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Abstract Manipulation of continued fraction, either finite and infinite, was shown to be greatly simplified and
systematized by introducing the topological index Z and caterpillar graph. The continuant which was introduced
by Euler in 18 century for solving continued fraction problems was shown to be identical to the Z-index of the
caterpillar graph derived from the continued fraction concerned. Then the fastest algorithm for solving the Pell
equations was obtained. Further, graph-theoretical interpretation for Fibonacci and Lucas numbers, and

generalized Fibonacci numbers was obtained.

1. Introduction

According to the standard recipe developed by Lagrange simple continued fractions, either finite or
infinite periodic, are known to play a key role in solving the Pell equation xz—Dy2=il.]’2) For degrading a
given continued fraction the so-called “continuants” were proposed by Euler.”™® It was recently found that

instead of following iterative steps for this degradation Bhaskara II found more efficient jumping algorithm for
7)

reaching the final result 600 years before these European giants in mathematics.

In this paper the continuant is shown to be identical to the topological index Z,S’g)

10,11)

of a caterpillar
graph composed solely of the terms of the continued fraction concerned. Further by using graph-
theoretical technique developed by the present author the smallest solution of the above Pell equation can be

represented by a 2x2 or 3x3 determinant whose elements are the Z-indices of four subgraphs of the caterpillar.

)

Although all these techniques come from the elementary graph theory,12 in which the present author

has been engaged to solve physicochemical problems for more than three decad&s,n)

all of them are easy
enough for those with no prior knowledge of the graph theory to follow. This method can be applied not only
to solve quickly the Pell equation but also to get rational number approximant of quadratic irrational or even

some transcendental numbers efficiently. Application to information sciences and physics is also open.
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2. Preliminaries

2.1. Continued fraction

In this paper simple(st) continued fractions are treated, which may be finite or infinite.'Y A finite

continued fraction Qu is expressed and denoted by a finite set of elements a,, with all positive integers as

Oy =ay+ i =lay:a, 0,0y ,ay].

o
Ay +—
Ay 2.1
In principle ay can be negative, but as will be shown in the following discussion, only non-negative values are
assumed here. One may denote an infinite continued fraction Q as
Q =[a0;a1,a2,-~], 2.2)
but a recursive one is expressed as lagia;.a,, -, a,] by using a finite number of elements. Although other
types of recursion are possible, generality of the present discussion is not lost by ignoring those cases. The
purpose of this paper is to introduce the fastest algorithm for calculating the value of Qp and finite convergents
of O by transforming the continuant polynomials into a 2x2 or 3x3 determinant obtained from simple
manipulation of ap,’s from a to a certain point.
2.2 Continuant and the related determinant
[Def. 1] The continuant polynomial, or simply continuant, which was extensively discussed by Euler, can be
defined recurrently, as follows:>™>)
Ko =1;
Ki(x1) =x1;
Ko, x2) =x132+ 1;
Kn(x1, X2, %) = Xn Kn-1(x1, X2 5", Xp—1) + Kpp2(x1, 22,7, Xp2) - (23)
The continuant has been known to be reversible as shown in the following three theorems whose proofs
may not be necessary here.
[Theorem 1] Reversible character.
Kanlx1, %27, Xn) = Kn(¥n,*, x2, 1) 24)
This can be proved by mathematical induction. [
[Theorem 2] Recursive relation (cf. (2.3)).
Kanlx1, x2,7+%, xn) = x1 Kpm1(x2, %3 7+, x) + Kp2(x3, x4 ,"-, xn) . 2.5)
This can also be proved by mathematical induction. [

[Theorem 3] Tridiagonal determinantal expression.
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degrading a continued fraction

x 1 0 0 0
-1 x, 1 0 0
0 -1 x 1 0
K. (%, %, x,) = . . .
0 0 -1 x, 1
0 0 0 -1 x, (2.6)

This can also be proved by mathematical induction. [

It is to be remembered that a tridiagonal determinant is easy to be degraded, and Theorem 3 will
actually play a very important role in the present theory. More complicated theorems for the reversibility of the
continuant are known but they are practically unnecessary in our discussion.

2.3 Fibonacci and Lucas numbers

Either from Def. 1 or Theorem 3, the Fibonacci (#,) and Lucas (L) numbers can directly be obtained,

respectively, to be

Fpn=Ku(1,1,-,1) (nDs), 2.7
and Lp,=Ky(1,2,1,--,1)  (1andn-21’s), 2.8)
both of them obey the following recursion formula:

Jn=fr1+fr2 (fiFandl). 2.9
However, notice that in this paper the initial conditions of F, are chosen to be

Fo=F1=1, (2.10)

contrary to the conventional ones as Fo=1, F1 =2, 15.16)

while for L,, the widely accepted
Lo=2,L1=1, (2.11)

are adopted. In Table 1 the lower members of F, and L, are given for convenience of the later discussion.

Table 1. Fibonacci and Lucas numbers

n 0 1 2 3 4 5 6 7 8 9 10

F, 1 1 2 3 5 8 13 21 34 55 89
Ly, 2 1 3 4 7 11 18 29 47 76 123

Advantage of our definition for F;, will be shown several times later in this paper. Here let us enjoy to

see the following pairs of expressions in terms of hypergeometric functions,”)
Fy=2F1 (—n/2, (1-n)2; —n; —4) (2.12)
and Ly =2F1 (—n/2, (1-n)2; 1-n; 4), (2.13)

where our initial conditions are adopted.

Next consider the sequence {G,} with the following properties: G1=a, G2=b, and G,=Gu—1+Gp— (n23).

The ensuing sequence
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a, b, atb, at+2b, 2a+3b, 3a+5b, 5a+8b,--- (2.14)
is called the generalized Fibonacci numbers or generalized Fibonacci sequence.lé)
[Theorem 4] Recursive relation of G,,.
Gm+n= GmFn+ Gm-1Fn1 2.15)
From (2.14) the following relations can directly be derived:
Gp=G1Fp-3+GoF, 2
=GaFp4+ G3Fp3= -
= Gr1Fp—1-1+ GiFy-1.
Then by putting #=m-+n and /=m into the above identity we get (2.15). [
2.4 Rational number and continued fraction
If a (positive) rational number Oy = pn/gn, with (pn, gn)=1, is given, it is straightforward to get its
continued fraction expressions as in (2,1). In reverse it is well known that if the set of all the elements of a
continued fraction laga,,a, " ay 5 ay] are given, the parent rational number can be expressed by the ratio
of a pair of continuants as in the following theorem:
[Theorem 5] For rational number Qx> 1 we have

~ Ky(ag.a,-.ay)

Oy =

N Ky(a,a55ay) (2.16)
while for Oy <1 we have

0 =KN—1(“2"‘3"“"‘N)

Y Ky@aay) | @2.17)

Notice that (2.16) becomes to be equal to (2.17) by putting ap = 0 (from Theorem 2). Then in this sense
(2.16) suffices for all positive values of Q.
2.5 Graphs G and its topological index Z ‘

A graph is a mathematical object composed of vertices and edges.mu) In this paper only those graphs

with no directed edge, no multiple edge, and no cycle are concerned, i.e., non-directed tree graph. In Fig. 1

several examples of small trees are shown.

p(G.k) z

k= 0 1 2 3
A vacant graph g 1 1
° vertex S, 1 1
oo edge S, . . )
o-o-0—00  Ppath Ss 1 4 3 8
0odoo  lEC Ca2Lhy 1 4 2 7
wo™ Ks 1 6

LT caterpillar  C,2,3,1,4) 1 o 22 11 43

Fig. 1. Various kinds of tree graphs, their notations, and Z-indices.
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For characterizing a graph G the topological index Z was proposed to be defined by the present author
as follows.> First define non-adjacent number p(G,k) as the number of ways for choosing k disjoint edges
from G. Here p(G,0) is defined to be unity for all the graphs including the vacant graph, and p(G,1) is equal to
the number of edges in G. By using the set of p(G.£)’s the topological index Z(G) is defined as

4G) = EP(G, k)
=0 , (2,18)
Where m is the maximum number of k, or 7 = {N 2} with N being the number of vertices of G. In other words,
Z(G) is the total sum of perfect and imperfect matchings.
The characteristic polynomial of G with N vertices is defined as
Pg(x) = (—l)N det( A —xI), (2.19)
by using the NxN adjacency (A) and unit (I) matrices.

For tree graphs the coefficients of Pg(x) exactly coincide with the set of p(G,k)’s as>?)

N
Pr(x)= ZakxN"‘
=0

= E(—l)"p(T,k)xN‘Zk (T Etree)
& , (2.20)

These properties can be realized in Table 2, where the p(G,k) and Z-values of the lower members of

path graphs are shown. Further, the novel relation

ZSp)=Fy, 2.21)
is also realized.

Table 2 p(G,k) and Z-values of the lower members of path graphs (S;)

P(Gk)
n G k=0 1 2 3 4 z
1 . 11 1
2/ 1 1 2
3 A 1 2 3
s N 131 5
5 /M 1 4 3 8
6 NV 1 5 6 1 13
EVAYAYA 1 6 10 4 21
S AYAYAY 17 15 10 1 34
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A star graph K1, is constructed from the central vertex and » edges of unit length emanating from it.
Thus K1z is composed of n+1 vertices and its Z-index is n+1. Before introducing the caterpillar graph the
recursive relation of p(G,k) and Z-index will be explained.
2.6 Recursive property of Z index

Suppose a tree graph G and an arbitrary chosen edge / in G, and define a pair of subgraphs, G-/ and
GO/, in the following way. Namely, as shown in Fig. 2, where comb graph M3 is chosen for G, the subgraph
G-/ is obtained by deleting / from G, while G@/ is obtained by deleting / together with all the edges incident to
I. As the non-adjacent number p(G,k) is the number of ways for choosing k disjoint edges from G, it is the sum
of p(G-1Lk) and p(GOLk-1).

P(Gk) = p(G-1k) + p(GOLE-1). 2.22)

The former gives l-exclusive counting and the latter linclusive one.

G=M3

i 1 G-I1=M;xM,

o o GOI=S;xS;xM,
I |=>M1

Fig. 2. Subgraphs, G—/ and GOI, of comb graph M3.

Since Z(G) is the total sum of p(G,k)’s, the following identity is straightforwardly obtained.
Z(G) = Z(G-)) + Z(GOI). (2.23)
These recursive relations are just an outcome of the inclusion-exclusion principle.1 2
In the case of Fig. 2, G-/ has two components, M; and M. The product of those Z-values gives the Z
value of G- Since GO/ is composed of a pair of isolated vertices (S;’s) and Mj, Z(G®O)) is equal to Z(M).
Then Z(M3) can be obtained by using the values of Z(M1) and Z(M>) as
Z(M3) = Z(M1) ZMp) + Z(My) = 2x5 + 2= 12.

Quite similarly, one can derive the following recursive formula,

Z(Maprn) = Z(Mm) ZMp) + Z(Mm-1) ZMn-1), (224

11,16,18)

and Z(Mjy,) values are found to be equal to the famous Pell numbers as shown below:

n 0 1 2 3 4 5 6 7 8

Z(Mp)= Py, 1 2 5 12 29 70 169 408 985

They are governed by the following recursive relation:
Pp=2Pu1+Ppyp. (2.25)

However, again the initial conditions, Po=1 and P1=2, are different from the conventional ones,”’lé) P1=1 and
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P>=2. The reason for the superiority of our choice has already been documented elsewhere.'®

Note, however, that P, can be expressed by the following continuant:
=ZMp)=Kn(2,2,°2).  (n2%). (2.26)
2.7 Caterpillar graphs
In the graph theory a caterpillar is defined as a tree that contains a path graph such that every edge has
one or both endpoints in that path. Let us put it in another way. Suppose a path S,, and prepare the set of » stars,
Xn={x1, X2,"**, Xn}, where natural number x,, denotes K1 xn-1, whose Z-value is x,. The set X, has n x, terms
and each term x, may take an arbitrary value. Then mount each element of X, onto each vertex of S, one by

one either from left or right to another end (See Fig. 3). Let us call the resultant graph a caterpillar Cu(x1, X2,

s

Xn) composed of | V|=Zx,, vertices.

xl—l xz—l o1 Xy 1—1 x,~1

Xp-2 Xp1 xn
xl—l x2— X1 x, 1—1 x,, 1
&E qz @ \2 G-I/
Xp2 Xpy ¥
xl—l x2—l Xp o1
SIZ \? W Go !
X1 Xn2

Fig. 3. Caterpillar C,(x1, x2,**, X,) and its subgraphs. Isolated vertices are omitted from GO/.

If X, is (1, 1,--+, 1), the resultant Cn(1, 1,---, 1) is identical to the parent S,,, whereas Cp(2, 2,-:-, 2) is the
comb graph My. With these preliminaries we can show that all the discussion on the degradation of simple
continued fractions can be reduced to the manipulation of the topological indices of caterpillars, which are

obtained from the terms of the continued fractions concerned.

3 Main Theorems
3.1 Continuant is Z-caterpillar

Let us choose a caterpillar C,(x1, x2,'**, x), and calculate its Z-index Z,(x1, x2, -, X»). The Z-caterpillar
is such a caterpillar whose Zu(x1, x2,"*-, x») takes the specified value. Depending on the structure of C, a
variety of ways are available for efficient calculation of Z, by the combined use of several recursive relations.

Here let us attack from one end of the caterpillar toward another end. Instead of formulating the final result, let
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us extend the length of the caterpillar one by one from Ci(x1), Ca(x1, x2) to Cplx1, X2,"*", Xn).
By applying the recursive relation (2.23) to Fig. 3 and following the recipe in Fig. 2 one gets stepwise
Zi(x1) =x1, Z(x1,x) =x1X2+1, Z3(X1, %2, ¥3) =x3 Z2(x1, x2) + Z1(x1), . (3.1
This is nothing else but the recursive algorithm (2.3) for the continuant K,,. Moreover, as already explained,
the Z-index of vacant graph is unity, i.e., Zo() = 1. Then we get
[Theorem 5] Continuant is identical to Z-caterpillar, i.e., the Z-index of caterpillar C,(x1, X2, **, Xn).
Zn(x1, %2, Xn) = Kpx1, X2, 5 Xp)- 32)

*." Both quantities have the same mathematical structure. [

Mathematically this is the most important theorem in the present theory, because all the difficulties in
the calculation of the continuant which originates from solving continued fractions can be resolved quite easily
by using the powerful recursive relation (2.23) of the Z-index after transforming K, into C,. For example, just
in the similar way as the derivation of (2.24) we get
[Theorem 6]

Km+n(x1, X2, X0)=Knx1,"**5 Xm) Knm+1,"*, X i) V1061, Xm—1) Kot ¥m+2, s X metm) - (3.3)
K, (X, X,,) K, (X, %)
=K, (B Xpen) K, Gt Xa)|

>Vmen

34
*." The following relation for Z-index is directly derived from (2.23):

Zm+n(X1, X2, Xn)=Zm(X15" s Xm) Zn(Xm+15"* s X mim) tZm-1(X15"", Xm—1) Zn-1(Em+25" "> X mim)y (3.5)
which automatically assures (3.3) and (3.4). [
By putting 1 into all x,’s in (3.3) one gets
Fpin=FnFp+ Fp1 Fy1. (3.6)
Note, however, that the initial conditions of the Fibonacci numbers are chosen as in (2.10). Otherwise, the
conventionally used
Fpin=FpFpit Fp1 Fy
is obtained.
Theorem 3 is also applicable to the Z-index.

[Theorem 7] Tridiagonal determinantal expression of Z-caterpillar.

x, 1 0 0 - O
-1 x, 1 0 .- O
0o -1 1 - 0
Z(%, X505 X,) = : : X3 . : :
0 0 - -1 x_, 1
0o 0 -~ 0 -1 x, G.7)

This relation is obvious from (3.2). [J

The rhs of (3.7) can be degraded as follows:
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x, 1 0 O
1 1 0 o 0 1 0
& x, 1 0 ]
0 -1 x 1 . . :
. . -1 - 1 e+ |
i D=1 x,, 1 T
0 0 -1 x,_, 0 0 ] -1 x,
0 0 0 -1 o
1 0
5 . . 1
-1 x, . .
=(xx, +1 N +xk-1 -0 1
0 -1 x, -,
xx, +1 x O 0 K,(x,x) Ki((x) 0 0 0
-1 x 1 0 0 -1 Xy 1 0 0
0 -1 x, : : 0 -1 X, : :
B R ] o 1 0
0 o - -1 x, 1 0 0 -1 x_, 1
0 0o - 0 -1 =x, 0 0 - 0 -1 x,
K,(x,x,,%) K,(x,x) 0 -+ 0 0
-1 X, 1 - 0 0
0 -1 xg : :
- . - . 1 0
0 0 -1 x,, 1
0 0 0 -1 x,
Z,(%,%,,%5)  Zy(x,x) O -+ 0 0
-1 X, 1 0 0
0 -1 Xs oo
B : 1 of
0 0 -1 x_, 1
0 0 - 0 -1 x
By continuing similar degradation one can obtain the following pair of general expressions:
[Theorem 8§}
Z 1 (X155 X _1) Z, (X, Xy ) 0
Zm+n(xl’ X297t s xm+n)= -1 K 1
0 —ZnAI (xm+2"“’xm+n) Zn('xm+l’“"xm+n (3.8)
and
Z, (X5 Xy,) Zpy (XX )
Zm+n(x ? X PR ‘xm+n) =
! 2 _Zn—l(‘xm+2’.“’xm+n) Zn(xm+1’“-’xm+n) . (3_9)

Note that without following the iterative degradation procedure (3.9) can be obtained directly from the
application of (2.23) to caterpillar Cr+n(x1, X2,"**, Xm+n). Namely, Zm(x1,**, Xm) and Z(Xpm+1,"*", Xpr+n) in the

diagonal are the Z-indices of the two components of G/, whereas Zp,—1(X1,**, Xm-1) and Zy_1(Xm+2,"**» Xytrs) D

NI | -El ectronic Library Service



Cchanom zu University

24 Haruo Hosoya NSR. O., Vol. 58

the off-diagonal are those of the two components of G®/, where / is the edge between the central vertices of
the mth and (m+1)th star moieties in the parent caterpillar G. Of course, (2.24) and (3.6) can be obtained also
from (3.9). In principle (3.8) can further be changed into (3.9), but it will be shown later that it has a practical
utility for solving some Pell equations. [

It is to be noted here that Balasubramanian and Randic developed the so-called “pruning technique” for
efficient degradation of the characteristic determinant det(A—xI) (See (2.19)).19’20) The essence of their
algorithm is quite similar to that of Theorem 8.

[Collorary 1]

m_l('xl’...’xm'l) Km—2 (xlv'“rxm—z) 0
Knu-n(xh Xo5tts x,,,+,,) = -1 X, 1
0 - ”—l(xm+2’".’xm+n) Kn(xm»rl""’xm-m) (3.10)

and

Km(x]"“’xm) Km-l(xl’.“’xm—l)

Km+n( > Xgsmts xm-a-n) =
1 %2 "K,,_l(xm+z""axm+n) Kn(xm+1""’xm+n)_ (3.11)

are naturally valid from (3.2).
3.2 Fastest algorithm for solving Pell equations

The essence of the algorithm for solving the Pell equation

#-Dy=1 (Pell-1) (3.12)
and Llep equation1 8.21.22)

P-Ds=-1 (Llep-1) (3.13)
will be explained below. For the nomenclature about Pell and Llep see Ref. 21.

First obtain the continued fraction expansion of the square root of D. However, depending on the parity

of the length % of the period of the infinite continued fractions the necessary procedures are a little different

from each other.

1) Pell-1 with even A=2m

‘[5 = [ao;ai’02"“’amvl’am’amu’""aZmA’a?zn]
= [ao ;al’ 027”"am—1 ’am ’am—l’am—Z’. ’ ',a1,2a0]
=[aLcL b]=[aADb]. (3.14)

where a, b, and c are, respectively, ao, a2m, and am, and L and L™ are, respectively, deemed as the caterpillar
Cm-1(a1, a2,**, am-1) and its reversed image Cp1(@m—1,"*, a2, a1). The latter two are essentially identical to
each other, since they are graphs. The symbol A denotes the caterpillar LcL™ with symmetrical structure
beginning from and ending at the moiety of star K1 ;1.

Now the smallest solution (x1, y1) of (3.12) is known to be expressed by the Z-indices of a pair of

caterpillars, Com_1(A) and Cam(aA), and all their family members can also be obtained as'>)
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x1 = ZanlaA), x2 = Zan{aAbA), x3 = Zem(aAbAbA), etc. (3.15)

V1 = Zom-1(A), Y2=Zam-1(ADA), V3 =Zem1(ADADA), etc. (3.16)
All these Z-values can be expressed by the determinantal form (3.7) and Theorem 8 can be applied. Then we
get the following theorem.
[Theorem 9] Smallest solution of Pell-1 with even k.

al aM O IZ (al) Z, (aM) 0
x,=2Z,,(aA)y=27, (aLcL)=|-1 ¢ 1|=| -1 a 1

0 -M L 0 -z.,M z, WL (3.17)

L M o |z, z_,M 0
W =Zn (A =2, (Ld)=|-1 ¢ 1f=| -1 a 1

0 -M 0 _Zm—2(M) Zm-l(L) . (3.18)
Higher family members f;,1 s can be obtained by using the recursion formula®®

Jn=2X1fo1-fa2 (X, 3). (3.19)
2) Llep-1 with odd A=2m-1

'J-E = [ag sa'la a4, '9am..1 ’am?‘ . '5a2m—2 ’a2m~1]
= [a() 34, a,, 5y 154, 193 25" "9a172'a(]]
=[aLL b] =[aAb] (3.20)

Note that in this case the symmetrical caterpillar A=LL" is different from case 1), and has an evén number of
star moieties. In this case the smallest solution (r1, s1) = (11, #1) of Llep-1 (3.13) is followed by the smallest
solution (x1, y1) = (72, u2) of Pell-1 (3.12), and then alternately Llep-1 and Pell-1 appear to form the big family
of Pellep-1 19
W =r1=2Lm1(0A), ©=x1=Zsm2aAbA), B=ry= Zem-3(aAbAbA), etc. 3.21)
u1 = 51 = Zom-2(A), u2 = y1 = Zam-3(AbA), u3 =52 = Zom-a(ADADA), etc. (3.22)
Further, it was proved that once (r1, 51) is obtained, the larger members of Pellep-1 can be obtained by using
the Chebyshev polynomials of the second kind.? Especially for (72, u2) we have
n=2r"+1,
ur=2r181. (3.23)
Thus the following theorem can be obtained.

[Theorem 10] Smallest solution of Llep-1 with odd &.

~ aL a Z(al) Z, ,(aM)
N=h =L @A) =2, @) =] 21= Lz M Z, M)

(3.24)

cumze Aoz o] M| Z @ Zeo
S == 2m-2 )_gm—z - M L - —Zm_z(M) Zm_l(L) ' (3.25)

The smallest solution of Pell-1 with odd £ is obtained by (3.22). Higher family members f,_1°s can be
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obtained by using the recursion formula®®

Ja= 21 fe1 T2 (FLu). (3:26)

The results (3.17-19) and (3.24-26) are the ever-proposed fastest algorithm for solving the Pell-1 and
Llep-1 applicable to general D values. Examples will be demonstrated in another paper.23)

3.3 Generalized Fibonacci numbers

In 2.3 the explicit forms of Fibonacci- and Lucas-caterpillars are given. Namely, the Z-indices of some
series of caterpillar graphs represent Fibonacci and Lucas numbers. Then what about the generalized Fibonacci
numbers of the property (2.14)? In this case trivial star solutions are excepted. Although the present author has
tried to pose a conjecture as a positive answer to this question, its mathematical proof could not be
obtained,24’25) However, now we can prove it as follows:

[Theorem 11] Generalized Fibonacci-caterpillars.

For a given pair of natural numbers, n1< np, which are prime with each other, there exist a series of
regularly growing Z-caterpillars {Gy,} of the property, Z(Gp) = Z(Gm—1) + Z(Gm-2) (m>3), with Z(G) = n1 and
Z(G2) = m.

(Proof) Prepare the continued fraction expression for 7/ ny as

n/ m=[0; a1, a2, ***, axl 32D
By using these terms draw a pair of caterpillars as follows:

G1=Cp-1(az, a3, =",ar) and Ga2=Cg(a1,a, ', ap). (3.28)
Then construct G3 = Crr1(L, at, a2, -, ap), Ga = Cii2(1, 1, a1, ap, -, ay), etc. The equalities, Z(G) = n1 and
Z(Gp) = m2, are proved from (2.23) and (3.2). The desired properties for Gy, (m>3) are proved from (2.23). [

A number of examples are given in Ref. 25. Theorem 11 can further be expanded to more general
recursive relations.
[Theorem 12]

For a given pair of natural numbers, 71< ny, which are prime with each other, and a natural number d
>1, there exist a series of regularly growing Z-caterpillars {Gy,} of the property, Z(Gy) = d Z(Gur-1) + Z(Gm—2)
(m>3), with Z(Gy) = n1 and Z(Gp) = n3.

(Proof) After performing (3.27) and (3.28) construct G3 = Cg+1(d, a1, a2, -, ax), Ga = Ci2(d, d, a1, a2, -,
ay), ete. The desired properties for Gy, (m>3) are proved from (2.23). [J

Finally graph-theoretical interpretation of (2.15) will be illustrated. See Fig. 4 where a series of graphs
whose Z-values obey generalized-Fibonacci numbers. If a pair of natural numbers a<b with (@, b)=1 are given,
a pair of caterpillars , Gu—1 and Gy, can be constructed so that Z(Gy,-1)=a and Z(Gy)=b according to Theorem
11. Then by extending an edge one by one as shown in Fig. 4a a series of generalized-Fibonacci graphs
{Gm+n} can be obtained. Now the Z-index of Gp+n, can be obtained by cutting the edge marked with double
bar as shown in Fig. 4b the recursive relation (2.15) can be obtained by using (2.23).
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Gm—l n-1
Z(Gpiy) = ZGyp) + Z(Gypyy) Z(Gpyi) = Z(G,y) Z(F,)
ZGppy2) = ZGpuar) + ZG) + 2Gp1) 20
ete.
(a) (b)

Fig.4. (a) Construction of generalized-Fibonacci caterpillars, and

(b) degradation of Z(Gy;+x) by the use of recursive relation (2.15).

This example illustrates how the topological index Z works not only as a powerful proof technique in
algebraic theorems but also gives us their geometrical or graph-theoretical interpretation. Many of the
mathematical concepts and materials appearing in this paper, such as the continuant, Fibonacci numbers
including generalized-Fibonacci sequences, caterpillars, and determinants, have been considered to belong to
different categories. However, thanks to the Z-index they were found to be closely related with each other in
the world of continued fractions. Thus by using the Z-index, many areas of elementary algebra and geometry

can be combined more tightly and understood more easily.
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