-groups each of which is individually governed by U
matrix (See the right half of the table). Further, it is found by operating U™ matrix successively the
members of another sub-group are generated but with a minus sign on edge a. In this case also this pair
of primitive sub-groups are twins.

Table 8. Relationship between the two sub-groups of A3 through matrices U and u'!

! 4 3 2 -1 6 1 2 3 4

a 75 -57 -39 21 -3 15 33 51 69

b 308 176 8 20 -4 8 56 140 260

e 317 18 8 29 5 17 65 149 269

m -11 -8 -5 -2 1 4 7 10 13

" 4 -1 8 5 2 1 4 7 10 I -2 2]
U=[2 -1 2

I 4 3 =2 -1 0 1 2 3 4 " b2 '2]
U'lml2 -1 2

a 6 51 33 -15 3 21 39 57 75 2 o

b 260 140 56 8 -4 20 8 176 308

¢ 269 149 65 17 5 29 8 18 317

m 10 -7 4 -1 2 5 11 14

n -3 -0 -7 4 -1 2 5 8 1

On the other hand, the non-primitive sub-group of A3, namely,
(27 36 45), (45 108 117), (63 216 225), etc.
is isolated in A3. In fact, successive operation of U™ matrix on this non-primitive sub-group generates the
same sub-group members but with a minus sign on edge a.
Now go on to A5 group. Table 9 illusirates the structure of A5 group including its ancestors, which
are composed of four primitive and one non-primitive sub-groups. The four sub-groups are found to form
two twins. All the members are sequentially connected by the recursive formulas (4.7), while both U and

u matrices cdn connect the members within each sub-group as indicated by horizontal arrows. Note also
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that the primitive (bold) and non-primitive (italic) PT’s beginning from (35 12 37) occupy all the grid
points of (n+5, n) on the slanted line starting from (6, 1) in Fig. 2 together with the members with
negative n.

The structure of other A% groups is similar to the cases with A3 and A5. The numbers of primitive
twin and non-primitive sub-groups depend on the composite character of A%.

The structure of each group of 84 is almost similar to those of Ak, and becomes complicated with
the value of k. Anyway except for 81 group, D matrix cannot reproduce the single sequence of their
members as aligned by the recursive formulas in Table 3.

Table 9. Structure of the PT (a b c) family of A5 group and their (m,n)-codes
Primitive and non-primitive P1°s form gpPT family.
@ and @, and, @ and @ are, respectively, twins. —: U matrix, | : recursive formulas

O (-115252277) — (6572 97) — (-15-8 17) — (3512 37) — (85 132 157)

(-9, -14) (4, -9) {1,-4) (6, 1) (11,6)
i) i ) ! !
@ (-105 208 233) — (=55 48 73) — (=5 —12 13) — (45 28 53) — (95 168 193)
(-8,-13) (-3,-8) (2,-3) (7,2) (12,7
l l i) i !
@ (-95 168 193) — (4528 53) — (5 -1213) — (55 48 73) — (105 208 233)
(-7,-12) (-2,-7) (3,-2) (8, 3) (13,-8)
l 1 ) i !
@ (-85132157) — (-351237) — (15-817) — (6572 97) — (115 252 277)
(~6,~11) (-1,-6) (4,~1) (9, 4) (14, 9)
! l i i !
® (=75 100 125) — (=25 0 25) — (250 25 — (75 100 125) — (125 300 325)
(-5, -10) (0, -5) (s, 0) (10, 5) (15, 10)

2 % % % l/‘

7. Search for U”k and Dm

The failure of U and D matrices in sequential alignment of the members of A and & groups might
be ascribed to their leap-frog property. Further, it was inferred from an extended analysis as above that
the k-th next larger member is generated by the operation of U on a member of Ak group. Thus the k-th
roots of U and D matrices were searched for.

The most exciting finding in this study is the discovery of general expressions for the j/&k-th roots of
‘Uand D as
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K -2k 2%

Uf’*=% 2jk k*-272 2j?
o 2 2 2
2 jk 2j k™ +2j 1.1
and
. B-27 25k 2/
Df”‘--lz:- 25k K 2jk
2 = 2 :2
-2j 2jk kw2 ’ (12)

whose proof will be given in Appendix. Note that j and & may even take negative integers. By putting j=1
in (7.1) and (7.2) one gets

¥ 2k 2%
U”k=£,— 2% K-2 2
2% 2 E+2 73)
and
-2 2k 2
D”"=£3- 2k k¥ 2%
-2 2% K42 74

Further, one can prove

det (0%~ OE) = det (0™ — 0E)=—(0-1)". (7.5)
For the later discussion let us derive the following matrices:

(9 6 6 25 -10 10 (49 -14 14
v=Lile 7 2, U=tlio 23 2 , U”’--l‘9 14 47 2|,
9\6 -2 11 25 10 -2 27 4 14 -2 51
(9 6 -6 25 10 -10 49 14 -14
U"’:‘--;— -6 7 2], U - —15- -10 23 2], U-’”-Zl-g--m 47 2]
-6 -2 11 -10 -2 27 -14 -2 51
2 4 2 7 6 2 14 8 2
D2 =il _4 4 4], D"’ = 3|6 ° 6), D" = 8 16 8},
-2 4 6 |2 6 1 -2 8 18
2 4 2 7 6 2 14 -8 2
1)-“2=;-r 4 4 -4], D"”n% 6 9 —6), D‘“"-I—lg 8 16 -8
2 4 6 2 -6 1 -2 -8 18
(7.6)
8. Systematic alignment of A and 8 small groups with vV* ana p'*

Finally a recipe for generating the gpPT members from its smallest member was obtained by the

use of Ul/k and D" matrices as the following Theorems.
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[Theorem A]
By successive operation of U matrix on (k+1, 1) pPT of (m, n)-code one can stepwise obtain all
the gpPT members of Ak group as itlustrated in Fig. 5.

[Theorem B]

By successive operation of D' matrix on (k+1, k) pPT of (m, n)-code one can stepwise obtain all
the gpPT members of 8k group as illustrated in Fig. 6.

n ; |!k2 -2 2;; 2 ‘I e
D”k = _Zk k 2k D LX N
6 - P2 s +2| 5 %5 %
._1?_.-1 /4D 85
4 _ I !l/4 D LN} 64
piB pin plB 53
12 12 V2 ...
2 - .l)__....]l_,._D_..._ 62
D D D LE 33 61
] 1 i 1 ] ] i 1 1 T
0 0
2 4 6 8 10 m 2 4 6 8 10 m
Fig. 5. Stepwise generation of Fig. 6. Stepwise generation of
A groups of gpPT. & groups of gpPT.

Theorem A will be demonstrated by taking A3 as an example. By using u'? matrix, given in (7.6),

we have

u'® (15 8 17)"=(21 20 29)%, U 21 20 29)T=(27 36 45T, ere.
The A3 group of gpPT family is generated from the vertex (4, 1) in (m, n)-grid in Fig. 2 along the slanted
line stepwise toward top-right by U matrix as seen in Fig. 5, just as the pair of recursive formulas (4.7)
apply to the three edges of gpPT’s under the condition of c—4=32. Further, with the help of U™? one can
generate all the members of A3 group including non-pPT’s sequentially as the recursion formulas (4.7) as
given in Table 10.

Quite similarly all the members of other Ak groups including non-pPT’s can sequentially be
generated from their smallest members by u'* matrix as seen in Fig. 5.

Now turn to &k groups. As has already been shown that all the members of 51 group can be
generated from (2,1) as in Fig. 3, while for other 8k groups all the members including non-pPT’s can
sequentially be generated from their smallest members by p'* matrix as seen in Fig. 6.

Therefore by the use of U and pl* matrices all the members of gpPT family can not only be
generated from their smaller members but also can be related with all other members of the family. The
mathematical structure of the gpPT family is thus clarified and understood systematically by their
classification scheme proposed in this paper.
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Table 10. Interrelation among the PT-family members of A3 group through matrices U”3 and gl
bold: pPT, bold+italic : gpPT
J -5 4 3 =2 -1 0 1 2 3 4 5 6 7 8
a 21 -15 -9 -3 3 ¢ 15§ 21 27 3B 39 45 51 57
b 20 8 0 4 -4 0 8 20 36 56 8 J08 140 176
c 29 17 9 5 5 9 17 29 45 65 8% 117 149 185
m -2 -1 0 1 2 3 4 (] 8 § 10 1
n -5 -4 3 2 - 0 3 5 6 7 8
a=@+) -j% b=2@+), c=@+) +j’
m=j+3, n=j ©'? PT(A3-) = PT(A3-7+1)
a:fj=2fp1—fi2 b, c:f;=3f1-3fp2+t fi3
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Appendix
Derivation of Ujlk and D'¥ matrices
First consider U matrix proposed by Hall,
1 2 2
U={2 -1 2
2 2 3/ (A1)
By calculating its n-th powers as
1 -4 4 1 -6 6 1 -8 8
U*=l4 -7 8|, U=|6 -17 18|, U*=|8 -31 32|, -,
4 -8 9 6 -18 19] 8 -32 33) (A2)

. . . . n
. one can conjecture a very simple general expression for U™ as




14 Haruo Hosoya

1 -2n 2n
U's=|2n 1-24> 24°
2n  2nt  1+20

whose validity can easily be proved by induction.
Then try to put n=j/k, and one gets
k* 2jk 2k
Uf’*-ff ~2jk K -2j* -2j*
2jk  2j* E+2j®
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(A3)

(A4)

Although rigorous mathematical proof of (A.4) seems to be time-consuming, one can at least assert that

this is a sufficient condition.

Then for D one can similarly get

1-2n* 2n  24°
D'=! -2n 1 2n
27 2n 1+27°

4

and
. K-2j* 2jk  2j°
D“"-F 2k K 25k |.
-2j*  2jk K +2j°

(A.5)

(A.6)



