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Abstract

Our aim is to extend the blowup result by Levine-Meier for nonlinear heat equation of
Fujita type on conical domains to generalized paraboloidal domains by replacing fractional
type nonlinearity to logarithmic one. In this first note we give an abstract result assuring
the existence of the critical exponent for such nonlinearity.

1 Introduction

In [1], Fujita showed for the first time the so called Fujita phenomenon for the initial value
problem of the heat equation on RY '
Z—Q;:Au+up, u(0, ) = uo(z).
Namely, there exists a critical value p* = 1 + 2/N such that for 1 < p < p* the solution for
any non-negative non-zero initial data blows up in finite time, whereas for p > p* the solution
is time-global for sufficiently small non-negative initial data. This phenomenon was extended
to many directions. Among others we mention Levine-Meier [2], who showed that in a conical
domain with spherical profile 2 the Fujita-type phenomenon occurs for the solutions of the
homogeneous Dirichlet boundary condition with the critical exponent p* = 1 + 1/(N + v),
where 7 is the positive root of the quadratic equation 4% + (N — 2)y —w; = 0 and w; is the
first Dirichlet eigenvalue of the (positive) Laplace-Beltrami operator of the spherical domain
£2. Our aim is to consider the unbounded domains where p* = 1 in their theory. More
concretely, we wish to distinguish cylindrical domains and general paraboloidal domains of
‘the form
Zn < |xllq + C)

with some ¢ > 1. For this purpose, we introduce a logarithmic nonlinearity, and consider on
such domains D the homogeneous Dirichlet mixed problem for the equation
ou

i Au+ u(logg u)?, u(0, 2) = uo(z), ulap =0, (P)

where the new function symbol loggu in the nonlinear term stands for the following:

logu+1 for u>1,
loggu = ——— for O<u<l.
1—logu
We make the convention that logg0 = 0. This function was so chosen as to balance the
growth rate at u = co with the shrink rate at u = 0 as in the case of fractional nonlinearity.
. The graph of this function is as follows:
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Fig.1. graph of logg z; Fig.2. graph of zloggx

This is a monotone increasing function. Notice that uloggu as well as u(loggu)? for any
p > 0 becomes convex, as is easily verified by a simple calculation: For u >'1

dz d? d ' )
mu(logg u)f = Wu(logu +1)P = %{(logu + 1) + p(logu +1)?7*}
o+ D1
= %(logu;—}- 1)P=%(logu + p) > 0.

For 0 < # < 1 we have

i2-u(lo u)f = @ “ -4 = + P
&8 du? (1 —logu)?  du | (1—logu)? (1 —logu)rt!

_ p(p+1)
u(l —logu)Pt! * u(l —log u)ﬂ’+2

> 0.

In this article we present an abstract result which assures the existence of critical exponent
for such nonlinearity. It will be applied in our forthcoming paper to determine the critical
exponent to the mixed problems on generalized parabolic regions as mentioned above.

When the first author’s work [4] with his former student S. Ohta was reported as the
master thesis of the latter at the University of Tokyo, Prof. Y. Tsutsumi suggested to
generalize the fractional nonlinearity to treat more general domains. Our work is based on
his proposal, and we are very much indebted to this valuable suggestion.

2 Critical exponent for logarithmic nonlinearity

~ We modify Meyer’s abstract criterion for finding critical exponent expressed in terms of the
.decay rate of the solution of the linear heat equation and adapt it to our logarithmic type
case. In the sequel, a (super- or sub-) solution will always imply a non-negative one unless
otherwise mentioned.

Counsider the corresponding linear problem:

du '
= Au, u(0, z) = uo(z), ulsp = 0. (Po)
The following is our main result modifying the corresponding lemma by Meler [3] for the
- case of fractional nonlinearity to our logarithmic one.
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Theorem 2.1 1) Assume that there exists a non-trivial super-solution W of (Po) which
satisfies, for some e > 0 and C > 0,

17 (logg ||W (t, lloo )+ < C. (1)

Then a global solution of (P) exists.
2) Assume that for some non-trivial sub-solution W of (Py) we have

Tm ¢ (logg [W (2, )|oe)? ! = 0. 2)

Then every solution of (P) blows up in finite time.

Proof 1) Let 3(t) be the solution of the ordinary differential equation

B(t) = B(1){logg (W)W (1, Yoo }P- ()

Then
ut, z) = BR)W(t, z)

‘becomes a supersolution of the solution u of (P). In fact, in view of the assumption W; —

AW > 0 and the obvious fact § > 0, we have

— AT = ()W (t, z) + BH)W'(t,z) — BA)AW (¢, z)
> &)W (¢, 2){logg (BAIIW (2, )l )}
> &)W (¢, z){logg (B()W (¢, 2))}? = u(loggu)’.

Now we seek for a global solution of the equation (3). Notice that the condition (1) implies
that |[|[W (¢, z)|lcc — 0. Hence, adjusting the initial value to be w <1 by a constant factor,
we can assume without loss of generality that |W(t,z)||c < 1 and it is monotone decreasing
to 0. Hence the assumption (1) is rewritten as

(1 =1og|[W(t, Yleo)?t > C7H . or  log||W(t, )|leo < 1 — C/#F)/ FD),

In view of the above made assumption ||W (%, -)||cc < 1, the last inequality may be rewritten
as

log ||[W (2, )]|eo < —c(1 + ¢+ (2H1)y

with some constant ¢ > 0. Note also that if B(¢)||W (¢, z)||c < 1 at some ¢, then, B(t) <
|W(t, z)||! and the solution obviously exists up to this time. Thus we may assume that

- BOIW (%, 2)||oo > 1 from some time ¢ on, and we shall shift the time so that this inequality

holds for ¢ > 0. Then equation (3) reads as
B = Qoms (B (1, )} = UoB(BOIW (1, )l) + 17
= {log B(t) +1 + log||W(t, )|l }? < {logB(t) + 1 — ¢ — ct(1+e)/ (P3P,

d
s log B8 =

Thus the solution of the equation
d
= log 8 = {log B(t) + 1 — ¢ — ct1+o)/ (P+1))p
becomes a supersolution of the equation (3). Hence it suffices to show that this one has a

global solution for sufficiently small 8(0) > e°. Rewriting y(t) for log 8(t) — ¢, and « for ¢,
we obtain from above the following nonlinear ordinary differential equation:

= (y+ 1= cal+)/ P+, (4)

Lemma 2.2 Equation (4) has a global solution for some non-negative initial data y(0),
provided c is chosen large enough.



Akira Kaneko and Shie Nishikawa NSR. O, Vol. 57

Since this is rather an independent subject, we give the proof after the end of the proof
of the present theorem. Now we have a globally defined $(t), and hence a global solution of

(P).

2) Consider the following initial value problem for ordinary differential equation:

dz

o= z(logg 2)?, 2(0) = w. , (5)

.Let z(t; w) denote the solution. We assert that u := z(i; W(t,2)) becomes a subsolution to
the nonlinear problem P. In fact, we have

u; — Au = z2(t; W) (logg 2(; W))P + 2o Wi — 20 AW — 2yu |[VW|* = u(logg u)? — zuw | VW%,

Hence, to prove u, — Au — u(logg u)? < 0, it suffices to show that 2, > 0 and 2y > 0. The
equation (5) is integrated in view of the following elementary lemma of which the proof we
omit:

Lemma 2.3 We have

1 1

de ) p—1(loggz)r~?’
z(loggz)P 1 1

forz > 1,

ifor0<‘w<1,

~p+1(loggz)r+t’

Employing this we can explicitly solve for 2. To obtain a subsolution, we can always
assume without loss of generality that w < 1. .
First, starting from such w, during the time 2z remains below 1, we have

£ dz 1
= - — p+1l __ _ p+1
t /w Zloggz¥ —p+1 {(1 log w) (1 —logz) },

hence,
1/(p+1)
z = exp {1 - ((1 —~logw)P*! — (p+ l)t) ! } (6)

Second, when z > 1 from some time on, we have

t_/z dz _/1 dz +/z dz
"~ Jw z(logg2) — J, z(loggz)? " J; z(loggz)P

1 1 1 1 1
— 1—1 p+1 _ .
P+1+P+ 1( ogw)™ + -1 p—1(logz+ 1)1
Thus 1 NV Ge-1) 2 1/(p—1)
== p NV 2 _ Pl _ A
7= —exp [(p—— 1) {p_. 1 + (1 — log w) (p+1)t} ] @)

Now we can differentiate these with respect to w twice. In the first case (6), we obtain

dz = exp [1 - {(1 —logw)P*! — (p + l)t}l/(p+1)]

dw
—-p/(+1) (1 — P
x{(l—logw)p+1—(p+ 1)t} Pl (1 — logw)? ,
d2

w
__z2_ = exp [1 - {(1 —logw)Pt! — (p + 1)t}1/(p+1)]

dw
' —(2p+1)/(p+1) (1 — p—1
x {(1 _ logw)p+1 _ (p+ l)t} r+1)/(p )(1 lc’;)gz'w)

1/(p+1)
X [(1 — logw)p+1{(1 — logw)?*t — (p+ 1)t} + p(1 = log w)P*!

~p{(1 ~ logw)** — (p+ 1)t} — (1 - logw){ (1 ~ log w)** - (p+ 1)t}
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This is easily seen to be nonnegative. In the second case, we have’

dz 1 /p+1\p/(p-1) p+1\YE-) 2 o+l =-1/(p-1)
oG =[G (ot -eeng
2 ~p/{P—1) (1 — log w)?
X{I‘)‘—;—"l‘-f'(l—logw)p-'-l—(p-l— l)t} (____;)}g—w)’
d?z _ 1/p+1\p/p-1) p+ INY@E-D¢ 2 bl ~1/(p-1)
qr=c(omp) " e [(P2) T oy - tesup - (o 1 ]
2 , =2p/(p=1) (1 — log w)P~1
X {I—)—_—I+(1—logw)”+1 —(p+ l)t} (1~ logw)™" jz )
+ 1\p/(p-1)
[ -ty
1 2 1/(p—-1)
+ E—(I-)p—_tl——)(l - logw)p“{;-:-i- + (1 —logw)P*! — (p+ 1)t}
2 p/(p-1)
—p{ T + (= logu) —(p+ 1)t}
2 r/(p—1)
—(1— — — p+1 _
(1 logw){p_ 7+ (1 - logw) (r+ 1)t} ]
_1/p+1\p/-1) p+ 1\YE-1y 2 o1 -1/(p-1)
=) e [(5)T {arras et e ]

2p/(p~1) (1 — log w)P~?!

w?

X {;—ET + (1= logw)?™ — (p+ 1)t}_

e -

-1
— {pil +(1—log w)p+1 —(p+ 1)t}p/(p .)(1 —logw)

+ P{%{(l—log U))P+1 _1}+(P+1)t}{p%1+(1_10g ’Ll))p'H _(p+1)t}1/(10—1)] .

The positivity of this is not at all evident, and even formally false. Note, however, that this
formula is valid only if z > 1 in (7), hence under the condition

2 p+1
——+(1-1 ptl_ < —.
S+ (A= logwpt — (p+ 1 < S

Then the positivity of the above quantity is obvious. The positivity of z, is obvious in either
case. Thus we have established that u is the subsolution.

Now we examine the lifespan of the subsolution z(t; W(t,w)) for w < 1. Obviously
the first case (6) cannot last forever, hence we have finally z > 1, hence the case (7). If
(1 — logW)P*1/t — 0, or equivalently, if t(logg W)P*! — oo, as t — oo, then (7) also
becomes illegal in finite time. Thus in view of the assumption the solution cannot exist
globally. This ends the proof of Theorem 2.1. QED

Proof of Lemma 2.2 For general power p the equation is only meaningful for y +
1 — ca(+e)/(p+1) > o that is, for y > ca(1+<)/(P+1) _ 1. In the interior of this region the
inclination of the solution curve is positive, and if it touches the boundary curve C; (the loci
of maxima), it does horizontally. Differentiating the equation (4) once, we obtain

1+e¢ .
" — — ept+e) (p+1)yp=1( 0 __ —(p—e)/ (p+1)
v =p(y+1—cz ) (y o¥i” )

= ply+ 1= cat V@Y (g 4 1 4D — gm0/},

Thus the solution curve is convex in the region (y—}-l-—cx(l*'s)/(p"'l))p~—cﬁm_(”_e)/(p+n >0,

namely on y > cx(1+e)/(p+1) _ 1 4 c1/p (ﬁ%)l/px“(f"ve)/p(?"'l)‘ This region is inside that
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of positive inclination. Its boundary curve Cy (loci of inflection points) has obviously a

minimum, say mg. The solution curve intersects Cy with an inclination bigger than that of
C5, because on Cy wh have

y = e+ _q 4 Cx/p(ﬁ.)l/z’x—@—evp(m),

Y = AT ==+ _ a/p(LEEN U PZE o)1)

p+1 p+1 p(p+1)
< it -t = = (y+ 1 — cx(+)/(D)yp,
p+1

Thus a solution curve starting with the 1n1t1al value y(0) > myq should touch C5 and then
remain above forever. Hence, if we trace back a solution curve of our differential equation,
starting from any point Q on C; and in the backward direction of z; it should come below
C and should finally shoot the y-axis below my. When we let Q tend to infinity along C,
the solution curve therefore converges to a global solution with y(0) < mg. Thus to prove
the lemma, it suffices to assure that y(0) > 0 for this limit solution, or equivalently that
the solution starting from y(0) = 0 does not hit the curve C3. Recall that we can choose
¢ as large as we wish. The intersection of Cy with the z-axis is z = ¢~®+D/(1+¢)  which
approaches 0 as ¢ — co. Also C; approaches the part y > —1 of the y-axis locally uniformly.
On the other hand, the solution with the initial value y(0) = 0 satisfies

. b 1 ~

y‘S(y+ P, de.  y< A== D7D 1

as long as it remains above Cy. Thus for sufficiently large ¢, it hits C1, and the proof is
complete. QED

OK x
Fig.3. Thick lines: loci of maxima and loci of inflection points (p = 3, ¢ = 1, e = 0.1);

Thin lines: solution curves of the initial values 0.0 ~ 0.5 by step 0.1. The drawn range is
0<z<5, -1<y<4

Theorem 2.1 assures the existence of critical exponent p* for the case of logarithmic
nonlinearity. Notice that the assumption p > 1 is not a restriction, because, for p < 1 the
solution of (P) is always global. The case p = 1 is delicate. But we are, for the moment,
interested in the value of the critical exponent itself. What happens when p is equal to the
critical exponent may depend on the concrete problem.
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