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Abstract

In this short paper, the author would like to correct some errors and supplement the
classification theorem of palette diagrams without area and moment in the previous paper [2].

1. A review of [2]

A palette diagram is defined by a collection of some unit weighted squares

_ {[Sl,pl],[Sg,pg],...,[sn,pn]}, (1)

where [S;, p;] is a pair of a unit open square S; with its vertices on lattice points and a non zero
integer p;. First the author would like to correct the wrong definition of connected palette diagram
in [2]. The correct definition is as follows : A palette diagram I' in (1) is said to be connected if
the union U?_, S; of closures of S; is connected.

The following definition of types (A) ~ (D) of palette diagrams is in better expression than in
[2]. The meaning the author intended is however the same.

Definition 1 ([2], Definition 1.1). If a palette diagram T’ has one of the following property (A)
or (B) or (C) or (D):

(A) Area(l) = 0, G(I') = (0,0), det M(T") # 0 and there exists an (o, 3) # (0,0) such that
Py(T) (e, B) = 0 and P3(T)(a, B) # 0,

(B) Area(T') = 0, G(T") = (0,0), det M(T') # 0 and for all (o, B) # (0,0) such that Py (T')(cx, B8) =
0, P;(T) (e, B) = 0 holds,

(C) Area(l’) = 0, G(I') = (0,0), det M(T") = 0 and there exists an (a,B) # (0,0) such that
P2(F)(aa ﬁ) =0 and P3(F)(a, /3) 7é 0}

(D) Area(T") =0, G(T') = (0,0), det M(T") = 0 and for all (o, B) # (0,0) such that Pg(l“)(d, B) =
0, P3(T")(a, B) = 0 holds,

we say I' has the type (A) or (B) or (C) or (D).

The properties (A) ~ (D) are invariant under congruence and reflection of a palette diagram. So
we regard palette diagrams up to congruence and reflection to be equivalent.

A Feynman diagram is defined by a polygonal path + in R? consisting of a path H in 2- posmve
direction with length 1 and a path V in y-posmve direction with length 1. Such a v has its
expression

y=H™M %V 5 H™ 5 V™ 5o 2001 5 Y2 ’nl,nz,...,TZzp":_Z!, (2)
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where * denotes the product of paths and H™ stands for the n-fold composite of H. From a
palette diagram I" we can obtain infinitely many closed Feynman diagrams v C R? which have
distinct expressions such that the value of the winding number p on the square domain S; is
P, =1,2,...,n. From a Feynman diagram ~ in (2), we obtain a word

W (f,g) = fr) o g(nz) o f(na) ° g(n4) 0+ -0 f(nzp_l) o g(ner)

of f,g, fV, gV for two formal diffeomorphisms f,g € Diff(C,0) by substituting H and V in
the expression of v for f and g respectively, where f (m) stands for the m-fold 1terat10n of f, and
Dlﬁ(C 0) denotes the group of all formal diffeomorphisms of C fixing 0

Diff(C,0) = {f(2) = c12 + 222 + - - |&1 # 0,¢; € C}

and o denotes the composite of mappings. We call W.,«(f, g) the word accompanied with a Feynman
diagram ~.

In [2] the author have classified all 22 basis of connected palette diagrams consisting of 4 unit
weighted squares into the above 4 types (A) ~ (D) and determined the palette diagrams with
the type (A) (Theorem 3.1 [2]). And many relations in ﬁf((C,O) of the form W,-(f,g) = id,
which admits solutions f,g of non commuting formal diffeomorphisms tangent to the identity
with prescribed z2-term, can be obtained by applying a theorem (Theorem 2.3 [1]), which gives
a sufficient condition of closed Feynman diagram -~ such that the relation W,«(f, g) = id admits
solutions, to the above theorem. Some results in [1] on the existence or non existence of relations in
lji?f(C, 0) are obtained by calculating coefficients Ly, of z*-term, k = 4,5, . . ., of the logarithm of the
word W« (£, g) in terms of logarithms a;9,, a3, of f,g. For a18, = (a1222+0a1323+ - )9,,a20, =
(@222 + ag3z® +-++)8,, let A; = [Z;Z] and K; = a1;2 + agy for i = 2,3,.... And |A;A;| denotes

T

the determinant of the 2 x 2 matrix 01 014 .
. a2; Q25

2. A correction in [2] and Theorem 1 on classification of connected
palette diagrams consisting of 4 unit weighted squares

The author also would like to correct Theorem 3.1 (and Theorem 3.2) in [2]. I missed the
computation of P5(I';5)(1,0) in the page 13, that is, P3(I'15)(1,0) = 0 is a mistake. The truth
is that P3(I'15)(1,0) = —6p # 0 (See Remark 1 for detailed computation). Hence the following
palette diagram, which is classified into the type (B) by mistake, is classified into the type (A).

—-3p| 3p

Also in this paper we prove the next theorem as a supplement of Theorem 5.4 [2] by making

mention of even solutions f,g # id with (f”(0) : ¢"(0)) = (a : 8), where (e, 8) is an arbitrary
complex vector except for the one in Definition 1.

Theorem 1. A connected palette diagram I' without area and moment consisting of 4 unit weighted
squares except for two palette diagrams with the type (D) such that for any closed Feynman diagram
7 obtained from I' the relation W+ (f, g) = id admits solutions of formal diffeomorphisms f, g # id
non commuting and tangent to the identity equals only one of the following 6 palette diagrams.
Here p is an arbitrary non zero integer. And then (f"(0) : ¢"(0)) = (a : 8), where (a,3) is one
satisfying Pa(v)(c, B) = 0 and Ps(v)(a, B) # 0.
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—P p P
2p 2p |—4p ~2p
p [2p P —2p| 3p
P
p|-3p P p P -p
P 2p | —2p -39 3p

3. Proof of Theorem 1

To prove Theorem 1, the next Lemma 1 and Lemma 2 are essential. Lemma 2 is the second
statement of Proposition 16.1 [1], but a little different form from it.

Lemma 1. Let T be a palette diagram with the type (B) or (D) and let (o, B) a vector such that
P(T)(,8) = Ps(T)Y(«a, ) = 0. Let p denote the winding number of any Feynman diagram -y
obtained from T and D its support. Then

//Dl’f‘fa"da:/\dyzo, n=1,2..., (3)

holds for Ko = ax + By.

Proof. We have only to compute the left-hand side of (3) for palette diagrams with the type (B)
or (D) in Theorem 3.2 and Theorem 3.4 in [2]. For simplicity of the computation, we may assume
~ that one of vertices of a palette diagram is the origin since conditions (B) and (D) are invariant
under congruence. . :

For example for a palette diagram of (B-6) in [2],

1 1 1 2 2 3
‘//‘py”da: Ady p/ y”dy/ dz —p/ y“dy/ dz —p/ y“dy/ dz
D 0 0 0 1 1. 2

2 4
+p/ y"dy/ dz =0,
1 3
1 1 1 2
// plz — 2y)"dz A dy p/ dy/ (z - 2y)"dz —p/ dy/ (z - 2y)"dx
D 0 0 0 1
2 3 2 4
—p/ dy/ (z —2y)"dz +p/ dy/ (z —2y)"dz =0,
1 2 1 3
and for a palette diagram of (D-22) in [2],

//Dp(a:—y)"da:/\dy = P/:dy/ol(z—y‘)"dm—kq/jdy/lz(x_y)ndalj

3 3 : 4 4
—(3p+2Q)/2 dy/2 (z —y)"dz + (2p+q)/3 d.y/3 (z —y)"dz =0,

Il

and so on. O
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Lemma 2 ([1], Proposition 16.1). Assume A; =0, A3 # 0 and
|A2A3| = |A2A4| == |A2A¢| =0, |A2Ai+1| 7é 0

for an i > 2. If the moment condition

Momentn('y):// pEO " de Ndy =0, n=0,1,...,i—1,
D

Ltz = // { 12:2;1_(_2;), )K 4+ (i-1) 1}+1}dK2/\dKi+1

holds, then

and in addition if Lopyo = 0, then

Lits = / / (-2 S RO (—1) IS K, T K — 26(i — 1) KoKy pdKa AdKG
G+ )G - 2)! ’

where S =0 fori=2 and S > 0 fori > 2.

Proof of Theorem 1.

In the followings, for a palette diagram I', v denotes an arbitrary Feynman diagram obtained
from I
1. Let T be a palette diagram consisting of 4 unit weighted squares with the type (A).

For an (a, 8) € C? satisfying the condition that Py(T')(c, 3) = 0 and P3(T')(e, 8) # 0, the
relation W« (f,g) = id admits formal solutions f,g # id non commuting and tangent to the
identity (Theorem 5.4 [2]). ’

For an (a, 8) € C? except for the above one, P;(T')(«, B) # 0. Hence if W,«(f,g) = id admits
formal solutions f, g # id tangent to the identity with (o, 8), then f, g commute by Theorem 5.1
12]. :

2. Let T be a palette diagram consisting of 4 unit weighted squares with the type (B).
Let Ay = (a, 8) € C? satisfy the condition that P2(T")(c, 3) = 0 and P3(T')(e, 8) = 0. Assume

Az, ..., Ay satisfy |AgAg| = |AgAy| = - - = |A24;| = 0 and |A2A;1+1] # O for an arbitrary 7 > 2,
then Ly = -+ = Lg;45 = 0 and
Lojys = —2i(i -1) // pKo K 1dKo NdK ;1 (4)
D

from Lemma 1 and Lemma 2. And the value of (4) is not 0 since |A24;+1] # 0 and P>(T')(r, B) = 0.
Hence if Lg;13 = 0, then |A2A;41] = 0. Therefore if W,«(f,9) = id admits solutions f,g # id
tangent to the identity with (o, 8), then f, g commute by Theorem 5.3 [2].

For an (a, 8) € C? except for the above one, P(I')(c, 3) # 0. Hence if Wy« (f, g) = id admits
formal solutions f, g # id tangent to the identity with («, 8), then f, g commute by Theorem 5.1
[2].

3. Let I be a palette diagram consisting of 4 unit weighted squares with the type (C).

Let (o, B) € C? satisfy the condition that Py(I')(c, 3) = 0 and P3(I')(a, B) # 0. If Woe (£, 9) =
id admits formal solutions f, g # id tangent to the identity with (c, 3), then f, g commute (Theorem
5.5 [2]).

For an (a, 8) € C? except for the above one, P>(I')(c, B) # 0. Hence if W, (f,g) = id admits
formal solutions f, g # id tangent to the 1dent1ty with (a, 3), then f, g commute by Theorem 5.1
2.

4. Let T be a palette diagram consisting of 4 unit weighted squares with the type (D).

Let (o, ) € C? satisfy the condition that Py(T')(e, 8) = 0 and P3(T')(c, 3) = 0. Assume
Az, ..., A1 satisfy |AgAs| = |AgA4| = -+ = |A2A;| = 0 and |A24;41]| # 0 for an arbitrary ¢ > 2,
then L4 == L»gz'_*_g =0 and

Lojrs = --2’(:(i - 1) // PKo K, 1dKy N dK; 1 (5)
D



September 2006 A remark on classification of connected palette diagrams without area and moment 35

from Lemma 1 and Lemma 2. Here the value of (5) is 0 for both (D-2) and (D-22) in [2]. Hence
- whether W« (f,g) = id admits formal solutions f,g # id non commuting and tangent to the

identity or not is not known for now by our study.
For an (a, ) € C? except for the above one, P3(T")(c, B) # 0. Hence if W,«(f, g) = id admits
formal solutions f,g # id tangent to the identity with (o, 3), then f, g commute by Theorem 5.1

2]-

Therefore Theorem 1 is proved. |

Remark 1. The following is the computation of P5(I"15)(1,0).

b+2 a+1 b1 a+2 b+1 a+3
p/ dy/ x3dm—3p/ dy/ x3dw+3p/ dy/ z3dx
b+1 a b a+1 b a+2

b+2 a+4
—p dy / z3dx
b+1 a+3

l:x4:| a+1 ) l:m‘l} a+2 s {:.’174] a+3 I:«'L'4:Ia+4
= Pl —opy— D —DPi—
4 4 Jon 4 Jote 4lats

a

i

P3(T'15)(1,0)

_ p(a+1)4—a4“3p(a+2)4—(a+1)4+3p(a+3)4—(a+2)4
4 4 4
(a+4)*—(a+3)*
= —6p.

P3(T'15)(1,0) is also computed by Mathematica by the following commands written in boldface.
Their outputs are written under them.

Integrate[z"3, {z,a,a + 1}, {y, b+ 1,b+ 2}]
Integrate[z3, {z,a + 1,a + 2}, {y, b, 0+ 1}]
Integrate[z"3, {z,a + 2,4 + 3}, {y,b,b+ 1}]
Integrate[z"3, {z,a + 3,a + 4}, {y, b+ 1,b+2}]
Out[l] = 1 +a+ 32 4 43

Out[2] = & +7a + 2% +o®

Out(3] = 8 + 19a + 1%“3 +a?

Out[d] = 18 4 37q 4 2Le” 1 43

Simplify[pOut[1] — 3pOut[2] + 3pOut[3] — pOut([4]]
Out[5] = —6p
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