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Abstract

In this paper we give weak type inequalities of potentials Iy * f for a generalized Riesz kernel &

in homogeneous spaces. Especially, we also estimate Ip * f for the Riesz kernel & by the Hausdorff
content.

1. Introduction

Sharper inequalities than the classical Sobolev inequality have been obtained by the mean of
distribution functions in R™. For example the following estimate deduces from [7] and [8]:
There exists a constant C such that

/oo P {z € Q: ju(z)] > t}|*P/"dt < C
0

for all u € C§°(2), with |[Vu| rr0) <1 when 1 <p < n.

The inequality of this type has been also treated by P. Hajlasz and P. Koskela in a metric space
(cf. [3]).

Furthermore J. Maly and L. Pick considered this inequality in a homogeneous space (X, pu)
satisfying a certain lower estimate for the measure p of a ball. The lower estimate for the measure
1 of a ball means that p has the following property:

There exist constants n > 1 and v > 0 such that for every 2 € X and r € (0, R]

w(B(z,r)) = yr™.

they obtained the following result in [6]:

Theorem A. Letl <p<n and put R = 2diam X. Then there ezists a constant C such that
for every nonnegative function g € LP(X, u) with ||g|l, < 1 we have

/oo P u({z € X : (Ig)(z) > t})P/"dt < C,
0.

where
R
(Lg)(@) = /0 <m /B S

A. Iwamura obtained the following result corresponding to Theorem A for I, instead of I3.
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Theorem B. Let1 < p < oo and o > 0. If ap < n, then there exists a constant C" > 0 such
that for every nonnegative function g € LP(X, ) with ||gll, < 1 we have

/ T (e € X - (Lg)(@) > 1) P/ndt < G,
0

where

R
(Ig) (@) = /0 t‘“(m ]B S

(cf. [4)
We note that
&1(Iag)(2) < / o, 0)* g ()du(y) < e2(lag) )

if the measure p satisfies
nr" < u(B(z,r)) < yer”

for all balls B(z,r), where c1, c2, 71 and 72 are all positive constants.

In this paper we investigate trace inequalities with weak type for the integral operator given the
convolution with a general kernel ® in a homogeneous space (X, p) instead of the kernel |z|*~™ (0 <
a < n) in R™. This kernel includes the one that in a neighborhood of 0 behaves like |z~ (log ﬁ)ﬂ,
with0<a<nand >0.

More precisely, let X be a quasi-metric space with a mapping p from X x X to [0,00) having
the following properties:

(i) p(z,y) = 0 if and only if z =y,

(ii) p(z,y) = p(y,z) for all z, y € X,

(iii) There is a constant K > 1 such that

(1.1) p(z,y) < K(p(z,2) + p(2,9)) forallz, y, z€ X.

The function p is called a quasi-metric.

Furthermore assume that there exists a doubling mearsure z on X. A doubling measure p on X
means a Borel measure on X, satisfying that there exists a constant C' > 0 (the doubling constant
of i) so that

(1.2) u(B(w,2r)) < Cu(B(z,T))

for any z € X and r > 0. Here B(z,r) = {y € X : p(z,y) <7}

1t is shown in [5] that for any quasi-metric p in a homogeneous space there exists an equivalent
quasi-metric p’ such that any ball B(z,7) is open. So we may assume that all balls are open.

We also assume that pu(X) < oo and diam X- = R/2K, where R is a positive constant.

We will make two assumptions on the homogeneous space X:

(iv) There exists a strictly increasing function i from [0, +00) to [0,400) such that h(r) is
equivalent to u(B(z,r)) for any = € X, r > 0, that is, there exist by, by > 0 such that

(1.3) bih(r) < w(B(z,r)) < boh(r)

force Xand R>r > 0.
(v) There exists a nonincreasing function ® from (0, 0o) to (0, 00) such that ®h is a Dini function.
Recall that a nonnegative function g is a Dini function if g has the following two properties:
(d1) g is nondecreasing.
(d2) For any r > 0

[ s0% < com),
0
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where C' is a constant independent of r.
Under these conditions @ has the following doubling property:
There is a constant ¢ > 0 such that

(1.4) d(2r) > c®(r)
for every r > 0.

(cf. Lemma 2.4, (a) in [1])

Since ®h is a Dini function, there is a constant C' > 0 such that

" 1
(15) / B(0)h(t)dt < CB(r)h(r)
0
for every 7 > 0. The potential (I * f)(z) of a y-measurable function f with respect to ® is defined
by
(To + P)a) = [ 8(p(au)fWiduty)
for z € X.

For the function ® we can define a maximal function Mg with respect to ®: Given a y-measurable
function f on X and z € X,

(Maf)() = sup{@(r) /B . Wz e B}

We note that for a y-measurable nonnegative function f
(1.6) Mo f <Cls * f

for some C' > 0 independent of f.

We also assume that for a nonnegative p-measurable function f all sets {z € X : (Ipx f)(z) > t}
are open.

Under these assumptions we will prove the following estimate of I * f for a p-measurable
function f.

Theorem 1. Let ® be a positive nonincreasing function defined on (0,00), such that ®h is a
Dini function. Furthermore, let1 <p < +o0, p' =p/(p—1), f € LP(X, ) and f > 0. Assume that
the function ® Ph'~P is nondecreasing. Put, fort >0,

(1.7 Y ={zecX:(Is*f)(z) >t}
Then
(o) (oo} , 1 1_]] 1
[ @(s)?'h(s) -ds) P dt < CI fI,
0 JhM(u(Qe)/b1) 8
where C is a constant independent of f and t, and by is the constant in (1.3).
Note that the LP-norm of f is the one with respect to the measure u.

Finally I am sorry to say that there are some mistakes in the proof of Lemma 3.3 in my paper
[9]. Therefore the proof of Theorem, (i) in the paper is not correct. More precisely we consider the
case where h(r) = r% and ®(r) = r%~%. Theorem 2 is a revision of the theorem and we will prove it
in the last section.
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Theorem 2. Assume that 0 <n < d and 0 < a < d. Let f be a p-measurable nonnegative
function. Put, fort >0,

(1.8) Qo ={z: (Ia* f)(z) >t}
Ifn/d <p<n/a, then
/ 27 (Qa,e) 1O < ¢ / frdHL.

0

Here

(19) (Tx @) = [ @) *16)ulo)
Recall that the Hausdorff content HZ is defined by

HJ(E) =inf{) (r;)": B C U2 B(xi,75)}

for a subset £ of X.
The integral with respect to the Hausdorff content HY is defined by

(1.10) / gdH. = /0 T H (o g(z) > th)dt

for a nonnegative function g.
In the following, all positive constants appearing in each proof will be denoted by c1, ¢2, c3 -+

2. Estimates of Is * f

In this section we prepare fundamental lemmas which hold within our framework.

Let B = B(z,r) be a ball and b be a positive real number. The notation bB stands for the ball
of radius br centered at z and r(B) stands for the radius of B.

We note that the following inequality also holds with respect to ®.

2.1) / Bl < C / e,

where C is a constant independent of z and r > 0.

(cf. Lemma 2.4 in [1})

By the same method as in the proof of Lemma 2.4 in [1] we can prove the following inequality:
There is a constant C, independent of « and r, such that

/ had 7 1
(22) [ ebewrdw<c [ owranga
plzy)zr T
We also have the following lemma.

Lemma 2.1. Let0 <r < R, z € X and f be a p-measurable nonnegative function. Then
there exists a constant C, independent of f, x, r, such that

/ BRI ) S CHN@RIA)
plz,y)<r
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where M f is the Hardy-Littlewood mazimal function,i.e.,
(Mf)(z )*sup{ / fdp: Bisaball, x € B}.
Proof. Let 0 <n < 1. Then
D= [ )6 < o Y Sthn) () (z).
plzy)<r k>0
Hence, by (1.5),
T 1
I < Cz(Mf)(x)/ B(t)h(t) 7 dt < c3(Mf)(2)@(r)h(r).
0
QED

Lemma 2.2. Let f be a p-measurable nonnegative function. Then there exists a constant v

such that .

p(S) < Su(X)

for allt > v.

Proof. Note that, by the definition of £,

w(E) < t/(kﬁ@mb 0<% [ 1w [ o)

From (2.1) and (1.5) we deduce

w(S%)

IN

| e [ e
-;MR)()MX)“WﬂbM X

IN

Set v = 2c3®(R)A(R)u(X)~Y/?||f||p- If t > v, then

p(0) < p(X),

Q.ED

By Lemma 2.2 we see that the complement §2f of {2, is not empty for ¢ > v. So, for ¢t > v, there
exists a sequence {B i} (Bj = B(zj,7;5)) of balls of Whitney type having the following properties:

('11)1) Qt

(w2) There 1s a constant S>1 such that SB; N Q¢ # () for every j and Q,

(ws) >°;xB; < N for some constant N.

(cf. Theorem (1.3) in Chapter 3 in [2])

Lemma 2.3. Lett > v for v in Lemma 2.2 and {B;} be a sequenece of balls of Whitney type
for the open set ;. Then, there exists a constant Ay > 1, independent of j and s, such that

(1) p(B5 N Qaye) < (1/2)u(Bg) (1) p(Bj\ Qaye) > (1/2)p(By).
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Proof. Let a > 0 and z; be the center of B;. Then

(BN < [ (T pa)dute)

< [ fauw) /B Oy =T+ I
where ,
L= / ) /[ B(p(e )2
and

£@)anty) [ p(o,9)duo)

Y

- |
p(wj)y)Z3KST(BJ')

Here K and S are constants in (1.1) and (wsy), respectively.
Using (2.1) and (1.5), we have

4KS’!‘(BJ') dt
hosafl  ewf |
0 U Jp(z;,4)<3KSr(B;)

RS BOMERSIE) [ fd)

y)du(y)

IA

Take z; € SB; N Q. Then, by (1.3) and (1.6),
(2.3) I < e3pu(Bj)(Ma f)(2;) < cap(B;) (e * f)(25) < cap(Bj)t.
We next consider Io. Assume that p(z;,y) > 3K Sr(B;). For any € B; we have

p(z,y) < Kp(zj,z;) + K*plzj ) + K p(z,y)
< (KS+K%)r(B;)+ K*p(z,y).

From
Kp(z,y) = p(z;,y) — Kp(z;, %) > KBS —1)r(B;)
we deduce
o(B) < B2Y),
Hence
oz5.) < (FEXEL 4 k)03,

Therefore, by (1.4),
2(p(z,y)) < c52(p(25,9))-

From this inequality we deduce

04 B [16)du) [ Bole0)du(o) < eslBs)(Ta » £)(z) < esplBy)t

By (2.3) and (2.4) we obtain
atu(Bj N Qat) <L+, < Csu(Bj)t,

whence co
#(B; N Qat) < —u(Bj).

NSR. O., Vol. 58
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If we set
A = 266)
we have
#(B;)
2 k]
which is the assertion (i). From this the assertion (ii) is easily deduced.

W(B; NQaye) <

QED

We often use the notation
A=K +2K>.

Lemma 2.4. Let B = B(z,r) C Q4 and x € Q. Put

h—l(f‘-(—@—).

qt = by

Ify, £ € B, then
(25) q)(p(m)y))X{'wGB:p(w,w)Zz\qt}(fy) < Cq)(p(myg))X{TEB:p(m,T)ZQt}(g)a

where C is a constant independent of x, y, £ and by is in (1.3).

Proof. From h(q:) = p(€2%:)/by and for y, £ € B
bih(r) < u(B) < p(Q:) < bih(gr)

we deduce h(r) < h(g:). Since h is strictly increasing, we have r < ¢;.
It suffices to show (2.5) for z, y satisfying p(z,y) > Ags. Then

p(z,&) < K(p(z,y)+ p(y,8))
< K(p(z,y) + 2Kq:) < (K +2K*/N)p(@,y).

Using the doubling of @, we have

B(p(e,p) < B AT ) < 8@, 0).

On the other hand, assume that p(z,£) < g;. Then
plz,y) < Kp(x,€) + K*p(€,2) + K?p(2,y) < (K +2K?)g = Age.
So, we see that if p(z,y) > Ag:, then p(z,€) > g;. Thus we have the conclusion.

QED

Lemma 2.5. There exists a constant Ay > 0 such that

N o

/ﬂ & (p(z, ) f(4)duly) <

c
t/Az

for allt > Asv and z € Q.
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Proof. Let ¢ > 1 and t > av. By the aid of Lemma 2.2 we see that Qf/a # (. So there is a
z € £y, such that p(z, z) < 2dist (x, Qf/a). For any y € )7/, we have
p(z,y) < K(p(z,z) + p(z,y)) < 3Kp(z,y).
Hence, by the doubling of &,

C1t
P

[ 2@ 0)dut) < il = 1)(2) <

Qt/o.

We put Ay = max{2c;, 1} and have the conclusion.

Q.ED

3. Main lemma and proof of Theorem 1

In this section we prove the main lemma (Lemma 3.1) and Theorem 1.

Lemma 3.1. Put A = max{A;, As} and let t > Av, x € ;. Then

/ & (o, ) () du(y)
P(ms’y)Z)\Qt

t
< 5+C ®(p(z,y)) (M f)(y)du(y),
(Re/a\Qae)0{y:p(2,y)>q: }

where C' is a constant independent of t, ¢ and f, and Ay, As are the constants in Lemma 2.3 and
Lemma 2.5, respectively.

Proof. Let t > Av and {B;} be a sequence of balls of Whitney type for ;. Let { € B;. By
Lemma 2.4 and the doubling of ® we have

/ @(p(z, y)) f (y)duly)
{p(z,y)2Aq: }NB;

IN

@ L.
o /{ s, OO OB (01200 O S W)

A B(pl@, O)trenoar>ar ©) [ 1))

1 <I>(p(1:, 5))X{T€B:p(m,7’)2qt} (S)ﬂ(BJ) (Mf) (6) .

Integrating over B; \ Q4; with respect to £ and using Lemma 2.3 we have

IA

IA

/ ®(p(z,y)) f(y)du(y)
{p(z,y)2Aq: }NB;
©(B;)

C1——-—————/
1(Bj \ Qae) J(Bj\Qae)n{p(2,6)2a:}

D(p(z, £)) (M £)(€)dp(&)

|

< 2 f @(p(a, ) (MF)(E)du(e).
(Bi\Qa)N{p(=,£)>q: }
Hence
(8.1) / ®(p(z,y)) f(y)duly) < C2/ ®(p(z, §))(Mf)(§)du(§)-
{o(2,y)2Ag¢ }N% (:\Qae){p(z,£)>q:}
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On the other hand, since f < M f u—a.e., we have
(3.2) / ®(p(z, ) f(y)du(y)
(R/4\Qae){p(=,y) > Aqs }
< ®(p(a,9)) (M) (1)),
(Qe7a\Qae)N{p(@,y)>q:}
From (3.1), (3.2) and Lemma 2.5 we deduce
t
/ B{ply) fW)du) < £ +cs | ®(o(a,4)) (M £)(4)d(y).
{p(z,y)>2q:} (Qe/a\Qa)N{p(z,9)>q:}
This is the conclusion.
Q.ED
We note that the following inequality holds.
Lemma 3.2. Letp>1andp' =p/(p—1). Then
(/ <1>(t>”’h(t)%dt)” > Ca(ryr(ry.
Proof. Since ®h is increasing, we have
/ o nia > o) he) / R T T / Tl
. t - r REPTRT r h(EPTH
®(r)P h(r)? ,
> Nl VA VAN P
>o Syt > aBAv)
whence o .
( / B0 h(e)3dt)""” > exBrPh(rPY = es®(rPh(P .
QED

Proof of Theorem 1. Let f € LP(X, ) and f > 0. Take the constants v and A in Lemma 2.2
and Lemma 3.1, respectively. For ¢ > Av and z € Q; we write

t o< s+ f)@) = / B(p(z,9)) f () ()

p(z,y)<Aqe

+ /p . ®(o(z,y))f (v)duly) = L + L.
Using Lemma 2.1 and the doubling of ® and h, we have
Iy < er(Mf)(z)®P(qe)h(ae)-
Lemma 3.1 implies
t < Ii+Ip <a(MF)(z)®(g:)h(g:)

t
+ taf B(plz,9) (M) B)dn(),
(Q:/a\Qae)N{p(z,y)>q: }
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whence

(33) < (M) @)®(a)hla) + cs / (p(z, 1)) (M) (W) d(y).

(/4\Qae)N{p(z,y)>g¢}

Using (2.2), we have

/ 8(p(z,4))(M ) () du(y)
(Q¢/a\Qas)N{p(z,¥)>q:}

P 1/p :I‘ p’ 1/p
(/nt/A\nA,(Mf) dp) (/ @ (p(z,y))" duly))

p(®,y)>qe

/

IN

(AN

pap [T oy L 1/P
e /ﬂ o) du) M / 2(0)” ht)3at) "

qt
Hence

# < e(MNEPRPHar tesl [ appa) ([ o ne e

Qi/a\Qae qt

Integrating over €); \ Q4; with respect to z, we have

p P p— 1u(82) P
#os (@) h@) 1M(Qt\QAt) Lz\Qm(Mf) a

+ 66(/!2t/A\ﬂAt(Mf)de) (/"" (p(t)P’h(t)%dt)P/p'.

qt

With the aid of Lemma 2.3 and Lemma 3.2, we have

(3.4) P < 67(/9 . (Mf)Pdy) (/O" @(t)?’h(t)%dt)p/p'.

gt

Let v be the number in Lemma 2.2. Since the function ® Ph~P+! is increasing, we have, by
Lemma 3.2,

Av o1 oo o 1 —p/p’
/0 t (/ (5)” h(s)>ds) Pt

Av ttp_l APyP
cg/o Sl h@ T = OB (RT3 b)) (a(X) for)P
< covf = C11||f||§-

IA

A

On the other hand, by (3.4),

N

/ tpﬂl( @(S)plh(S)ldS)_p/pldt < 012/ 1(/ (Mf)pd,u)dt
Av 8 Av U)oy a0\

qt

IN

A(Isxf)(x)
e [ @Pduto) | St < el

A~Y(Ipxf)(z)
Thus 00 R 1

/ 3 / @) h(s)5ds) 7 db < cuall I

0 .

43
This is the conclusion.
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QE.D

4. Proof of Theorem 2
In this section we prove Theorem 2. Corresponding to (1.3), we assume that
byrt < w(B(z,t)) < bor?.

Recall that for a u-measurable nonnegative function f and ¢ > 0, the function I, * f and the
set Qo+ are defined by (1.9) and (1.8), respectively.

Proof of Theorem 2. We put
d(t)=t>"%  h@t) =t

and use the results obtained in §2 and §3.
Put p; = (M(Qa,t)/bl)l/d. By Lemma 2.5 in [9] we have

we < 5 [ swa [ oen e
< 2([ rwrduw) " ue) e R
<

([ oy R (X).

Set
v = 263R0‘;1,(X)"’/dp(/ fdego)l/p.

If t > o/, then u(Qa,) < p(X)/2. Therefore we see that €, ; # 0.
By (3.3) in the proof of Theorem 1 we have, for ¢ > Av/,

t < aMh)@p e

ca(M f)()pf

d o _ dp—n)/(d
+oalf (MA@ au) P ([ pla gy () O,
Qa,t/A\Qa,At P(m,'y)ng

/ ol )M f) () du(y)
(Ra,t/4\Qa,a6)N{p(5,y) 2P }

IN

Noting that
[ playtne /ey < o [ (st s = ey ),
o(z,y) 2Pt Pe
we have
o d oap—
t < cr(Mf)(@)pe P}’ + en /Q - (M £) )/ dp(y))™ Pp{r=P,
o, t/A o, At

Integrating over Q4.1 \ Qa,4: and using Lemma 2.3, we have

T
t < ca(pe)*™ (m/ﬂmt\%,m(Mﬁ(y)dﬂ(y)

+ cs(pt)"“"/?’(/ (Mf)(y)dp/”du(y))”/(dp)

Qa,t/a\Qe, At
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amnfp {Qa,t)" P (Rt \ Qo a2) 1 =7/9P)
'u(ﬂa,t \ Qoz,At)

b ([ M)
o, t/A @, At

< copp P (/ (MF) ()™ mdp(y))™
Qa,t/4\ R, 41

IN

cs(p) (o Qo)

whence

< erop2™ / (M £) ()P 1dpu(y)) ™.

Qo4 \Qa, At

Using Lemma 2.5 in [9], we have
o <enp™ | (M) @),
Qa,t/A\Qa,At
Since p;P " = pu(Qq,¢/b1)@P~M/ ] we have

o0 o0
/ 1( Q) TOPV P g < ey / Lot / (M f)(y)PdH?,
Av’ Av t Qo174 \Qa, At

= en [ gt [ HL{ € Qurja\ R (MDY > 7dr

0o A(Taxf)(y) |
< on [ HLUw: 0400 > e [ dt

Uaxf)w)/a T
< e / (M f)PdHT..

Using Theorem in [10], we have

Jouspamy < [ s,

Hence

/ 1(Q,) TPV Py < g / fPAHT..
Av’

Together with

Av'
/ M(Qa‘t)(n—ap)/dtp-ldt < %H(X)(”_"‘p)/d(Av’)p < Cla/fdego
0
we have o
/ (o) TP APt < gy / fPAHT..
0

Thus we have the conclusion.

Q.ED
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