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Abstract

We give another definition of a complex conformal structure on a complex quadric

Q™ and introduce a (local) tensor field J which satisfies J? = Id(the identity map).
A complex subspace W of the tangent space T,Q" is called an isotropic complex

~ subspace if JW is orthogonal to W. A Kahler immersion ¢ : M™ — Q™ of an
m-~dimensional Kéhler manifold M™ is said to be isotropic if for an arbitrary point
p € M, p.(T,M) is an isotropic complex subspace in T, ) Q™. We study the prop-
erties of higher fundamental forms of isotropic Kéhler immersions and show some
reduction theorems. Furthermore we construct isotropic Kéhler immersions of Kahler
C-spaces using orthogonal representations and study the higher normal spaces and
the osculating degrees of isotropic Kahler immersions of Hermitian symmetric spaces. .

§1 Introduction

Let CP™*! be a complex projective space with Fubini-Study metric which has constant
holomorphic sectional curvature 4 and Q™ be a complex hyperquadric in CP™*! defined
in terms of the homogeneous coordinate system 21, 22, -+ , Zp+2 by the following equation

A2+t 2y =0,

We equip Q™ with the induced K&hler metric from the Fubini-Study metric . Then Q™ is
a Hermitian symmetric space. Let {Ux, Q2 }ren be a complez conformal structure on Q™ .
That is, {Ux}aea is an open covering of @™ and 2 is a holomorphic tensor field of type
(0,2) defined on Uy and at each point p of Uy , {2, is a non-degenerate symmetric bilinear
form T,Q"" x T,Q™" — C . Moreover on Uy N U, there exists a non-zero holomorphic
function f,» which satisfies

Qu = funfla on UyNU,.

Let ¢ : M™ — Q™ be a Kahler immersion of an m-dimensional Kahler manifold M™ into
Q™. We call ¢ an isotropic Kdhler immersion if at each point p € M ¢*Qy = 0, ¢(p) € U,.

Our motivation of studying this class of immersions is the following:

1. Interesting observation relating to Gauss mappings by G.Ishikawa,M.Kimura and
R.Miyaoka [6]. We identify Q™ with the Grassmann manifold Ga(R"*?) of oriented 2-
dimensional subspaces in R"*2. Let V5(R™*2) be the Stiefel manifold of orthonormal
2-vectors in R™*2.Then the natural projection 7 : Vo(R"*2) — Go(R™*?) is a principal
circle bundle . We denote by n the map of Vo(R?*?) into the unit sphere S**! defined by
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n(ey,e2) = e; for an orthonormal 2-vector (e, es). Let ¢ : M™ — Q™ = Go(R"*2) be a
Kshler immersion and M be the total space of the pullback bundle ©*Vo(R™*2). Then we
obtain a map @ : M — S™*! defined by @ = 1o ,where . : M — Vo(R™2) is the bundle
mapping. If ¢ is an isotropic Kéhler immersion, then ¢ : M — $™t1is an immersion and
has remarkable properties: its Gauss mapping M — Gamo (R™*2) is degenerate and ¢ is
austere ([6] Proposition 8.2 and Theorem 8.3 ). Here we say an immersion to be austere
if for each normal vector &, the set of eigenvalues of the shape operator A¢ is invariant
under multiplication of —1.

2. The theory of isotropic Kéhler immersions is formally analogous to that of totally
complex immersions into a quaternionic Kéhler manifold (for the theory of totally complex
immersions into a quaternionic Kéhler manifold, see [18}).

3. A generalization of the theory of holomorphic curves in @™ by G.R.Jensen,M.Rigoli
and K.Yang ([7]) . In particular, it is known that there exists a one-to-one correspondence
between the set of generalized minimal immersions S? — S?™ and the set of “totally
isotropic” holomorphic curves S? — Q?™1,

 In section 2, we give another definition of a complex conformal structure on Q™ and
introduce a (local) tensor field J which satisfies J? = Id(the identity map ) (Proposition
2.2). Applying these, we describe the second fundamental form of Q" regarded as a
complex hypersurface of CP**! (Proposition 2.4) and express the curvature tensor of
Q™ (Proposition 2.5). In section 3, we consider isotropic Kahler immersions with low
codimension. In section 4, we study the properties of higher fundamental forms of isotropic
Kéhler immersions and show some reduction theorems (Theorems 4.4,4.5). In section 5, we
construct isotropic Kéhler immersions of Kahler C-spaces using orthogonal representations
(Theorem 5.3) and study the higher normal spaces and the osculating degrees of isotropic
Kéhler immersions of Hermitian symmetric spaces (Theorem 5.5).

§2 The complex conformal structure on a complex quadric

In this section, we give another definition of a complex conformal structure on a com-
plex quadric Q" so that it is convenient to study the Kahler geometry of Q™.

First we recall the Kahler structure on a complex projective space following Besse ([2])
Chapter 3. Let C**2 be an (n + 2)-dimensional complex vector space of complex (n + 2)-
tuples. We define a linear endomorphisim I of C**2 by Iz = v/—1x for £ € C**? and
call it the complex structure . We often regard C**2 as a 2(n + 2)-dimensional real vector
space with the complex strucure I. The space C**? is endowed with its Hermitian inner

product
n+42

iD y) Z‘T’Lyh 33, y € Cn+2
and its real inner product

(x,y) = the real part of (z,y).

" As usual we identify the tangent space TpC"t? with C**2 and define the Riemannian
metric on C**2 induced from the real inner product (,) , for which we use the same
notation (,).

We denote by SC™*+2 the unit sphere in C**2? defined by the equation (z,z) = 1.
The complex projective space CP"*! is defined as the orbit space by the action of the
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group U(1) = {A € C | |\| =1 }. We denote by m(z) the orbit of z € SC"*2. Then
7w : SC**2 — CP"*! is a principal fibre bundle with the structure group U(1). The
tangent space T SC"*2 of SC™*2 at a point = may be identified with the real subspace
of C**? as follows:

TeSC™? = {u e C**? | (@,u) =0 }.

The subspace tangent to the fibre at « in the principal fibre bundle 7 : SC*+2 — CP"*1
is then identified with {v/=IAxz | A € R } , which will be denoted by VgSC"*2. Put
HzSC"? = {u € C"*? | (z,u) = 0 }. Then we have the decomposition orthogonal
with respect to (,):

TxSC"+? = Vg SC™2 @ Hyp SC™+2.

Moreover the distribution {HgSC"*? | £ € SC™*? } is invariant by the U(1)-action and
hence defines a connection on the principal fibre bundle 7 : SC*+2 — CP™+1,

We shall give the description of the projective space CP™*! as a Riemannian symmetric
homogeneous space. We denote by G=SU (n+2) the group of complex linear transforma-
tions of Cn+2 with determinant 1 which leave the Hermitian inner product (,) invariant.
Note that G acts as automorphisms of the principal fibre bundle SC**?(CP™+1,U(1))
which preserve the connection and that G acts transitively on SC"*2 and hence transi-
tively on CP™*!. Let {e1,e2, - ,en+2} be the canonical basis of C**2 (i.e.,e; is the vector
of Ct2 whose ¢-th component is one and the other components are zero) and K be the
subgroup of G keeping the point m(e;) fixed. Then CP”'H may be identified with G/K
by the diffeomorphism ¢ : G/K — CP"+1 by qb(AK ) = m(Ae;). Every element A € K
has the following form:

A:(l/dgtB g) with B e U(n+1).

Hence K is isomorphic to S (U(1)xU(n+1)). It is well-known that (G, K) is a Riemannian
symmetric pair. The Lie algebra § = su(n + 2) of G = SU(n + 2) is the set of X €
M,,+2(C) such that !X + X = 0 and trace X = 0, where M, ,2(C) denotes the set of all

- matrices of degree n + 2 with coefficients in C. The Lie subalgebra 0 corresponding to
K= S(U(1) x U(n + 1)) is given as follows:

E:{(‘%’Y 3) |Y€u(n+1)}.

Let b be the subspace of g defined as follows:

={(0 ) 1eee]

Then we have the canonical decomposition § =€+ P of § for the symmetric pair (G, K).
We identify p with C**! by the real linear isomorphism

e
C”“aa:w(i Ow>eﬁ.

Then with this identification the adjoint representations of K and®on P, denoted by Ad;
and adg respectively, are written as follows:

Ad5<6\ Ig)(z):X(Bz) for (3 g>ef<
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and \
0 A0 ~
ad3<0 Y)(z)—Yz—)\z for (0 Y)e’é.

The vector space p is canonically identified with the tangent space of (CP”+1 G / K at
the point o = 7(e1). The standard real inner product (,) on p =~ C**! is AdAK - invariant
and so defines a G-invariant Riemannian metric on the homogeneous space @ / K by which
CP™! is a Riemannian symmetric space. Moreover the fibration 7 : SC**2 — CP"*! is
a Riemannian submersion of the sphere SC**? with the Riemannian metric induced from
the real inner product (,) in C**2? and HzSC"*? & € SC™*? are horizontal subspaces
with respect to this submersion. To see this, define the mapping ¢ : G — SCnt2 by
q(A) = Ae1, A€ G. We use the same notation q for the differential of ¢ at the identity
of G, ie., q(X) = Xe;, X €9. Then we have

W(2T)-(2) = ()

Hence g defines a linear isometry of p onto H,, SC™*2. Since 7 o § is the projection of
G onto CP™*!, the differential of m at ey is then a linear isometry of H,, SC""2 onto
T,CP™*!1, - Since the Riemannian metrics on SC**? and CP™*! and the distribution
{HgeSC™?2 | £ € SC™?2 } are all G-invariant, we see that 7 : SC"*2 — CP™! is a
Riemannian submersion.

We define a complex structure I on p by

(2 ) (AT

Note that g(IX) = v/—1q(X) for X €, i.e., 7 is a complex linear isomorphism of p onto
H,, SC™*2 .| This complex structure I on P is invariant by the adjoint representation of K
and so defines a G-invariant almost complex structure on CP™F!. This almost complex
structure and the Riemannian metric defined above gives a Kéhler structure on CP"*1.

Next we describe the Kéhler structure and the complex conf01*~mal structure on a
complex quadric Q™ . We define a complex symmetric bilinear form € on C**2 by

n+2
(2.1) Qz,y) = 21y2 + 22y1 + Zmiyi, x,y € C"2,
=3

Let S be the symmetric matrix of degree n + 2 corresponding to Q:
_ 01 0

S=1 10 0

0 0 E,

where E,, denotes the unit matrix of degree n. Then we have Q(ar: y) = txSy for z,y €
C™*2. We define a real linear endomorphism J by Jx = ST for « € C**2, Then we have
(i) JI = —1J,
(ii) J J? = id, where id denotes the identity transformation,
(iii) (Jz,y) = Q(x,y), where (,) denotes the Hermitian inner product on C™*2.
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Let G be the closed subgroup of G = SU (n + 2) defined by
(2.2) G={AeSU(n+2) | QAz, Ay) = Q(z,y) }
equivalently by

G={A€ Mp»(C) | *tASA=S, “AA=FEpy9, detA=1}
and g be its Lie algebra defined by
(2.3) F={Xesuln+2) | AXz,y)+ Qx,Xy) =0}
equivalently by

F={X €M, »(C) | ' XS§+5X=0,'X+X=01}

Then every element X of g has the following form:

VESDY 0 —tz
X = 0 —/=I\ =tz |, with A eR, e C"Y €so0(n,R).
T T Y

Here we define a Lie group SO(n,R) and its Lie algebra so(n,R) by

SO(n,R) = {Ae€MyR) | *AA=EFE,, detA=1}
so(n,R) = {XeM,R) |'X+X=0}.

It is easily seen that G is isomorphic to SO(n+2,R) and that g is isomorphic to so(n+2,R).
We consider a submanifold Q of SC™*? with real codimension 2 and a complex hyper-
surface Q™ of CP™*! defined as follows:

~

Q = {2€8C""? | Q(z,2) =0 }
Q" = {r(z)eCP"™ | 2€Q }.

Then @™ is given in terms of the homogeneous coordinate system 2,29, , 2p4+2 by the
following equation
22122+z§—|—-~+z,21+2 =0.

We call it a compler quadric. The submanifold Q is invariant by the U(1)-action. Re-
stricting the fibration m : SC"*? — CP™*! to Q, we obtain the principal subbundle
Q(Q™, U(1)). That is, we have the following commutative diagram:

Q —y SCnt2
wl ln
Q" —— Ccprt!

The tangent space Tmé at a point € é has the orthogonal decomposition

TzQ = VzQ & HzQ,
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where Va;@ and HmCNQ are given by
VaQ={v—Iiz | A€R } and HzQ={uecC"? | (z,u)=0, O(z,u)=0},

respectively. The distribution {HzQ | z € Q }is invariant by the U(1)-action and hence
defines a connection on the principal fibre bundle QLQ” (1)). The subspace HzQ is a
complex subspace of TpC™*2 and HpSC™2 at @ € Q has the orthogonal decomposition

HeSC™? = HpQ @ C(Jx).

Since m, : HpSC™"? — Ty (g)CP™*! is a linear isometry and m,(HzQ) = Tr(z)@", the
vector 1y (J: x) is a unit vector normal to Q™ at w(x).

We will describe the complex quadric Q™ as a Riemannian symmetric homogeneous
space. The group G defined by (2.2) acts as automorphisms of the principal fibre bundle
Q(Q” U(1)) which preserve the connection. Moreover G acts transitively on Q and hence
transitively on Q™. Let {e1,eq," - 611,:{_2} be the canonical basis of C**2. Then we have
e1 € Q. Let K be the subgroup of G keeping the point 7(e;) fixed. Then Q™ may be
identified with the homogeneous space G / K by the diffeomorphism ¢ : G / K — Q™ which
is given by ¢(AK) = w(Ae;). Every element A € K has the following form :

o

On G we define an involutive automorphism 6 by

oo
o Mo

0
0 ) with A€ U(1l) and B € SO(n,R).
B .

-1 0 0 N
0(A) = sAs™!, where s= 0 -1 0 €q.
0 0 E,

We denote by G the subgroup of G which consists of the fixed elements by 6,i.e., GO =
{A€eG | 6(A) = A }. Then we have

G =Ku{ | AeU(1), BeO(n,R), detB=—1}.

o > O
o © >
oo

Therefore (C‘V?,NI? ) is a symmetric pair with the involution § . The Lie subalgebra ¥ corre-
sponding to K is given as follows:

N VASPY 0 0
E:{( 0 —/=1A 0) | AeR, Y €s0(n,R) } 2 RPso(n,R).

0 0 Y
We define the subspace p of g as follows:

0 0 -tz _
p={]l 0 0 -tz | | zeC" }.
z zZz- 0
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Then we have the canonical decomposition g = E+i5 for the symmetric pair (é, K ,0). We
identify p with C™ by the real linear endomorphism

0 0 -tz
(2.4) C'sz— | 0 0 -tz | ebp.
xz x® 0

Then with this identification the adjoint representations Adgy and ady of K and ton p are
written as follows:

A0 0
Adg| 0 X 0 | (2)=X(Bz) with AeU(1) and B € SO(n,R)
0 0 B
and
v—=1X 0 0
adg 0 —v/—=1A (z)=Yz—-+V-1)z with A€R and Y € so(n,R).
0 0 Y

The standard real inner product (,) on § ~ C" is Adgf{ - invariant and so defines a

G-invariant Riemannian metric on the homogeneous space G / K= Q" .
We define a complex structure I on p by

0 0 -tz 0 0 . =1tz
I(1 0 0 -tz |)= 0 0 —y/—1tz
z z 0 vV—1lz —v/—-1%Z 0

This complex structure I on P is invariant by the adjoint representation of K and so defines
a G-invariant almost complex structure on Q™. This almost complex structure and the
Riemannian metric defined above gives a K&hler structure on Q™. Moreover the inclusion
map of Q" into CP™*! is a holomorphically isometric imbedding,i.e., a Kihler imbedding.
We will prove this. Since the inclusion map is (N}—equivariant, it is sufficient to see this at
the point o = w(e1). Let § = £+ P be the canonical decomposition of g = su(n + 2) which
corresponds to CP™*! and j : § — B be the projection with respect to this decomposition.
Then we have £ = g N E. Since

0 0 -tz 0 0 -tz
jJX)y=f1 0 0 0 for X=|0 0 -tz | ebp,
z 0 0 x T O

we have (j(X),j(Y)) =(X,Y) and j(IX)) = I(5(X)) for X,Y € p. Hence it is seen that
the differential of the inclusion map at the o = 7(e1) is a complex linear isometry.

Now we will construct a complex conformal structure on a complex quadrié Q". Under
the identification of p with C®,we define a complex symmetric bilinear form € by

n

(2.5) Qaz,y)="zy=> my, forz,yep=C"
i=1

and define a real linear endomorphism J of p by

(26) J@)=F for zep=C"
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Then we have

(i) JI=-1J,

(i) J? = id,

(iii) (Jz,y) = Q(z,y), where (,) denotes the Hermitian inner product on p=Cn.
The adjoint representation Adg of K acts on {2 and J as follows:

Y
Ad | o
0

where A € U(1),B € SO(n,R). We define the mapping ¢ : G = Q by q(A) = Ae,
A € G. We use the same notation ¢ for the differential of § at the identity of G, i.e.,
g(X)= Xei, X €7. Then we have

00 -tz 0\ 00 —tz
gl 0 0 =tz D=1} 0 for 0 0 -2 | ep.
z zZz 0 z z z 0

Hence ¢ defines a complex linear isometry of p onto Helé. Moreover we have

o Mo
o > o

0 A0 0 ,
0 |Q=X0Q, Ad;| 0 0 |J=X",
B 0 0 B

2q(x),qv) = AX,Y) X, Yep
qUX) = JiX) XEeb

We denote by S?(p) the complex vector space of all complex symmetric bilinear forms
on p. Then we have the following.

Lemma 2.1. There exists a unique complex 1-dimensional subspace L of S%(p) which
satisfies the following conditions: ‘

(a) There exists an element 2 in L satisfying the following: the real linear endomorphism
J of v defined by the equation

(JX,Y) = the real part of QUX,Y) X, Y€p
satisfies J? = id(the identity tmnsforhmtz’on ).
(b) The subspace L 1is AdEI? -tnvariant.

Proof. Let Q be the complex symmetric bilinear form on p defined by (2.5) and L be the
subspace of .S%(p) spanned by Q. Then L satisfies the conditions (a) and (b) in Lemma
2.1. By straightforward arguments, we can prove the uniqueness of such subspace. O

We view the tangent space T,Q™ at p € Q™ with the complex structure I as a complex
vector space and denote by S?(T,Q™) the complex vector space of complex symmetric
bilinear forms on T,Q™. Then S*(T'Q™) = Uyegn S%(T,Q™) is a complex vector bundle over
Q". Let (é, K ) be the symmetric pair which corresponds to the complex quadric Q™. Then
the bundle $2(TQ™) is the vector bundle over Q" = G/K with the standard fibre S(p)
associated with the principal fibre bundle G(G/K, K). Let L be the complex 1-dimensional
subspace of $%(p) shown in Lemma 2.1. Since L is an Adg.f{' -invariant subspace, it induces
a complex line subbundle of S%(T'Q™), which is denoted by the same notation L. The line
bundle L is parallel in S?(T'Q™) with respect to the canonical connection in G(G/K, K)



September 2006 Isotropic Kahler immersions into a complex quadric 9

defined by the canonical decomposition g= [ p , which coincides with the Riemannian
connection V on Q™ = G/K. By these, we have the following:

Proposition 2.2.  There exists a unique complez line subbundle L of S*(T'Q™) which
satisfies the following conditions:

(a) For eachp € Q™, there is a neighborhood U of p over which there exists a local section
Q of L satisfying the following: the tensor field J on U defined by the equation

(JX,Y) = the real part of QUX,Y) X, Y €T,Q", qe€U
satisfies J? = id(the identity map ).

(b) The complex line bundle L is a parallel subbundle of S2(TQ™) with respect to the
Riemannian connection V .

We call the complex line bundle L a complex conformal structure on Q™. Let 2 and J
be local tensor fields on U in Proposition 2.2 (a). Then we have

(2.7) (JX,Y)=(X,JY), JI=-IJ
By Proposition 2.2 (b), there exists a R-valued 1-form « on U such that
(2.8) , VxJ = a(X)IJ.

We construct the complex line bundle L and local tensor fields {2 and J in Proposition
2.2 more explicitly. Given A € G, we denote by 7(A) the diffeomorphism of Q" = G / K
defined by T(A)w(Bey) = m(ABe;) for B € G. At the point p = 7(Ae;) € Q7, we define
the complex symmetric bilinear form Q4 on Tp,Q™ and a real linear endomorphism J A of
T,Q™ by
QAX,Y) = Q(r(A)1X,7(A)7Y)  for X,Y € T,Q",

and
JAX = 7(A)JT(A);1X  for X € T,Q",

where Q and J denote the complex symmetric bilinear form on T,Q™ = b and the real
linear endomorphism defined by (2.5) and (2.6), respectively. Evidently it follows that
(JAX,Y) = the real part of Q4(X,Y) and (J4)? = id. We remark that if A and A’ of G
satisfy m(Ae;) = w(A’e1) = p, there exists a unitary complex number v = a + v/—1b such
that Q4" = vQ4 and JA = aJ4 —bIJ# on T,Q™. We denote by L, the complex subspace
of S%(T,Q™) spanned by 04 and put L = UpegnLp. Then L is a complex line subbundle
which satisfies the conditions in Proposition 2.2.

We denote by the same notation 2 the tensor field of type (0,2) on crt? induced
from the complex symmetric bilinear form  defined by (2.1). We simply denote by {2 the
tensor field .2 on @) induced by the inclusion map ¢ : @ — C™2, At each point = € Q,
Q) is degenerate and its nullity space is V@ , that is,

VaQ={X€TxQ | UX,Y)=0 forany Y € TxQ }.

For an arbitrary point p € Q", there is a neighborhood U of p over which there exist a
section s of the fibration 7 : @ — Q™ and a section A of the fibration ¢ : G — Q" = G/K
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satisfying A(q)e; = s(q) at each point ¢ € U. Then by straightforward computation, we
have the following.

Lemma 2.3. At each point of U, we have s*Q = QA

We denote by ¢ the second fundamental form of Q™ regarded as a complex hypersurface
of CP™*1, We will express & in terms of the complex conformal structure on Q™.

Proposition 2.4. Let s be a section of the fibration 7 : Q — Q" defined on a neighbor-
hood of a point p € Q™. Then we have :

(2.9) F(X,Y) = —(s*N(X,Y)mJs(p) X,Y € T,Q".

Proof. Since the inclusion map ¢ : Q® — CP™*! is é-equivariant, it is sufficient to prove
(2.9) at the origin 0 = 7(e1). Let § = E+P be the canonical decomposition of § = su(n+2)
which corresponds to CP™! and i : § — € and j : § — P the projections onto € and p
with respect to this decomposition,respectively. On the other hand, let § = € + p be the
canonical decomposition of g which corresponds to Q™. Then we have

00 O 0 0 —'=m 0
0 ~tz |, jX)=10 0 0 for X=1 0
T x x

0 0 0

—'x

w(X) = —'z | €b.

R o o

The orthogonal complement j(p)* in P is given by

0 —¢ 0
i@ ={l ¢ 0 0] |ceC}

0 0 O
Now we may regard the second fundamental form & at the point o = 7(e;) as the j(p)*-
valued symmetric bilinear form on p. Then we have for X,Y €p

a(X,Y) = (X)), i(Y)D;E)~

0 0 0 0 0 -y
= ( 0 0 <tz |, 00 O )j(ﬁ)—‘-
0= 0 y 0 0
0 ‘'gz 0
= ~txy 0 O
0 0 0

By the map §: P — He, SC"*2, we obtain

(X, Y)) = —Q@( (X)), TG N))e2 = —Q@GUH(X)), TEY))) Ter.

Therefore we have
5(X,Y)=-QX,Y)mJer for X,Y € T,Q"

By Lemma 2.3, our assertion holds. o

We will express the curvature tensor R of the complex quadric Q" in terms of its
complex conformal structure. Let Q2 and J be local tensor fields in Proposition 2.2 (a).
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Proposition 2.5. The curvature tensor R of Q™ is of the form

(2.10) R(X,Y)Z = (Y,2)X —(X,2)Y + (IY, 2)IX — (IX, Z)IY — 2(IX,Y)IZ
+(JY, 2)JX — (X, Z)JY + (1JY, Z)IJX — (IJ X, Z)1JY,

- where X,Y, Z are tangent vectors .

Proof. At the point o = 7(e;), we identify the tangent space ToQ™ with p. It is well-known
that the curvature tensor R is given as follows:

R(X,Y)Z = —[[X,Y],Z] for X,Y,Z€P.

By (2.4), we identify p with C*. Then for =,y € C* 2, we have

—2y=Ix 0 0
wyl=| 0 2v7Ix 0 |,
0 0 B

where A = the imaginary part of (z,y) = ([z,y) and B = —z'y—Z'y +y'Z +y'x. From
these, it follows that

R(z,y)z = —[=,y),2]
= —(Bz+ 2\/:T)\z)
= (y,2)z+Qy,2)= — (z,2)y — Az, 2)7 — 2vV—-1{Iz,y)z
= (y,z)x — (z,2)y + (Iy, z)[x — [z, 2) ]y — 2(I =, yv)Iz
+ (Jy, z)Jxe — (Ja, 2)Jy + (IJy,z)[Jxe — (IJx, 2z} Jy.

O

The totally geodesic submanifolds of a complex quadric Q™ were first classified by
B.Y.Chen and T.Nagano [4]. Their classification was not complete. S. Klein [8] gave
the satisfactory answer to this classification problem. We recall totally geodesic complex
submanifolds (i.e., Kéhler submanifolds) of Q™. We explain two examples.

"Example 2.6. The m-dimensional complex projective space CP™ (2m < n).

Let {e1,€2,€3, -+ ,enta} be the canonical basis of C**t2, We put u; = e3++/—1les, -+,
Um = €2m41 + V—Leami2 and denote by V™*! the m + 1-dimensional complex subspace
of C"*2 spanned by e1,u1,* ,Un. Then we note that Q(z,y) = 0 for any =,y € V™,
The Kéhler submanifold 7(V™+1 N SC"*2) of CP™*! is totally geodesic in CP™*! and
isometric to CP™. Since V™1 N SC*2 = Y™+l Q, #(V™H N SC™2) = CP™ is a -
Kihler submanifold of Q™. Since CP™ is totally geodesic in CP™t!, it is also totally
geodesic in Q™.

Example 2.7. The m-dimensional complex quadric Q™ (m < n — 1).

Let W™*2 be the m + 2-dimensional complex subspace of C**+2 spanned by ey, eg, - ,
em+2. Then the manifold #(W™*2N Q) is a complex quadric Q™ of CP™+! = r(W™+2
SC"*+2) and it is a totally geodesic submanifold of Q™. :

Let M be a Riemannian manifold with the curvature tensor R and V be a subspace
of the tangent space T, M. Then V is called a curvature invariant subspaceif X,Y,Z €V

implies E(X , Y)Z eV, If M is a Riemannian symmetric space, for a curvature invariant
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subspace V C Tpﬁ there exists a unique complete totally geodesic submanifold S through
p whose tangent space at pis V. ‘

Let Q and J be local tensor fields defined on a neighborhood of p € Q™ in Proposition
2.2 (a) and V be a complex subspace (i.e., an I-invariant real subspace) of T,Q™.

Defunition 2.8. The subspace V is called an isotropic complez subspace if Q(X,Y) =0
for any X,Y € V and is called a J-invariant complex subspace if JX € V for X € V.

We remark that the conditions of an isotropic complex subspace and a J-invariant
complex subspace do not depend on the choice of local tensor fields 2 and J in Proposition
2.2 and that a complex subspace V is isotropic if and only if JV is orthogonal to V.

Applying the formula (2.10) of the curvature tensor ﬁ, we can easily prove the follow-
ing.

Lemma 2.9. Let V be a complex subspace of T,Q". The subspace V' is curvature
invariant if and only if either V is zsotropzc or J-invariant.

By the classification of totally geodesic submanifolds of Q™ (Theorem 4.2, Theorem
5.1 and Corollary 5.27 in [8]), we have the following.

Proposition 2.10. Let V be an m-dimensional isotropic complex subspace of T,Q™.
Then the complete totally geodesic submanifold which is tangent to V is congruent to
CP™ in Example 2.6 by a holomorphic isometry of Q™. Let V' be an m-dimensional J-
invariant complex subspace of T,Q™. Then the complete totally geodesic submanifold which
is tangent to V is congruent to Q™ in Exzample 2.7 by a holomorphic isometry of Q™.

Remark 2.11. H.Reckziegel ([14]) introduced the concept of CQ-structures for the
study of complex quadrics and gave quite natural presentations of aspects of the ge-
ometry of Q™. His introduction of this concept is based on the following observation:
we regard a complex quadric as a complex hypersurface of CP™! and denote by A,
the shape operator of Q™ with respect to the normal vector n . Then U(Q",p) =
{ Ayl|n : unit normal vectors at p } is a “ circle of conjugations” on the tangent space
T,Q", which is called by Reckziegel a CQ-structure. In our notation introduced in Proposi-
tion 2.2, { AJ|A € U(1) }is a CQ-structure on each tangent space. S.Klein ([8]) developed
the theory of Reckziegel and obtained the results of the geometry of complex quadrics.
For example, he classified the totally geodesic submanifolds of @™ and investigated certam
congruence families of totally geodesic submanifolds in Q™.

§3 Isotropic Kéahler immersions into Q" with low codimension

We use the same notations as those in section 2 for the geometry of a complex quadric
Q™ . Let 2 and J be local tensor fields defined on a neighborhood of each point of Q™ in
Proposition 2.2.

Definition 3.1. Let ¢ : M™ — Q" be a Kéhler immersion (i.e.,a holomorphically iso-
metric immersion) of an m-dimensional K&hler manifold M™ into a complex quadric Q™.
Then ¢ is said to be an isotropic Kdhler immersion if for an arbitrary point p € M™
¢« (TpM) is an isotropic complex subspace in T, ;) Q™.

Let Grom (TQ™) be the Grassmann bundle over Q™ of all real 2m-dimensional subspaces
of the tangent spaces of Q™ and O, be the subset of Gram(T'Q™) of all complex m-
dimensional isotropic subspaces. The group G defined by (2.2) acts holomorphically and
isometrically on Q™ and acts on Gron,(T'Q™) through the differentials of isometries. If
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2m < n, Op is a G-orbit. If 2m = n, On, has two connected components and each
component is a G-orbit. So the collection of isotropic Kéhler immersions constitutes a
geometry in the framework of Grassmann geometries that were introduced by R. Harvey
and H.B. Lawson [5] (see also H.Naitoh [9]). When 2m = n, for any V' € Op,, its orthogonal
complement V+ = JV is also an isotropic complex subspace and in particular both V
and V' are curvature-invariant. This case is contained in Grassmann geometries which
H.Naitoh studied in a series of papers [9],{10],[11],[12].

Let ¢ : M™ — Q™ be an isotropic Kihler immersion. Then we have the following
orthogonal decomposition:

GTQ " =TM +T+M, . ,

where T M denotes the normal bundle. By the assumption, it follows that JT. pM.C Tle :

We denote by V the induced connection of @*TQ™ from the Riemannian connection of
Q™ and by V and V+ the Riemannian connection of M and the normal connection on the
normal bundle 7 M respectively and by ¢ and A the second fundamental form and the
shape operator of the immersion ¢ ,respectively.

Lemma 3.2. Let ¢ : M™ — Q" be an isotropic Kahler immersion. Then for tangent
vectors X,Y,Z,V € T,M at any point p € M, we have

(1) (e(X,Y),JZ) =0,

2) ((Vxo)(Y,2),IV) = —~(o(Y, Z), Jo(X,V)),
where ¥V denotes the connection in Hom(®@*T M, T+M) induced from V and V-+.

Proof. On a neighborhood U of p in M, there exists a R-valued 1-form o on U such that
VxJ = a(X)IJ for a tangent vector field X.

(1) Let X, Y, and Z be tangent vector fields on U. Differentiating the equation (JY, Z) =0
by a vector field X, we have

0 = (VxWY),2) + (JY,Vx2)
= (VxJ)(Y),2Z) + (JVXY, Z) + (JY,0(X, Z))
= o X)NIJIY,Z) + (VxY,JZ) + (JY,o(X, Z))
= (0(X,Y),JZ) + (¢(X, Z),JY).

Therefore

(0(X,Y),JZ) = —(o(X,Z),JY)=—((Z,X),JY)
= (0(2,Y),JX) = —(o(X,Y), ] Z)

and hence we obtain (¢(X,Y),JZ) = 0.
(2) Differentiating the equation (¢(Y, Z), JV) = 0 by a vector field X, we have

0= (Vxo(Y,2),JV) + (oY, 2), Vx(JV)).
Computing the right hand side, we obtain
(Vxo(Y,2),TV) = (Vxo(Y,2) = Ay, X, V)

| = ((Vxo)(Y,2)+0(VxY,Z)+0(Y,VxZ),JV)
= ({(Vxo)(¥,2),JV)
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and
(oY, 2),Vx(JV)) = (oY, 2),a(X)IJV + J(VxV))
= (o(Y,2),J{c(X,V)+VxV})
(oY, 2),Jo(X,V)).
This implies (Vxo)(Y, 2),JV) + (¢(Y, Z), Jo(X,V)) = 0. O

Lemma 3.2 (1) implies the following.
Corollary 3.3. Let ¢ : M™ — Q™ be an isotropic Kéhler immersion. Then o is totally
geodesic and M™ 1is isometric to an open set of CP™.

We remark that the result above has been already shown as a part of the remarkable
result obtained by H.Naitoh [9].

For an arbitrary point p € M, we define the subspace RN, by
RN, ={X e€TpM | o(X,Y)=0 forallY € T,M},

which is called the relative nullity space of an immersion ¢ at p. In our case, RN, is a
complex subspace of T, M.

Proposition 3.4. Let ¢ : M™ — Q*™*! be an isotropic Kéhler immersion. Then we
have dim¢c RN, > m — 1 at any point p € M™.

Proof. By the equation of Codazzi, we have

— — ~ L
(Vxo)(¥,2) - (Vyo)(X,2) = {Rx, )z} =0,

~ L ~
where {R(X N2 } is the normal component of R(X,Y)Z. By Lemma 3.2(2), it follows
that

(3.1) (0(Y; 2), Jo(X,V)) = (o(X, Z), Jo (¥, V).

In particular (o(X,Y), Jo(Z,V)) is symmetric with respect to X,Y, Z, V.

Suppose that o # 0 at a point p € M . We denote by Ng the subspace of TPLM
spanned by 0(X,Y),X,Y € T,M. Then by Lemma 3.2 (1), the subspace Ng is orthogonal
to T,M + JT,M. This implies that dim¢ N? = 1 and that N is J-invariant. Let & be a
unit vector of N2 which satisfies J¢ = £. We put

o(X,Y)=04(X,Y)+0_(X,Y)IE.
Then o4 and o_ are R-valued symmetric bilinear forms of T, M and satisfy
o (IX,Y) = —0_(X,Y), o_(IX,Y)=04(X,Y).
By (3.1),
(8.2) 04 (Y, Z2)o+(X,V)—0_(Y,2)o-(X,V) =04(X,Z)o+ (Y, V) —0_(X,Z)o-(Y,V).

Let {e1, - ,em,Iei1, -+ ,Ien} be an orthonormal basis of T, M which diagonalizes o ,i.e.,

oy(ei,ej) = —or(Ies, Iej) = Aidij (3,5 =1,---,m), oy(e;,Ie;) =0 (i,7=1,---,m).
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PuttingY = Z = ¢;, X =V =¢; (1 # j) in (3.2), we obtain M\;A; = 0. If Ay # 0, then
Aj=0(j=2,--+,m). This implies that dim¢ RNy, =m — 1. ]

Let ¢ : Q® — CP™*! be an inclusion map. We consider the composition @ = 10 ¢ of
the inclusion ¢ and an isotropic Kéhler immersion ¢ : M — Q™. Let ¢ and o be the second
fundamental forms of ¢ and ¢ ,respectively. Then by Proposition 2.4, we have ¢ = 0. In
particular the relative nullity spaces of ¢ and ¢ coincide.

Applying Corollary 5 in K.Abe [1], we obtain the following;:

Corollary 3.5. Let ¢ : M™ — Q?™*+! be an isotropic Kdihler immersion of an m(>
2)-dimensional complete Kdhler manifold M™ . Then ¢ is totally geodesic and M™ is
isometric to CP™.

In addition to the assumption of Proposition 3.4, suppose that the second fundamental
form ¢ does not vanish on M . At each point p , we put

Dp={X€e€T,M | o(X,Y)=0 forallY € T,M}.

Then dime¢ D, = m — 1 . The distribution D is completely integrable and each leaf of
D is a totally geodesic Kihler submanifold of M and also totally geodesic in Q?™*+! and
CP?m+2_ Tt is a so-called ruled submanifold of Q?™*! and CP?™+2

Example 3.6. We construct isotropic Kéhler immersions M™ — Q™! which are ruled.
We denote by € the complex symmetric bilinear form defined by (2.1) on C2(m+1D+1

and by 7 : C2(m+1+1 _ [0} — CP2™+1) a natural projection. Let E : U — CP2(m+1)

be an m-th order isotropic curve of a domain U of C (cf. [7]),i.e., if E = 7 o {,where

£:U— (CZ(m—l—l)-f—l is a holomorphic map, ¢ satisfies

© £,¢,8", - €™, ™ are linearly 1ndependent in C2(m+1)+1

o (E€) = D(E,E) = A7, €7 = - = Q(E™, £7) = 0, Q(E™H, €mH) 20,

where {' = 0°€/02z" . Then we note that Q(¢4,£9) = 0 for i + j < 2m + 1. We define a

holomorphic map ¢ : M = U x C x +++ x C x (C — {0}) — C2(m+1+1 _ [0} by

¢(Z, ty oy tme2,tme1) = £(2) + 118/ (2) + -+ + tine2™2(2) + tim—1£™ 71 (2).

Then we obtain a holomorphic immersion ® = 7 o ¢ M — CP2m+1) Moreover the
image of ® is contained in Q*™*! and & is an isotropic K&hler immersion into Q%™ 1.

84 Higher fundamental forms and reduction theorems

In this section we study properties of higher fundamental forms of an isotropic K&hler
immersion.

First we define higher fundamental forms of Kéhler immersions inductively. Let M
and M be Kihler manifolds and w: M — M be a Kihler immersion of M into M . Then
we have the following orthogonal decomposition:

©*TM =TM + T+M.

We denote by V the induced connection of ©*T'M from the Riemannian connection of M.
For j > 2, we define the j-th fundamental forms o; , j-th normal spaces N J j-th osculating
spaces @7 | and the sets of j-reqular points R;, inductively. In particular, o; is defined
as a smooth section of the Vector bundle Hom(®7 TM, T+ M) which satisfies the following
identity:

(41)  oj(Xy, o, IXjo1, X)) = 0(Xa, 0, X1, IX) = Toj( X1, -+ Xj-1, X),
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where I denotes the complex structure on go*TM . Let o be the second fundamental form
of . It is well-known that o satisfies (4.1). We put o3 = o . At a point p € M, we
define N2 by the subspace of T;-M spanned by 02(X,Y), X,Y € T,M. By (4.1), NZ is a
complex subspace of T;-M. We put

2 __ 2
O, =Tp,M + Ny,
which is called the second osculating space. We define
Ry ={pe€ M | dimg N} = max{dimc NZ|p' € M}},

which is called the set of 2-regular points. Then Ry is open in M and ©? is the subbundle
of o*T'M on Ry. At p € Ro, we define the third fundamental form o3 by

qs(Xl,Xz,Xs) = (Vxlcfz(X?,,Xs))(o]%)i ,
for X1, X9, X3 € T, M arbitrarily extended to the vector fields on Ra, where (OQ)J- denotes

the orthogonal complement of (92 in T, (p)M and (*)(Oz L denotes the ((’)2) -component
of * with respect to the orthogonal decomposition

TopyM = 0122 + (Og)l'

Then o3 is a smooth section of Hom(®3T'M, T+-M) defined on R and o3 satisfies (4.1). At
a point p € Rq we define N3 by the subspace of T+ M spanned by o3(X1, X2, X3),X1, X2, X3 €
Tp,M. It is a complex subspace of T+M. We put (93 TpM + Ny 2 4 N, 3 and define

Rs = {p € Ry | dimc N5 = max{dim¢ N3|p' € Ra}}.

We define o; ,N7 and ©7 for j = 4,5, inductively on the open set Rj—1 of M. Then
o; satisfies (4.1) and Nj is a complex subspace of T;-M, p € Rj-1. Clearly there exists
a unique integer d such that o4 # 0 but 0441 = 0 . The integer d is called the degree of
¢ and denoted by d((p) A Kihler immersion ¢ : M — M is said to be osculating full if

dim¢ O, dle) — = dim¢ M at p e Rd( )

Now we assume that the ambient manifold M is a complex projective space CP™. Then
j-th fundamental forms o; are symmetric tensor fields for any j. That is, the following
holds: ‘

(4.2)
oi( Xy, Xy oo, Xpy oo, X)) = 0( X, Xy, Xy, X)), for 1<k<I<y.

By (4.1) and (4.2), it follows that
(4.3) Uj(Xl,--~ ,IXk,'” ,Xj) = IO'j(Xl,-” ,Xk,-~- ,Xj), for k: = 1,~~

The following reduction theorem is known (cf. Theorem 1 in R.Takagi and M.Takeuchi[15]).

Theorem 4.1. Let ¢ : M™ — CP™ be a Kdhler immersion of a Kdhler manifold M™
with degree d(p). We put N = dim¢ (91,((”), P € Ra). Then there ezists an N-dimensional
totally geodesic Kdhler submanifold CPN of CP™ such that o(M™) is contained in CPN.
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Let ¢ : M™ — Q™ be an isotropic Kahler immersion . We also consider the composition
P=1t0@: M™— CP™! of ¢ and the inclusion map ¢ : Q® — CP™*1. Then we have the
following decompositions:

O*TQ" = TM+T+M,
FrTCpP™t = TM +T M.

Evidently the normal bundle T+M of ¢ is a subbundle of the normal bundle T+M of
@. We denote by V and D the induced connections of ©*TQ™ and Z*TCP™*! from the
Riemannian connections of Q™ and CP™*! respectively. We use the notations o;, N7, O7,
R; for the j-th fundamental forms, the j-th normal spaces, et al. of the immersion <p and
0j, NE J, O 'R, for those of the immersion @.

Smce  is an isotropic K&hler immersion, by Proposition 2.4 we have

DxY =VxY  for X,Y € T(TM).

Here we denote by I'(E') the space of smooth sections of a vector bundle E. This implies
that 0(X,Y) = 2(X,Y) and hence N2 = N2, O = O2 at any point p € M and

Ry = R,. By Lemma 3.2 (1), N, 2 is ortogonal to J TpM at any point. Generalizing these,
we consider the condition C(j) for a positive integer j.

Definition 4.2. Let ¢ : M™ — Q" be an isotropic Kéhler immersion. We say that ¢

satisfies the condition C'(j) if the followings hold:

(1) For any point p € R, (’)p = TpM + Ny 2 4. N] is an isotropic complex subspace of
Q‘n

(2) For any integer k, 1 <k < j, R = ﬁk and

Trer1(X1, s Xiep1) = Fkp1 (X1, » Xit1) for Xi,--+, Xkp1 € TyM,p € Ry, = Ry
(3) At any point p € R;, Ni** is orthogonal to JO} and equivalently Q(NZT, 03) = {0}.

In the above we put Ry = R1 = M. It has been already shown that an isotropic Kéhler
immersion ¢ satisfies the condition C(1). Suppose that an isotropic Ké&hler immersion

satisfies the condition C(5). Then by Definition 4.2 (2), we have N} ™' = ~g-+?, (9%4'.1 =
O™ at any point p € R; = R; and Rjy1 = R;41. By Definition 4.2 (3), Q(NJ™, 0%) =
{0} and in particular Q(NHl,TpM) = {0} at any point p € R;j41. Therefore for vector
fields X, Y1, -+ ,Y;41 on Rji1, we have

Vx (o501 (Y1,-+ , ¥541)) = Dx (G541 (Ya, -+, Yip1))
and hence at any point p € Rj41
(44) O'j+2(X,Y—1,"' 7Y:7'+1) :5j+2(XaYEl?"' a},j-l-l) for X)Ka"" 71/,7'+1 ETPM'

Since 042 is a symmetrlc tensor field, o;42 is also a symmetric one and it satisfies
(4.5)
UJ+2(X1a e aIXk, e $Xj+2) = ICTj+2(X1,‘ e ’Xk:a e 7Xj+2)) for k = 1) e )j + 2.

Proposition 4.3. Suppose that an isotropic Kdhler immersion ¢ : M™ — Q™ satisfies
the condition C(j) and that Ng“ is an isotropic complexr subspace at any point p € Rji1.
Then @ satisfies the condition C(j + 1).
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Proof. We are left to prove that Ng” is orthogonal to J Og“ at any point p € Rji1.

We note that Vx¢& € I'(O9+1) for any vector field X on Rj+1 and a smooth section ¢
of ®J. For a smooth section ¢ of O7 on Rji1, we have {oj41(Y1, -, Y1), JE) = 0.
Differentiating the above equation by a vector field X on R;1,

0 = (Vx(oj1(¥1, ,¥j11)), &) + a(X)(0ja(Ya, -, Yign), IJE)
o1 (Y1, Yjp1), TV xE)
= <O—j+2(Xa}/1"" ’ J+1)aJ£>'

Thus we obtain Ng” is orthogonal to J C’){,.

Differentiating (0j41(Y1, - ,Yj41),Joj+1(Z1,- -+, Zj4+1)) = 0 by a vector field X on
R;j+1, we have

0 = (Vx(o541(Y1,++, Y541)), J0541(Z1, -+ Zjn))
+a(X){ojr1 (Y1, -+, Y1), IJ 01 (21, -+ 5 Zj41))
o (Y1, Y541), IVx(0521(Z1, 5 Zj1a)))
= (oj42(X, Y1, , Y1), Joj41(Z1, -+, Zja))
+oj42(X, 21, -+, Zia), Joja (Y, -+, Vi)

Noticing that the tensor fields 011 and o412 are symmetric, by the same arguments as
the proof of Lemma 3.2 (1), we have

(oj42(X, Y1, Yi), Joja(Za, -+, Zjga)
_<Uj+2(X’ 2y, 7Zj+1)’JUj+1(Yla' e 7Yj+1)>
= (0j+2(Z1, Y1, -+, Yj41), J0j4(X, D2, -+, Zj1))
—(0j+2(X, Y1, 22, , Zj 1), J0j41(Z1, Yo, - -+, Yj41))

......

= —<0'j+2(X, jY:-l.’ te 7}/_;'+1)) JO'j+]_(Z]_, Tt Z]+l)>

- and hence we obtain (aj+2(X Yi, -, Y1), Joj1(Z1, -+, Zj41)) = 0. This implies that
N2 is orthogonal to JNZ''. Consequently we have shown that NJ+ is orthogonal to
J(’)H any point p € Rj41. ‘ O

Theorem 4.4. Suppose that an isotropic Kdhler immersion ¢ : M™ — Q" satisfies the
condition C(j) and that oj+1 vanishes everywhere on R;. We put N = dimc O}, p € R;.
Then there exists an N -dimensional totally geodesic Kdhler submanifold CPN of Q™ such
that (M™) is contained in CPN.

Proof. We take a connected component of R;, which is ‘denoted by Rj. Since (9’ atp € R;
is an isotropic complex subspace, there exists a totally geodesic Kahler submanifold (CPN
* which is tangent to O,J;. By the assumption, O’ is a parallel subbundle of ©*T'Q™ over R3
with respect to V. By the well-known reduction theorem, ©(R3) is contained in CPV,
Since M is connected and ¢ is a holomorphic map, ¢(M) is contained in CPV. O

Theorem 4.5. Suppose that an isotropic Kdhler immersion ¢ : M™ — Q™ satisfies the
condition C’(g) and that the subspace Nj 1 s J-invariant at any point p € Rjy1. We put
N = 2dim¢ (’)J +dimc¢ N} j+1 , at some point p € Rjy1. Then there exists an N-dimensional
totally geodesic Kéhler submanifold QN of Q™ such that @(M™) is contained in QN.
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Proof. Similarly to the proof of Theorem 4.4, we take a connected component of R;41,
which is denoted by R7 ;. At some point p € R7,,, we put

Ep, =0} +JOJ + NJ .

Then Ej is a J-invariant complex subspace of T,;,)Q™ and dim¢ Ej, = N. There exists

a totally geodesic Kihler submanifold @V which is tangent to E,. We define a complex
subbundle E of p*T'Q™ over R7,; by

E= |J {0)+J0]+ N}
9€R7 1,

We denote by E-+ the subbundle of p*T'Q™ which consists of orthogonal complements of
E. Then at any point g € ’R;’ 41 £q and EJ‘ are J-invariant complex subspaces in T, Q™.
If we can prove that E is a parallel subbundle of p*TQ™ over Rj,, with respect to €7,

similarly to the proof of Theorem 4.4 we see that ¢(M™) is contained in QN .
We will prove that E is a parallel subbundle of *T'Q". For a smooth section § € IN(eD)!
and a vector fleld X € I'(T'M) on Rj,,, we have Vxé € T(OF + N3+1). Around q € Rj 415

there exists a R-valued 1-form a such that VxJ = a(X)IJ. Therefore
V(7€) = a(X)1JE + T (Vx€) = ~aX)JIE + T (Vx€)
and hence Vx(J¢) is a local section J O’ + Ni+1. Finally we will prove that for any

smooth section £ € T'(NY+1) over Rt Vx¢ € T(E). For this we define a tensor field 7
as a section of Hom(TM ® N+l EL) over Rj.1 as follows:

(X, 6) = (Vx&)ge,

for X € TyM and € € Ng *1 arbitrarily extended to a smooth section of N7+!. Then the
following holds.

Lemma 4.6. We have the following identities:

(1) (X, J§) = J7(X,¢),

(2) T(IX,€) = I7(X, ),

for X € T,M and ¢ € Ni**, qeR°+1

Proof of Lemma 4.6. (1) Around ¢, we have

Vx(J€) = a(X)ITE + J(Vx€) = —a(X)JIE + J(VxE).

Therefore _ _
7(X,JE) = (VxJE)pr = J(Vx§) gL = J7(X,§).

(2) We put ¢ = 0j41(Y1, -+, Yj41) for vector fields Y1, ,Yj41 around q. Then we
have

T(IX,0501 (Y1, -, Y1) = (Vixoja(Ya, -, J+1))EJ-
= (0j42(IX, Y1, -+, Yj41))me
= (lojpa(X, Y1, -, J+1))E~‘-
= I(Oj+2(X,1/i;" ) J+1))E'L
= I(Vxoj41(Y1, -, Yj41)) gL

IT(X7 O'j+]_(Y-1, e ay:.7'+1>)
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O
We continue our proof of Theorem 4.5. By Lemma 4.6, 7 vanishes identically. In fact,

T(IX, J§) = IT(X, J§) = IJ7(X,£),

and : .
T(IX,JE) = Jr(IX,&) = JIT(X,€) = -1J71(X,§).

These imply that 7(X,£) = 0. Therefore it has been shown that for any smooth section
¢ € T(N*T1) over RS, Vx¢ € T(E). O

§5 Isotropic Kahler immersions of Hermitian symmetric spaces

In this section we construct isotropic Kéhler immersions of Kéahler C-spaces into a
compex quadric using orthogonal representations and study the higher normal spaces and
the osculating degrees of isotropic Kéhler immersions of Hermitian symmetric spaces.

First we recall the construction of Kahler C-spaces M with dim H?(M,R) = 1 and
the canonical imbeddings into a complex projective space (cf.[13],[15]). Here by a Kéahler
C-space we mean a compact simply connected homogeneous Kahler manifold. Let g be a
complex simple Lie algebra and h be a Cartan subalgebra of §. Put I = dimc¢ h. Then we
have a direct sum decomposition:

§=bh+ ) CE,

aEA

where E, is a root vector of a root a. Let B be the Killing form of g. For £ € b*, let
He be the vector such that B(H, He) = ¢(H) for all H € . Put ho = » RH,. Then

acA
dimg ho = ! and the dual space hj of by can be regarded as a real subspace of h*. We

define a bilinear form (,) on b§ by (§,n) = B(He, Hy) for any £,n € b§. Let {oa, -, o}
be a fundamental root system of A . We choose a lexicographic order in b with respect

to which {a1, -+ ,o} is the set of simple roots and denote by A* and A~ the sets of
positive and negative roots respectively. Let {A1,---,A;} be the fundamental weight
system associated with {a1, -+, o;},which is defined by

2(Ai,ozj) = (Oéj,aj)&ij (i,j=1,-‘- ,l).
We can choose root vectors E, (o € A) in the following way;
B(E,,E_,) = -1
[Ea,Eﬁ] = Na,ﬁEa—}-ﬁa Na”@ = N_a,_ﬁ € R, Oc,,@ e A.

Then /—1hg + Z (RA, + RB,), denoted by g, is a compact real form of g , where
acA~ ‘

(e A7).
We choose a simple root o; (i = 1,---,1) and denote it by . We define a subset A,
of A™ to be the set of roots

a=mnya; + - +nog € AT
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such that the coefficient of v in « is strictly negative.” Define the subalgebra & and the
subspace p of g as follows:

E = V=Tho+ > (RAa+RBa)

acA~—Ay
p = > (RA,+RB,).

€A,

Let G and K be a simply connected Lie group and its connected (closed) Lie subgroup
which correspond to g and € respectively. Then the compact homogeneous space M =
G/K is known to be simply connected, and the complex structure I on p defined by
IAy = Ba, IBy = —Aq,a € A, gives rise to a G-invariant complex structure on M. It
is also known that M admits a G-invariant K&hler metric associated with the complex
structure I . Then M is a Kihler C-space with dim H?(M,R) = 1. Conversely every
Kahler C-space M with dim H2(M,R) = 1 can be obtained in this way from the pair (g, )
of a complex simple Lie algebra g and a simple root v. We note that the decomposition
g = t+4p obtained from the pair (g, v) becomes a canonical decomposition of an orthogonal
symmetric Lie algebra of Hermitian type if and only if the coefficient of «y in every a € A,
is equal to —1.

Next we construct holomorphic imbeddings of a Kéhler C-space M obtained from the
pair (§,7) into a complex projective space. We put Ay = A; if v = ;. Let p be an
irreducible complex representation of g with the highest weight pA., for a positive integer
p. The representation p restricted to g defines an irreducible representation of G , which
will also be denoted by p. Since G is compact, we can choose a complex Hermitian inner
product and a unitary frame {ej,e2, - ,ent2} on the representation space such that e;
is the highest weight vector and that p(G) € SU(n + 2). Then the representation p of g
induces a Lie algebra homomorphism p : g — su(n + 2). Let su(n + 2) = £+ P be the
canonical decomposition of su(n + 2) which corresponds to an n + 1-dimensional complex
projective space CP™! (cf §2). Recall that ¥is given by

t={Aesu(n+2) | Ae; =de;, A€ V=IR }.

Note that p(Ax)er = p(Ea + E—o)er = p(Ea)er, p(Ba)er = p(v/—1(Ea — E_y))e1 =
V—=1(p(Ea)er), for « € A~ and p(v/—1H)e1 = /—1pA,(H)ey for H € bg. Since (o, pA,y)
is zero for « € A= —A,, a+pA, is not a weight and hence we have p(Aqy)e1r = p(Bg)er = 0.
Therefore p(X) for X € ¢ is contained in ¥. Since (o, pA,) is not zero for o € A,, a+pA,
is a weight and hence we have p(Aq)e; and p(By)er are non-zero vectors in the weight
space of weight o + pA, . Let j be the projection of su(n + 2) onto p and g be a complex
linear isomorphim of p onto H,, SC**2 defined in §2. Then §o j o p(4a) = p(Aa)er
and g o j o p(Ba) = p(Ba)ey for a € A,. Hence the linear mapping g o j o p of p into
H,, SC™*? is injective and j o p is also a linear injection of p into p. Therefore the mapping
z € G = w(p(z)e;) of G into CP™*! induces an immersion f of M into CP™*! | where
7 denotes the fibration of SC™2 onto CP™*! (cf. §2 ). Since p(IAy)er = p(Bay)er =
V=1p(Ea)er = V=1p(Aa)er and p(IBy)er = —p(Aa)er = —p(Eq)er = v—1p(Ba)er for
o € A,,the mapping o j o p is a complex linear mapping of p into H,, SC™*2? and hence
j o p is a complex linear mapping of p into p. Therefore the mapping f is holomorphic.
It is known that f is a full imbedding ,i.e.,that it is an imbedding and that f(M) is not
contained in any proper totally geodesic Kihler submanifold of CP™*!. The imbedding f
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introduces a G-invariant Kéhler metric g on M . Thus (M, g) is a homogeneous Kahler
manifold. Especially when the pair (g,) defines an orthogonal symmetric Lie algebra of
Hermitian type ,the K&hler C-space (M, g) becomes an irreducible Hermitian symmetric
space of compact type. The imbedding f constructed in this way is called the p-th canonical
imbedding of M . '

Now we construct a full Kéhler imbedding of the product manifold of some Kéhler
C-spaces M with dim H?(M,R) = 1 into a complex projective space (cf. [15] and [16]).
Let My (1 < k < s) be Kéhler C-spaces obtained from the pairs (g, vx) of complex simple
Lie algebras g and simple roots 7, , where v denotes one of simple roots oy, ,0q of
gr - Let fr : (Mg, gx) — CP™ (1 < k < s) be the pg-th canonical imbeddings of My
constructed by the representations pi of §x. Let by and (hi)o be Cartan subalgebras of
Or and their real parts respectively. Then the direct sum h = bh; & --- @ b, is a Cartan
subalgebra of the direct sum § = g§; @ - - ® gs . The dual spaces b}, naturally become the
subspaces of h* and the set of all roots of g coincides with the union of each set of all roots
of gx . The direct sum ho = (h1)oP- - - D (hs)o is a real part of h. We choose a lexicographic
order in b such that each fundamental root of gy is a simple root. Let gx be compact real
forms of §5 . Then the direct sum g = g1 ®--- ® g, is a compact real form of g. We define
a subalgebra € and a subspace pof gby e =8, @ .- - ®t; and p = p1 ® - - - D p; respectively,
where g, = 8 +px (1 < k < s) are the decompositions of g which correspond to M. Let
G and K, be compact simply connected Lie groups and their connected Lie subgroups
which correspond to gx and & respectively . Then the product Lie group G = G X+ -+ X G,
and K = K; x---x K, are a Lie group and its connected Lie subgroup which correspond to
g and & respectively. Since a homogeneous space G/K = M coincides with M; X -+ X M,
it is a Kahler C-space. Let p be the tensor product p; ® - - - ® ps of the representations py
of gr . Let v, be the highest weight unit vectors with the highest weights pxA,, . Then
v1 ® -+ ® v, is the highest weight vector of p with the highest weight > ;_; pxA,,. The
mapping z € G — 7(p(z)(v1 ® - ® vs)) of G into CP™ induces a full Kéhler imbedding
of the product Kéhler manifold (M, g) = (My x +-+ X Mg, g1 X - -+ X g5) into CP™ , where
n = II}_, (nx+1) — 1. We call this Kéhler imbedding the tensor product of f1,---, fs and
denote it by f1 x -+ X fs . ‘

It is known that any full Kahler immersion into a complex projective space of a product
Kahler manifold of some Kéhler C-spaces M with dim H?(M,R) = 1 is obtained in this
way (cf.[13],[16]).

We construct Kahler imbeddings of Kahler C-spaces into a complex quadric. We
recall the notion of orthogonal representations. The representation p of a complex semi-
simple Lie algebra g is called orthogonal or symplectic according as it has an invariant
symmetric or skew-symmetric bilinear form. Orthogonal or symplectic representations of
a complex simple Lie algebra have been determined in Tits ([17]). Let {A1,-- -, A} be the
fundamental weight system of a complex simple Lie algebra § and p; be the irreducible
complex representation of § with the highest weight A;. The members of orthogonal or
symplectic representations p; are given in Table 1 due to [17]. If p; is an orthogonal
representation , then the irreducible representation p with the highest weight pA; is also
orthogonal. If p; is a symplectic representation , then the irreducible representation p
with the highest weight pA; is orthogonal or symplectic according as p is even or odd. In
particular , we give in Table 2 an irreducible Hermitian symmetric space of compact type
obtained from the pair (g, c;) of a complex simple Lie algebra g and its simple root «;
such that p; is an orthogonal or symplectic representation.
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Let p: § — gl(V) be an irreducible orthogonal representation of a complex semi-simple
Lie algebra g on a complex vector space V' and {2 be an invariant symmetric bilinear form
on V . Then 2 is non-degenerate. Let g be a compact real form of g. We introduce a
Hermitian inner product (,) on V such that p(X) is skew-Hermitian for any X € g .

Lemma 5.1. L18 ] Lemma 6. 2) Under the assumption above, we define a real linear
endomorphism J of V such that Q(u, v) = (Ju,v) foru,v € V . Then,
(1) The real linear endomorphism J is semi-linear,i.e.,

JOw) =AJ(u) for ueV,xeC.

(2) The real linear endomorphism J and p(X),X € g commute,i.e. , Jp(X) = p(X)J.
(8) By taking a suitable multiple of Q if necessary, we have J J2 = zd where id denotes
an identity transformation.

Let h and ho be a Cartan subalgebra of g and its real part respectively. Suppose that
the compact real form g contains +/—1hy. Then we have the following.

Lemma 5.2. ([18] Lemma 6.3) Let p: g — gl(V) be an orthogonal representation of g
and J be a real linear endomorphism defined in Lemma 5.1. If A € b is a weight of p and
Vi is a weight space with the weight X, then —\ is also a weight and J Va="V_,.

By the following theorem, we obtain isotropic K&hler imbeddings of Kahler C-spaces
into a complex quadric.

Theorem 5.3. Let My (1 <k < s) be Kahler C-spaces obtained from the pairs (§k, Vi)
and fi : My — CP™ (1 < k < s) be the pg-th canonical imbeddings of My, constructed
by the representations pr of gr. Let M be the product Kdhler manifold of My, and f :
M — CP™*! be the tensor product of fi, constructed by the tensor product p of pr (1 <
k < s). We assume that each py is either orthogonal or symplectic and that the number of
symplectic representations is even. Then p is an orthogonal representation and f(M) is
contained in some complex quadric Q™ in CP™ 1. We denote by ¢ the Kdihler imbedding of
M into Q™ obtained by this way. Except for a few cases (see Remark 5.4), ¢ is isotropic.
Proof. Let V be the representation space of p and set dim¢V = n + 2 . From the
assumption, it follows that p : § = g1 & --- @& §s — gl{(V) is an irreducible orthogonal
representation. We fix a Hermitian inner product (,) , an invariant symmetric bilinear
form © on V and a semi-linear endomorphism J of V defined in Lemma 5.1. We denote
by V), a weight space of p with a weight \. For simplicity we use A for the highest weight
}:2:1 prfy,. Then dimVj = 1 and hence by Lemma 5.2, dimV_j = 1. Let e; be a unit
vector of V) and put e; = Je e1. Then by Lemma 5.2, it follows that ey € V_A. Moreover
we have

(e1,€e1) = (eg,e2) =1, (~ e) =0
9(61,61) = (62,62) = 0 9(61,62) =1.

Let {es, - - sy en+2} be a unitary basis of the subspace orthogonal to e; and ey which sat-
isfies that Q(e;,e;) = 65 (4,5 = 3,-++- ,n + 2). From now on, using this unitary basis
{e1,e2,€3,  ,enta}, we identify V with C**2. Under this identification, the Hermitian

inner product (,) , the invariant symmetric bilinear form Q and the semi-linear endomor-
phism J on V coincide with those of C**2 introduced in §2. Let g = g @ - ® gs be
the compact real form of g, where g denote compact real forms of gx (k = 1,---,s).
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Then for each X € g, p(X) is skew-Hermitian with respect to the Hermitian inner prod-
uct (,) and p(X) leaves the bilinear form € invariant. Therefore p(g) is contained in g
and in particular we obtain a Lie algebra homomorphism p : g — g, where g denotes
the Lie algebra defined by (2.3). Let G be a compact simply connected Lie group which
corresponds to the compact real form g. The representation p restricted to g defines the
representation of G on V, which will also be denoted by p. Then for each z € G p(z)
leaves the Hermitian inner product (,) and the bilinear form Q invariant. In particular
p(G) is a Lie subgroup of G where G _denotes the closed subgroup of SU(n + 2) defined
by (2.2). Since Q(p@)el, z)e1) = ey, e1) = 0 for each z € @, p(z)e; € Q, where

= {z € SC™*? | Q(z,z) = 0 }. Therefore the image f(M) of the Kahler imbedding
f M — CP™*! induced by the mapping £ € G — 7(p(x)e;) is contained in a complex
quadric @™ . Hence we obtain the Kéhler imbedding of M into Q™ , which is denoted by
@ .

Next we shall show that the imbedding ¢ is isotropic. Let g = ¥+ P be the de-
composition of the Lie algebra g which corresponds to a complex quadric Q™ (see §2)
and g = €+ p be the decomposition of the compact real form g which corresponds to
the Kéhler manifold M. Let 3 : @ — P be the projection of g onto p with respect to
the decomposition § = € + p and § be a complex linear isometry of p onto He, @ de-
fined by §(X) = Xe; for X € P (see §2). Then we have o j o p(X) = p(X)e; for
X € g. For o € A,,, we have p(Aa)er = p(Ea + E—a)er = p(Eo)er € Vaqn and
p(Ba)er = p(v/—1(Eq — B_qa))er = V=1p(Eqa)e1 € Varn. Here we remark that o € A,
is a root whose coefficient of -y is strictly negative. From these, it follows that

8
§o§op(p) - Z Z Vatn-

k=1 €Ay,

By Lemma 5.2, we have

FGoTorm) HS 3 Varn) =3 3 Vea

k=1 aEA—Yk k=1 OLGA.,k

Define the set @ of weights of p by
e={a+A|ach, (k=1,-,9}

Suppose that ® N —& is empty. Then J(335_; 3"« A, Va+A) is orthogonal to
Y b=t Xoae A, a+A with respect to the Hermitian inner product. So J(go j o p(p)) is

orthogonal to go ] op(p). This implies that go _] o p(p) is an isotropic complex subspace in
H,, Q with respect to €2 and hence jo p(p) is also isotropic in p with respect to Q (see §2).
Therefore ¢, T,M is an isotropic complex subspace in T,Q" at the origin o € M. Since ¢
is p(G)-equivariant, ¢ is an isotropic imbedding.

In the remainder of the proof, we will show that ® N —® is empty except a few cases.
First we consider the irreducible case, i.e., s = 1. Let (g, @;) be the pair of a complex
simple Lie algebra g and its simple root «; such that the irreducible representation p;
with the highest weight A; is orthogonal (see Table 1). Then the representation with the
highest weight pA; is orthogonal for any positive integer p. By checking tables in Tits [17]
or Bourbaki (3], we can see that for any o € A, the coefficient of «; in o+ pA; is positive
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except a few cases. Therefore ® N —@ is empty. Here exceptional cases are those of p =1
in the following pairs:

(A3,Ol2), (Bl’al) (l > 2), (BbaQ) (l 23)? (B3>a3)7 (B4,’ 054)
(Craz) (123), (Do) (1=24), (Dia2) (124), (Es ae), (Er,ae),
(Eg, a1), (Fa, 1), (Fia, o), (Ga,a1), (G2, a2).

Next we consider the pair (§, ;) such that the irreducible representation p; with the
highest weight A; is symplectic (see Table 1). Then the representation with the highest
weight pA; is orthogonal for any positive even integer p. Similarly we see that for any
o € Ay, the coefficient of o; in o + pA; is positive except p = 2 in the following pairs:

» (Alaal)v (B2,a2), (CL,CH) (l > 3)

When M is reducible and s > 3, for any o € U;_; A, the number of & (1 < k < s) such
that the coeflicient of % in « + A is positive is at least s — 1. On the other hand, the
number of & (1 < k < s) such that the coefficient of 7, in —a — A is positive is at most 1.
Therefore & N —& is empty. Finally we consider the case that M is reducible and s = 2.
In this case p; and ps are both orthogonal or both symplectic. Then we see

Q= {04 + p1lAy; + P2/, (a € A71)> plA’n + B+ paA,, (B e A’yz)}-

Suppose that 3 + paA,, # —palA,, for any B € A,,. Then even if a + p1A,, = —p1A,,
for some o € A,,, it follows that —a — p1A,, — paAy, # p1A,, + B+ poA,, and —pi1 A, —
B = paA,, # o +p1A,, +p2A,, for any o € A,, and B € A,,. This implies that & N -
is empty. Let (§,) be the pair of a complex simple Lie algebra § and its simple root =y
such that the representation with the highest weight A, is orthogonal or symplectic. By
checking tables in Tits [17] or Bourbaki 3], we see that for any o € A, o+ pA,, # —pA,
except p = 1 of the pairs (A1, @1),(B2, a2), (Ci, a1). O

Remark 5.4. We consider excluded cases in the proof of Theorem 5.3. Indeed their
canonical imbeddings are not isotropic. We denote by (g,7,A) the triple such that g is
a complex simple Lie algebra and ~ is its simple root and A is the highest weight of the
representation which induces the canonical imbedding of the Kéhler C-space corresponding
~ to the pair (g, 7).

(1) (Al,a1,2A1), (Ag,ozg,Ag), (B[,al,Al) (l Z 2),(33,0(3,1\3), (Dl,al,Al) (l Z 4),
(G2, ag, Al) .
The corresponding Kéhler C-space is holomorphically isometric to a complex quadric
Q" and its canonical imbedding defined by the representation above is a hypersurface
imbedding into CP™*! and hence it is not isotropic.

(2) (Bg, a2, 2A3), (B, a2, Ag) (I = 3), (Cy, a1,2M), (Dy, oz, Ag), (Es, s, As),(E7, g, Ag),
(Eg, a1, Al),(F4, Oy, A4),(G2, a9, A2).
The corresponding Kéhler C-space M is the twistor space of a compact quaternionic
symmetric space S and the canonical imbedding f is given by the orbit through the
maximal root vector by the adjoint representation of the compact real form g on §. The
Killing form of g is an invariant symmetric bilinear form of the representation. The image
f(M) is contained in Q™ but the Kahler imbedding ¢ is not isotropic. In fact we see that
on the fibre of the twistor fibration M — S, ¢*(2 does not vanish.

(3) (B47 Q4, A4)a (Cla a2, AQ))(F4a aq, Al)
We see that their canonical imbeddings are not isotropic, checking case by case.
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(4) (C,a1,A1) X (Cm,y a1, Ag).
The corresponding Kéhler C-space M is the product of two complex prOJectlve spaces
CP2-1 and CP?>™~1 and the Kahler imbedding f into CP™*! (n = 4lm — 2) is the tensor
product of two first canonical imbeddings, which is known as the Segre imbedding. It
is well-known that the second fundamental form of f is parallel. The image f(M) is
contained in Q™ but the K&hler imbedding ¢ of M into Q™ is not isotropic.

We show interesting properties of those isotropic Kahler imbeddings of Hermitian
symmetric spaces constructed in Theorem 5.3.

Theorem 5.5. In addition to the assumption in Theorem 5.3, we assume that each
pair (Bk,vk) defines an orthogonal symmetric Lie algebra of Hermitian type. If ¢ is an
~ 1sotropic Kdhler imbedding of M into Q™ constructed in Theorem 5.3, then ¢ is osculating
full and the degree d(p) of ¢ is given by

d(p) =d(f) —1= Z"'kpk -1,

k=1

where T denotes the rank of My as an Hermitian symmetric space (1 < k < s). In
particular d() is odd. Moreover for the normal spaces N7, we have

JNJ — Nd(‘p)_j+l fO’r ] == 1) te ,d((P),

where we put N* = TM.
Proof. 'We use the notations o; and N7 for the j-th fundamental forms and the j-th

normal spaces of the imbedding ¢ into Q" and ¢; and Ni for those of the imbedding f
into CP™*1. Comparing o, and &; as in section 4, we prove our theorem.

First we recall the properties of higher fundamental forms of the canonical imbeddings
of Hermitian symmetric spaces into CP™*! following §5 in [18] . Let § = T+ be the
canonical decomposition of § = su(n + 2) which corresponds to CP*"*! and 7 : p —
H,, SC™*? be the complex linear isometry defined by g(X) = Xe; for X € b (see §2).
Let My, (1 < k < s) be an irreducible Hermitian symmetric space obtained from the pair
(8k,7k) of a complex simple Lie algebra g and a simple root v, and gr = ¥ + pr be
the canonical decomposition of the compact real form g, which corresponds to Mj. Let
g = &+ p be the the canonical decomposition of the compact real form g=g, S --- D gs
which corresponds to the Hermitian symmetric space M = M; X -- - X M, . We denote by
ho the real part of the Cartan subalgebra h = h; @ - - - @b, of the complex semi-simple Lie
algebra § = §1 @ -+ ®7s. For a linear form ¢ € hfj, we write e = > . c(;-y)7, where y runs
over the fundamental root system and c(e;y) denotes the coefficient of y. We consider the
representation p of § in our theorem. For a positive integer j , we denote by ®; the set of
weights X of p which satisfies Y ;_; ¢(A—X;v) = j, where A =) 7 _; prAy, is the highest
weight of p. Identify p and p with the tangent spaces at the origins of CP?*! and M ,
respectively. Then we can view the j-th fundamental form &; of the Kéhler imbedding f
at the origin as an element of Hom(®’p,p). It was shown in the proof of Theorem 5.2 in
[18] that the following holds: '

(5.1)  GATM) =GG(e®m) = > Vi  §V) =3G;(@p)= > Vi (=2

A€ AED;
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Here we take the unit vector e; in Vj as in the proof of Theorem 5.3 when we define q. It
is also known that f is osculating full and that its degree d(f) is given by

S
d(f) = Zrkpk, 7w = the rank of M,

(Theorem 2 in [15] and Theorem 5.2 in [18]). Under the assumption of Theorem 5.5,
checkmg each Hermitian symmetric space in Table 2 one by one , we see that d(f) =

Zrkpk is even and that d(f ) > 4. In our case we have
k=1

(5.2) GINZD) = GG a5 (@ Dp)) = V_p = J(Vi).

In fact since —A is the lowest weight of p, we have Y ;_; ¢c(A—(—A); 1) = d(f). Moreover
the representation theory of semi-simple Lie algebras implies that

ZC(A A5 k) <Z (—A); ’Yk) da(f)

k=1

for any weight A (% —A) of p. Since I—I,EISC’”‘+2 H,,Q®C(Je;) , by (5.1) and (5.2) we
have '

(5:3) He,Q=qfHT.M)+ > GNi).

2<5<d(f)-1
Evidently we see that

S

ZC(A A;vk) + Z — (=N)7) = D c(2A;5k) = d(f)

k=1 k=1

for a weight A of p. This together with Lemma 5.2 implies that ®4s)_; = —®;. Therefore

by (5 1) and Lemma 5.2 we have J(G(V?)) = q(Nd(f) J) for1<j< d(f) - 1.

Now we consider the isotropic K#hler imbedding ¢ of M into Q™. Let g = ¥+ ]
be the decomposition which corresponds to Q™ and g be the complex linear isometry
of p onto H,Q defined by g(X) = Xe; as in the proof of Theorem 5.3. As usual we
identify p with the tangent space at the origin of Q. As we have shown in section 4,
we have 0’2(X1,X2) = 09(X1,X2) for X1,Xo € Tp)M , p € M. In particular N2 = N2
and G(N2) = q(N %) in H.,SC"*2. Noticing (5.3), inductively we calculate the higher
fundamental forms o; for 2 < j < d(f) — 1 and obtain

0’j(X1,~'-- ,Xj) :5_7'(X1,--- ,Xj) for Xq,--- ,Xj (S TpM,pE M.

In particular NJ = NJ and Ej(Ng) = a(ﬁg) in H,, SC™*?2 for 2 < j < d(f) — 1. By (5.3),
we see that ¢ is qscula’cing full and the degree d(¢p) is equal to d(f) — 1. Moreover we have
J(NZ) = N&N=I = NE@=+1 51 ... d(p). In fact

(D)) = T@NY)) = J@W3)) = gV ~9) = gD ).

Since ¢ is p(G)-equivariant, J(Ng) = N;f(“’)‘j“ at any point p € M. O
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Table 2 Hermitian symmetric spaces with orthogonal representations

Isotropic Kédhler immersions into a complex quadric
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M

dime¢ M | rank M

(Agk+3, 2k42) (K = 0)

Gak42(CHH)

= SU(4k + 4)/S(U(2k +2) x U(2k + 2))

(2k +2)2 |2k+2

(B, 1) (1>2) Q%71 = 5020+ 1)/SO(21.— 1) x SO(2) 20—1 2
(Cok, o2) (k = 2) - Sp(2k)/U(2k) | K2k +1) | 2k
(Dy,00) (1> 4) Q%=2 = S0O(21)/S0(21 - 2) x SO(2) 20— 2 2
(Dyg, agr) (k> 2) SO(8k) /U (4k) 2k(4k — 1) | 2k
Hermitian symmetric spaces with symplectic representations
M dim¢ M rank M
(A17 CK) (C-Pl 1 1
G (C4Ic+2
(Agkr1, 2r41) (kK> 1) 241 ) (2k 4+ 1)? 2k + 1

(Coky1, 0241) (k> 1)
(Dak+2, ay2) (k> 1)
(E7,0{1)

= SU(4k +2)/S(U(2k + 1) x U(2k + 1))
Sp(2k + 1)/U(2k + 1)
SO(2(4k + 2)) /U (4k + 2)
Eq/Eg - T

(k+1)(k+1) |2k+1
(2 +1)(dk +1) | 2k + 1
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