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Abstract The fastest algorithm for solving the Pell equations, x* — D y* = 1 (called Pell-1) and x> — D 3* =1 (Llep-
1), are demonstrated with two typical examples. The essence of the algorithm is i) to obtain the periodic continued
fraction expression for the square root of D, ii) to prepare four caterpillar graphs by using the terms derived above,
and iii) to set a 3x3 (for Pell) or 2x2 (for Llep) determinant whose elements are the topological indices (Z’s) of
those graphs, and iv) to calculate the determinant. The dramatic shortening of the procedure comes from the
finding that the continuant is equivalent to the topological index of the caterpillar graph directly derived from the

continued fraction expansion of the square root of D.
1. Introduction

Let us call Eqns. (1.1) and (1.2), respectively, Pell-1 and Llep-1,'*
#-Dy*=1 (Pell-1) (1.1)
#-Ds*=-1, (Llep-1) (1.2)
where only natural number solutions (x, y) are to be sought for square-free natural number D."” It is known that
for any D (1.1) is solvable, whereas for a limited number of D’s (1.2) has solutions. For Llep-1 to be solvable at
least D is the sum of a pair of squares, but this is not the necessary condition. Anyway once the smallest solution
(r1, 1) of (1.2) is obtained, all other families of not only (1.2) but also (1.1) with the same D can be obtained

from it. In that case we call the combined equations of (1.1) and (1.2) “Pellep-l”,l-4)

namely,
F-Du?=+1. (Pellep-1) (1.3)
According to the standard recipe developed by Lagrange simple continued fractions, either finite or infinite
periodic, are known to play a key role in solving the Pell equations, (1.1)—(1.3)5'7) For degrading a given
continued fraction the so-called “continuants” were proposed by Euler.” 1% It was recently foundD that instead
of following iterative steps for this degradation, 600 years before the work of these European mathematical giants,

Bhaskara Il in old India found more efficient jumping algorithm for reaching the final result.

) of the present series the present author has shown that the continuant is identical to
3) 4,15)

In the former paper4

the topological index Z,m’1 of a caterpillar graph1

composed solely of the terms of the continued fraction
concerned. Further by using the graph-theoretical technique developed by the present author the smallest solution
of the Pell equations can be represented by a 2x2 or 3x3 determinant whose elements are the Z-indices of certain

subgraphs of the caterpillar.
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In this paper, after introducing the proposed algorithm examples for solving the Pell equations will be

demonstrated and discussed.
2. Algorithm

First obtain the continued fraction expansion of the square root of D. However, depending on the parity of
the length £ of the period of the infinite continued fractions the necessary procedures are a little different from
each other.

2.2 Pell-1 with even k=2m

‘JB = [ao ;al: az > "am—l’am’am+1" ) .’a2m—l ’aZm]
=[ay;ty, a0y 3Gy >0, 200)
=[aLcl: bl=[aAb], @.1)

2

where a, b, and c are, respectively, ao, @2m, and am, and L and L are, respectively, the caterpillar Cp,—1(a1, a2, ",
am-1) and its reversed image Cp—1(am-1,""", a2, a1). As shown in Fig. 1 a caterpillar is constructed from the path
graph S, with # vertices and the set of # star graphs, each of which (a,7K1 g.»1) is composed of the central vertex
and »—1 edges of unit length emanating from the central vertex. The above two caterpillars are denoted,
respectively, as L and L, which, however, are essentially identical to each other, as they are graphs. The symbol

A denotes the caterpillar LcL™ with symmetrical structure beginning from and ending at the moiety of star aj.

o O O o Path Sn
1 2 n-1 n
x-1 x-1 Xp=1 X1 +
—— gy —t— ——
X1 X2 Xp-1 *n
x-1 xp-1 X—1 X1
—— —— —— —t—
Caterpillar
m—m CAX,)
X, X Xn-1 *n

Fig. 1. A caterpillar is constructed from a path and the set of stars.

The smallest solution (x1, y1) of (1.1) is known to be expressed by the Z-indices of a pair of caterpillars,
Com-1(A) and Capm(aA), and all their family members can also be obtained as

x1 = Zom{aA), x2 = Zam(@AbA), x3 = Zem(aADBADBA), etc. 2.2)

Y1 =Zom-1(A), V2= Zam-1(AbA), ¥3=Zem-1(ADADBA), etc. (2.3)

[Theorem 1] Smallest solution of Pell-1 with even £.
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al aM 0| |Z (al) Z,_ (aM) 0
x =2, (aA)=2, (aLcL)=}-1 ¢ 1]|=] -1 a 1

m

0 -M L 0 -Z,,M) Z, (L)

24)

L M 0 |z z,,M 0

yl = sz—l(A) = ZZm-—l(I"CL‘) = _1 ¢ 1 = -1 am 1
0 -M 0 -z, .M Z, L)} 2.5)

Higher family members f;;1’s of the solutions can be obtained by using the recursion formula2’3)

=21 o1 —fn2. (X, (2.6)
2.2 Llep-1 with odd i=2m-1

JB=[%§“1’029"" 19" 2 50 11
=lay:a,,a, .a, 1,4, 1,8, 5, &,20,]
=[aLL b] =[aAD].

2.7
Note that in this case the symmetrical caterpillar A=LL" is different from case 2.1, and has an even
number of star moieties. In this case the smallest solution (r1, s1) = (#1, #1) of Llep-1 (1.2) is followed by the
smallest solution (x1, y1) = (#2, #2) of Pell-1 (1.1), and then alternately Llep-1 and Pell-1 appear to form the big
family of Pellep-1.
= r1 = Zam-1(aA), 1 =X1 = Zam2AaAbA), 13=r2=Zem-3(aAbADA), etc. 2.8)
uy =51 = Zom2(A), uy =y1 = Zam-3(AbA), u3 =852 = Zem—4a(AbADbA), etc. 2.9)
Further, it was proved that once (71, s51) is obtained, the larger members of Pellep-1 can also be obtained by using
the Chebyshev polynomials of the second kind.? Especially for (#2, u2) we have
n=2r"+1,
up=2risi. (2.10)
Thus the following theorem can be obtained.
[Theorem 2] Smallest solution of Llep-1 with odd £.

Z,(al) Z, ,(aM)

~ al a
n=4=2,,aA)=2,, (alLl’)= l_M lj“dl= LG M Z, (L)

(2.11)

Z,.(L) Z, (M)
[~ m—Z(M) Zm—l(L) .

L
s=u=2,, (A)=2Z, ,(LL)= LM AZ|=

The smallest solution of Pell-1 with odd % is obtained by (2.8) and (2.9). Higher family members f,-1’s

(2.12)

can be obtained by using the different recursion formula®
Ja=2%1 fut Y2 (FLw). (2.13)

3. Worked-out examples

3.1 Pell-1 with even k

Let us first choose D=67. Its continued fraction expansion is obtained to be
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G.1)

with its length of period, k=10. The procedure for obtaining these terms has to be given here, because one cannot

skip any of the following steps for further manipulation.

n=0

1

J67 = 8 +(f67 -8)

1 J6_7+8_5+J€7'—7

=7 6 l'Tg
6 =ﬁ+5=1+‘/6_7—2
J67-5 7 7
7 _fE7+2 | 677
2" "9 tTo
0 _Me7+7_ KT-7
Ji-7 2 tT32
2 ___J6_7+7=1+J6_7—2
J67 -7 9 9
9 =ﬁ+2=1+‘ﬁ’7—5
J67 -2 7 7
7 _WT5_, 677
J67-5" 6 6
6 J67+7_ 678
767-7= 3 '3

JE’—S

=67 +8=16+ (/67 -8)

Then as shown in Fig. 2, construct caterpillar A = Co(5, 2, 1, 1,7, 1, 1, 2, 5) from which four subgraphs are

derived. Their Z-indices can be obtained quite easily by using the following recursion formula,

Z(G) = Z(G-I) + Z(GOJ) ,

(3.2)

where G-/ is the subgraph obtained from G by deleting an arbitrary edge /, and GOI is obtained from G-/ by

deleting all the edges which were incident to /in G.

A

M [ : ,27 aL'W_[_._..
Mu Wi_

Fig.2. Thekey caterpillars and their Z-values for D=67.

vl ¥

Then the resultant determinant to be solved is as follows:
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P21 131 0

xn={-1 7 1]|=221x7x27+221x16+131x27 = 48842,
0 -16 27
27 16 0

w=f1 7 1|=27x7+2x27x16=5967.
0 -16 2

Actually we have 48842°—67x5967°=1.
It is not a difficult task to calculate the Z-index of a given caterpillar. For example, the largest one in this

case al. can be obtained by the repeated use of the recursive formula (2.15) as below.

)2 A2 A B 2
=(W\\V +1 )x S+8X 2 =(@x5+1)x5+8x2 = 221

It is to be remembered that the Z-index of a path graph S,, composed of n vertices is equal to the Fibonacci

number as shown below.

n 0 1 2 3 4 5 6 7 8 9 10

F, 1 1 2 3 5 8§ 13 21 34 55 89.
Note, however, that the initial conditions are a little different from the conventional ones.3’4’16’17)
Here caterpillar al. is cut at edge / marked with the double bar to yield G- and further cut at the dotted curve to
yield GO/. However, in the above diagram the isolated vertices are omitted, as their Z-values are all unity

3.2 Llep-1 with odd k

Next choose D=61. Its continued fraction expansion is obtained to be

J61-[7143122,134,114] (33)

with its length of period, /=11. The above terms of the continued fraction is obtained in the following steps:

5 JH1+6 JoI -4
=0 61 = 7+ (61 - 6 = =2
n=0 ol HBI-T) 6 e =2 T
1L _W61+7 | oi-5 5 JEl+4 | SEI-5
Je1-7 12 12 J61-4~ o 9
12 _hi+s , BI-7 o 9 _JSEl+s . JEI-7
J61-5 3 3 Joi-5 4 4
-3 J61i +7 J61-5 4 Jo1 +7 Jo1 -5
3 = =3+ 9 = =4+
JoI-7 4 4 Jo1 -7 3 3
4 J61+5 Jo1 -4 3 PIL+5 JoI -7
4 = =1+ 10 = =1+
J61-5 9 9 J61-5 2 12
9 Jo6l+4 J6I -6 12
5 = =2 11 =6l +7=14+(Jf61-7
Jo1 -4 5 TS Jo1 -7 + +(J61 ).

Then construct caterpillar C1o(1, 4, 3, 1, 2, 2, 1, 3, 4, 1) from which four subgraphs are derived as shown in
Fig. 3.
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L S]z SZ |58 aL'W \Vv I 453

4 3 1 2

1 7 1 4 3 1 2
21
M YV 2 O VYV, -

Fig.3. Thekey caterpillars and their Z-values for D=61.

Then the resultant determinant to be solved is as follows:

53 1
=1 = =453 x 58 +164 x 21 = 29718,
21 58

%8 2l 58 +21° =3805
Tl sgm Ot TR T

Actually we have 297 182—61x38052=—1, which is the smallest solution of Llep-1. The famous smallest solution
of Pell-1 for D=61 can be obtained as follow:
h=x1= 2x29718%+1 = 17663 19049,
up =y1 =2x29718x3805 = 226153980.
4. Comparison with the conventional algorithm

Let us compare the present algorithm with the widely known one originally proposed by Lagrange.
Although there are several modified versions, here we take the one in which the terms of the continued fractions
are obtained first. Then all the set of a,,’s are already given in Table 1. After setting p_1=1, po=aop, ¢-1=0, and
qo=1, we proceed according to the following recursive steps

Pn= appn-1* Pu-2,

n= anqn-1+ qn-2, 4.1)
and take R= p,,2 -D qn2 until R becomes either of 1. It is known that at (n=k—1)th step R becomes +1 and —1,
respectively, for even and odd £. The results are given in Table 1 for'D=61. Though several numerals are omitted,
they can be reproduced by following (4.1) .

Selenius rediscovered the essence of the algorithm by Bhaskara I1 who completed the old Hindu method
for solving this problem, and declared that by using Chakrava (cyclic) method it takes much fewer steps before
reaching the final result.!” The underlined columns of » in Table 1 are the ones which are taken by Chakrava
method. Namely only about two thirds of the whole steps of the iterative algorithm are necessary. However, this
method becomes powerful for D whose continued fractions expansion contains long consecutive 1’s as

Ji15 = 10,1211 1,1,1,2,1,20]

Notwithstanding of these arguments the present method is far more superior than any other proposed method
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Table 1. Conventional procedure for solving the Pellep-1 for D=61. Smallest solutions of Llep-1 and
Pell-1 appear in row 10 and 21, respectively. Omitted numerals in rows 15-21 can be
obtained by using the numerals given here.
n  an Pn qn R =Pn2—D Qn2
0o 7 7 1 7-61x1°=—12
1 Tx1+1=8 1x1=1 8261x12=3
2 4 8x4+7=39 Ix4+1=5 392 61x5°=4
303 39x3+8=125 5x3+1=16 125°-61x16°=9
4 1 125x1+39=164 16x1+5=21 164°-61x217=5
5 2 164x2+125-453 21x2+16=58 4537 61x58°=5
6 2 453x2+164=1070 58x2+21=137 1070°-61x137°=-9
7 1 1070x1+453=1523 137x1+58=195 1523%61x195%=4
8 3 1523x3+1070=5639 195x3+137=722 5639°-61x722°=3
9 4 5639x4+1523=24079 722x4+195=3083 24079°-61x3083°=12
10 1 24079x1+5639=29718 3083x1-+722=3805 29718°61x3805°=1
1 14 29718x14+24079=440131 3805x14+3083=56353 440131%-61x56353%=12
2 1 440131x1429718=469849 56353x1+3805=60158 469849°-61x60158°=3
13 4 469849x4+440131=2319527  60158x4+56353=296985  2319527°—61x296985°=4
14 3 2319527x3+469849=7428430 296985x3+60158=951113  7428430°-61x951113°=-9
15 1 9747957 1248098 5
16 2 26924344 3447309 -5
17 2 63596645 8142716 9
18 1 90520989 11590025 -4
19 3 335159612 42912791 3
20 4 1431159437 183241189 12
21 1 1766319049 226153980 1
2 14 26159626123 3349396909 12

The advantage of the present algorithm over other conventional methods lies in the transformation of the
continuant into the caterpillar graph and its Z-counting. For demonstrating this fact see Fig. 4, where the lower
" members of p, and ¢,’s are compared with the corresponding caterpillars and their Z values. Important role of

the topological index Z has been found in a number of problems not only in elementary mathématics but also in
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algebraic number theory, such as in the problems of Pythagorean and Heronian triangles, Pascal’s triangle,

rational number approximation of quadratic irrational numbers, etc.

C Pn=2Z

'z 7
Y. g
w Sp 39

18,19)

Fig.4. Caterpillars and their Z-values conveging to the solution of Pellep-1 with D=61.

Compare with Table 1.
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