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Abstract

For a polygonal path « consisting of unit vectors in z-direction and y-direction in the plane
R?, a relation Wy« (f,g) = id of £, g is defined, where id denotes the identity map of C. Some
sufficient conditions of v so that W, (f,g) = id admits solutions of non commuting formal
diffeomorphisms tangent to the identity have already been obtained in [4]. In this paper, we
define a palette diagram and classify all connected palette diagrams without area and moment
consisting of four unit weighted squares into 4 types to find v so that W,«(f,g) = id ad-
mits solutions of non commuting formal diffeomorphisms tangent to the identity among those
diagrams. We also give some concrete examples of relations of two formal diffeomorphisms.

1 Introduction

Let us consider a unit square S = (a,a+1) x (b,b+1),a,b € Z, in the real 2-plane R? with vertices
on lattice points, where (*,*) denotes an open interval. We attach a non zero integer p € Z* to
S and call it a unit square with weight p, and denote by [S,p]. In this paper, we define a palette
diagram T' consisting of n unit weighted squares to be a collection of n distinct unit weighted
squares

£ = {{Sup1L (82,72l S ] . 1)

For a palette diagram I', we call a collection of n unit squares

f:{sl,s2,...,sn}

the base of I'. We say a palette diagram (or its base) is connected if every square S; has at least
one vertex in common with another square Sj;,j # ¢. Hence a palette diagram (or its base) is non
connected if there exists at least one square which has no vertex in common with any other squares.

The Area and Moment of a palette diagram I" in (1) (or a Feynman diagram - obtained from
T, which is defined in the next) are defined by

n n n
Area(I‘):Z Dis G(F):(Z pz// ccda:/‘\dy,z pi// yda;/\dy)
i=1 i=1 Si i=1 Si
respectively. And for " we define the moment matrix M (") by the symmetric matrix

M(T) = {ELI i ffSi z? dx Ady Zgzl i ffs Ty dac/\dy]
Z?.—_l piffsi zy dx Ady Z,;=1 piffsiyz de Ndy|’
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and define the polynomial P, (I")(e, 8) of two complex variables ¢, 8 of degree k with real coefficients
by

n
P 8) = 3 ps [[ (@ + pu)* da na.
i=1 S;
We see that the equation of «, 8 of degree 2
Py(T) (e, B) = my10? + 2mi208 + maa8° = 0, (2)

where my1 =Y ., Di ffsi 2?2 dz Ady,mi2 =3 o, Di ffsi zy dz Ady, mag = > 1y Di ffsi y? dz A
dy, determines two distinct lines in af-plane if det M(T') # 0. And (2) determines one line if
det M(I') = 0 and M(T") # 0.

Definition 1.1. If a palette diagram T’ has the following property (A) or (B) or (C) or (D) :

(A) Area(T") =0, G(T') = (0,0), det M(T") # 0 and there exists an (o, 3), (e, 8) # (0,0), such
that P5(T')(c, 8) = 0 and P3(T')(e, B) # 0,

(B) Area(T’) = 0, G(I") = (0,0), det M(T") # 0 and there exists an (a, 8), (o, B3) # (0,0), such
that P2(T) (e, B) = P3(T)(e, B) =0,

(C) Area(T") =0, G(T') = (0,0), det M(T") = 0 and there exists an (o, B), (o, 8) # (0,0), such
that Po(T) (e, B) = 0 and P3(T')(e, B) # 0,

(D) Area(T') =0, G(I') = (0,0), det M(T") = 0 and there exists an (a,3), (o, B) # (0,0), such
that Pz(F)(O!, ﬁ) = P3(F)(a, ﬁ) = 0,

we say I' has the type (A) or (B) or (C) or (D).

For a palette diagram I in (1) there exists a closed polygonal path v in R? which have integers
P1,D2,--.,0n as values of the winding number of v on the square domains Sy, So, ..., Sy respec-
tively. Here the winding number p(v) = p(7)(z, y) at a point (z,y) € R? of a closed path v is the
number that v winds around (z,y). We call this v a closed Feynman diagram obtained from T'.
We note that for a palette diagram I" there exist infinitely many (but countable) distinct Feynman
diagrams. For example, there exist three distinct Feynman diagrams v;,72,7y3 obtained from a
palette diagram I' = {[S,1]} in Figure 1. The base point of a diagram may be chosen arbitrarily

in R2,
1 | 1im 1 lvz 1 |7

y

‘I—‘ZL'

Figure 1: Examples of Feynman diagrams 7, vz, s obtained from T" = {|S, 1]}

Let H be a unit horizontal vector in z-positive direction and V a unit vertical vector in y-
positive direction in R?. Then in general, a Feynman diagram ~ is expressed as

= H™ « VP2 H 5 VP koo x HN22-10 5 V2 ny g, € 2, (3)
where * denotes the composite of paths and H™ stands for the n-fold composite of H. For example
Mm=H+xV+H 1V 1 ={H 1V} Yo=V+H 1 xV 1« H={V"! H}

Y3=H+V«H+V+H %V 4V s H1=HsVsy sV 1IsH?
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for the diagrams in Figure 1, where {H,V} denotes H~ !+ V! x H % V. From v in (3), we obtain
a word
W’Y* (f, g) = f(nl) o g(nz) o f(n3) Ie) g(n4) O+++ 0 f("?pfl) o g(nzp)

of f,g, fC1, g(=1 for two holomorphic diﬁeombrphisms f,g € Diff(C, 0) by substituting H and V
in the expression of v by f and g respectively, where (™ stands for the m-fold iteration of f, and
Diff(C, 0) denotes the group of germs of holomorphic diffeomorphisms of C fixing 0

Diff(C,0) = {f(z) = a1z + a22” + - - |a; # 0,a; € C}
and o denotes the composite of mappings. We have
W (f,9) = {f0,gVY,  Wo,e(f,9) ={g"V, f},

Wag=(f,9) = fogoWa,-(f,g) 0 g™ o f71
then, where {f,g} = f(-Y 0 g(-D o f 0 g. The relation of f,g defined for v in (3) is the equation

W (f,g) = id. (4)

We say a relation (4) have length [ if |nq| + -+ 4+ |ngp| = L.

J. Ecalle and B. Vallet [1] constructed various types of relations of two formal diffeomorphisms
tangent to identity in the group ﬁ(C,O) of formal diffeomorphisms. F. Loray [2] investigated
those relations in the study of non solvable subgroups of Diff(C, 0) from the view point of real and
complex codimension one foliation. While, the structure of non solvable sub groups is not well
known [2, 3].

In this paper we classify all connected palette diagrams consisting of four unit weighted squares
into the above 4 types (A) ~ (D). The result of the classification is stated in §3 (Theorem 3.1,
3.2, 3.3 and 3.4). The following Theorem 3.1 on the type (A) is important in this paper to obtain
relations of formal diffeomorphisms.

Theorem 3.1. A connected palette diagram I' consisting of four unit weighted squares with the

type (A) equals up to congruence and reflection to one of the diagrams in the below, where p is a
non zero integer.

—b p p

2p 2p |-4p —2p

Moreover, we give classification for some non connected palette diagrams (Example 3.1). In §4,
we prove the classification theorem. In §5, we apply this classification to obtain relations of two
formal diffeomorphisms non commute and tangent to identity. See Theorem 5.4, 5.5 and 5.6. The
main theorem in this paper is Theorem 5.4 in the following: '

Theorem 5.4. Assume I' equals the one of five in the chart in Theorem 3.1, then for all Feyn-
man diagrams vy obtained from I', the relation W,«(f, g) = id admits formal solutions f,g # id
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non commute and tangent to identity such that (f"(0) : g"(0)) = (a : B), where (o, B) satisfies
P2(’7)(O‘aﬁ) =0 and P3(’Y)(a7 /6) # 0.

We can obtain many ample relations of formal diffeomorphisms non commute and tangent to
identity from a palette diagram in Theorem 3.1 with the type (A) by Theorem 5.4. We give
seven examples of relations of formal diffeomorphisms in §5 defined for seven Feynman diagrams
concluding the following two diagrams.

-1 1

1 m —2 -2 3

The author will determine the number of relations with minimal length obtained from five palette
diagrams in Theorem 3.1. In Appendix, we give the classification of connected palette diagrams
without area and moment consisting of two or three unit weighted squares.

2 The number of basis of connected palette diagrams con-
sisting of four unit squares

Here we determine the number of basis of connected palette diagrams consisting of four unit squares
by enumerating those basis systematically.

There exist exactly 5 basis of connected palette diagrams consisting of three unit squares in
the followings.

O] ® ® @ ®

We regard basis of palette diagrams (resp. palette diagrams) up to congruence and reflection to
be equivalent. Then we find basis of connected palette diagrams consisting of four unit squares by
adding a square to one of @ ~ ®.

By adding a square to @, we find exactly 4 distinct basis (1) ~ (4) of connected palette diagrams
consisting of four unit squares in the followings.

(1) (2) 3) (4)

By adding a square to @, we find exactly 12 distinct basis (5) ~ (16) of connected palette diagrams
consisting of four unit squares in addition to (1), (4) in the followings.
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By adding a square to @, we find exactly 4 distinct basis (17) ~ (20) of connected palette diagrams
consisting of four unit squares in addition to (3), (7), (9), (10), (13) in the followings.

(17) (18) (19) (20)

By adding a square to @, we find exactly 1 base (21) of connected palette diagrams consisting of
four unit squares in addition to (3), (4), (11),(12), (13), (14). And by adding a square to ®, we
find exactly 1 base (22) of connected palette diagrams consisting of four unit squares in addition
to (5), (14).

(21) (22)

L

Therefore we obtain the following Lemma 2.1.

Lemma 2.1. There exist exactly 22 distinct basis of connected palette diagrams consisting of four
unit squares.
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3 Result of the classification of connected palette diagrams
without area and moment consisting of four unit weighted

squares

Here we state the classification theorem obtained.

Theorem 3.1. A connected palette diagram I' consisting of four unit weighted squares with the
type (A) equals up to congruence and reflection to one of the diagrams in the chart below, where p
18 a non zero integer. '

(A)
NO. T M(T) (a:f)
~p
20 0
®) o 7% (1:1)
P [=2p
p
9) 2 [ap {45’ 2‘;} (£vF:2)
p
p
(10) o [:;*g ;?ﬂ (~14+3:2)
—2p| 3p
p
(12) » 3p Bf 21';] (—14++v=3:2)
p
(13) P P 2 2p (2:—1)
2p 2p {21) 0]
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Theorem 3.2. A connected palette diagram T consisting of four unit weighted squares with the
type (B) equals up to congruence and reflection to one of the diagrams in the chart below, where p

iS @ non zero integer.

(B)

NO. T M(T) (o: B)
m—
(6) — [‘f g] 0:1), (1:-2)
—p| p
| (11) — [2;’ 18] 0:1), (1:-1)
P 0 —3p . .
(15) 15 [_3p 0 } (1:0), (0:1)
p
(16) B g [gg gﬂ (1:-1), (1:-2)
(17) —P| |P [;‘g 25’] (0:1), (1:-1)
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(B) |
No. r M(T) (a: f)
—p
(19) P P Qg’ _%p] (1:1), (1:=1)
—p
b |—p 0 —
(21) 1 [_p Op] (1:0), (0:1)

Theorem 3.3. A connected palette diagram T' consisting of four unit weighted squares with the
type (C) equals up to congruence and reflection to one of the diagrams in the chart below, where p
18 a mon zero integer.

(C)
No. r M(T) (a: )
(2) —3p| 3p | —p [8 8} (a: B) oz‘#O
-p
3 0 0
(22) (30 L lo 0:| (O.’:ﬂ) a+B#0
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Theorem 3.4. A connected palette diagram I' consisting of four unit weighted squares with the
type (D) equals up to congruence and reflection to one of the diagrams in the chart below, where

p,q,7,8 are

non zero integers.

(D)
No. r M(T) (a: B)
(2) pla|r|s FB%+® ﬂ 0:1)
r=-3p—2q, s=2p+gq 3p+qg#0
r 2(3p+4q) 2(3p+aq) o
(22) q r=—3p—2¢ {%%+@)2Bp+®} (1:-1)
p §=2p+gq 3p+q#0

Example 3.1. There exist examples of non connected palette diagrams consisting of four unit
weighted squares with the type (A) or (B) in the followings. (See Example 4.1 and 4.2 in §4).

(A)
r M(T) (a: )
—p —q
d“c 0 P
b-- Pl lp ,_p@+@] (p+q:2q)
a c=a+1, d=b-2 !
p#q, p+q#0, EeZ
(B)
r M(T) (a: B)
d+1--—7-"
O p
—_1 I__—l | 0 mi2 . .
b+1-- --- [nh2 0 ] (1:0), (0:1)
p —p
" T mi2 = (a—c)(b—d
d atl & 1 w=(a=ob-dp
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4 Proof of the classification theorem

Here we give the proof of the classification theorem Theorem 3.1 ~ 3.4.
First, we obtain 22 distinct connected palette diagrams consisting of four unit weighted squares
in the followings by attaching non zero integers p, g,r, s € Z* to four unit squares of basis obtained

in Lemma 2.1 of §2.

NSR. O,, Vol. 56

(1) (2) (3) 4) _
7] ol
pla]s lelafris] [elsle] s frfd]
(5) r] () (7) (8) r
q m " & B
(s 1p 1?1 P1e] 5] B
(9) a (10) IZ:] (11) (12) e
D r r s] T
(o] [ M
7] | a
(13) (14) (15) (16)
alia 0 B[ 7]
plq pls g|r q] s
2 o
(17) (18) (19) (20)
- _ (2]
5] 4 s
q FRE [r] {7] L Lsd
1
(21) (22)
p[4q B
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The followings are their expressions.

_ [ aa+1)x(bbd+1),p],
(1) I = {[(a+g,z+4)>>z(b+1,b+p2),r],

[(a,a+1) x (b,b+1),p],
[(a+1,a+2) x (b+1,b+2)},7],

(a,a+1)x (b+1,b+2),7],

(a+1,a+2)x(bb+1), p]
[(a+3 a+4)x(b+2,b+3),7],

{
-1
-1
=1
(6) Fe_{ [(@,a+1) x (b,b+1),pl,
-1
{
{

(a+2,a+3)x (b+1,b+2),1],

[(a,a+1)% (b,b+1),p],
[(@a+2,a+3)x(b+1,b+2),7],

[(a,a+1) x (b,b+1),p],
[(a+2,a+3)x (b+2,b+3),7],

[(@+2,a+3)x(b+2,b+3),p,
[(a+2,a+3) x (b,b+1),7],
(@a+1,a+2)x (b+2,b+3),p

[(a,a+1) x (b,b+1),p],
[(a,a+1) x (b+1,b+2),p],

(a,a+1) x (b,b+1),p],

[(a,a+1) x (b+1,b+2),p],

[(@+2,a+3)x (b+1,b+ 2), ]

la+1,a+2)x (b+1,b+2),1],

[(@+2,a+3)x (b+2,b+3),7],

[la+2,a+3)x(b+1,b+2),7],

(a+2,a+3)x(b+2,b+3),7],

[(a+1,a+2)x (b,b+1),q]}
[(la+2,a+3)x (bb+1),s]

[(a,a+ 1) x (b,b+ 1),p], [(a+1,a+2)x(b,b+1),q]}
la+2,a+3)x(bb+1),r], [(a+3,a+4)x(bb+1),5]

[(a+2,a+3) x (b,b+1),q] }
[(a+1,a+2) % (b,b+1),5]

[(a+1,a+2) x (b,b+1),p], [(a+2,a+3)x(bb+ 1),q}}
[ [(a,a+1) x (b,b+1),s]

[(a+2,a+3) x (b+1,b+2),q]}
[(a,a+1) x (b,b+1),s]

[(@a+1,a+2) x (bb+1),4] }
[(a+3,a+4)x(b+1,b+2),5]

[(a+1,a+2) x (b,b+1),q]}
[(a+3,a4+4) x (b,b+1),5]

[(a+1,a42) x (b,b+1),4q] }
[(a+2,a+3)x (b+1,b+2),s]

[(a+1,a+2) x (b+1,b+2),q]}
[(a,a+1) x (b+1,b+2),s] .

[(a,a+1) x (b,b+1),4q] }
[(a+1,a+2) x (b,b+1),s]

[(a+1,a+2) x (b,b+1),q] ]}

(a+2,a+3)x (b+1,b+2),s

[(a+1,a+2) x (b,b+1),4g }

[(a+1,a+2) x (b+1,b+2), s3]

[(la+1,a+2) x (b,b-{—l),q]}
[(a,a+1)x (b+1,b+ 2),s]

[(la+1,a+2)x (b+1,b+2),s

[(a,a+1) x (b,b+1),q] ]}

[(a+1,a+2) x (b,b+1),q] }

(@+2,a+3)x (b,b+1),r], [(a+3,a+4)x (b+1,b+2),5]

[(a,a+ 1) x (b,b+1),p],

[(a,a+1) x (b,b+1),p],
[(a+1,a+2)x (b+1,b+2),7],

— —

[(a,a+1) x (b+1,b+2),p],

o
{
=
o
-{
(15) ig = {flae y 00k bt Do)
-
-
o
{

[(@a+3,a+4)x (b+2,b+3),7],

[(a+1,a+2) x (b+1,b+2),q]}

[(ea+2,a+3)x(b+1,b+2),5]

[(a+2,a+3) % (bb+1),4] }

[(a+3,a+4)x (b+1,b+2),s]

(@, +1) x (b+1,b+2),p], [(a+1,a+2)x(b+1,b+2),q]}
(a+3,a+4)x (b,b+1),r], [(a+2,6+3)x(b+1,b+2),s5]

[le+1,a+2)x (bb+1),q]
[(a+2,a+3)x (b+1,b+2),7r], [(a+1,a+2)x (b+2,b+3),s]}

11
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(20) T'go = {[(a,a-l—l) x(b+2,0+3),p], [(a+1,a+2)x% (b+1,b+2),q]}

[(a,a+1) x (b,b+1),7], [(a+2,a+3) x (b,b+1),s]
@, a+1) x (b+1,6+2),p], [(a+1,a+2)x (b+1,b+2),q]
(21) F21—{ (T(;L,a+1)><(b,b+1),r],p (f(a+f,a+2)x(b,b+1),s]q}
_ [(a,a+1) x (b,b+1),p], [(a+1,a+2)x (b+1,b+2),q]
(22) F22_{[(a+;,3+3)i(b+2,b+p3),r], [(Z+3,Z+4g§(b+3,b+4),z]}

Here let s = —p — g — r so that diagrams have 0 area.

Secondly we compute the moments of the above 22 diagrams. The results of the computations
of the moments and the conditions of non zero integers p,q, 7 so that G(T;) = (0,0) for i =1 ~ 22
are in the followings.

(1) G(T'1) = (-2p—gq+r7) # (0,0).

(2) G(T2) =(-3p—29 —7,0)=(0,0) & r=—3p— 2.
(3) G(I's) = (—p+4g,7) # (0,0).

(4) G(T') = (p+2g,7) # (0,0).

(

5) G(T's) = (p+ 2q + 3r,q + 2r) # (0,0).

(6) G(I's) = (-3p—2¢ —1,—p—q) = (0,0) & ¢ = —p,r = —p.
(7) G(I'7) = (=8p —2g —7,7) #(0,0).

(8) G(T's) =(—2p—¢,—p— q+r) (0,0) & g = —2p,7 = —p.
(9) GI'9) =(2p+q+2r,p—71)=(0,0) & g = —4dp,r = p.

(10) G(T10) = (=g + 7,20 +7) = (0,0) & r = ¢,7 = —2p.
(11) GTu) =(-2p—q—r,~p—q) = (0,0) & ¢ = —p,r = —p.
(12) G(T2) = (-p+1,—q+71)=(0,0) & p=gq=r.
(13) G(T'3) =(g+2r,—p—q) =(0,0) & p = 2r,q = —2r.
(14) G(T14) =(-p—g+71,—g +71) # (0,0).
(15) GT'15) =(-3p—2¢—r,—q—71) =(0,0) & g = —3p,r = 3p.
(16) GT16) =(—2p—q+r,—p+71)=(0,0) & r =p,g=—p.
(17) G(T'17) = (-3p—q—2r,—p—q) = (0,0) & ¢ = —p,r = —p.
(18) G(I'is) = (—2p—q+r,qg—r) # (0,0).
(19) G(T'y9) = (—p+7,—p—29—7) = (0,0) & ¢ = —p,7 = p.
(20) G(I'20) = (—2p —q —27,2p + q) # (0,0).
(21) G(I'n1) = (=7 —p,p+¢q) = (0,0) & g = —p,7 = —p.
(22) GTa2) =(-3p—2¢—7r,-3p—2q—71) = (0,0) & r = —3p — 2q.

We see that diagrams I';, ¢ = 1, 3,4, 5, 7,14, 18, 20 have non zero moment since p,q,7, —p—q—1 # 0.
So we need not consider them from now on.

Thirdly we compute the elements of the moment matrix M (T';) and find the complex lines (a : §)
that the equation P5(T;)(c, 8) = 0 determines for the rest of 14 diagrams ¢ = 2,6,8,9,10,11,12,13,
15,16,17,19, 21, 22 without area and moment under the above integer conditions. The results of the
computations of M (T';) are stated in the charts in §3. We see that the determinant of M (I';) is not 0
fori=6,8,9,10,11,12,13,15,16,17,19,21 and 0 for i = 2,22. And the followings are the equation
(2) Py(T;)(et, B) = 0 and the lines it determines for i = 2,6,8,9,10,11,12,13, 15,16,17, 19, 21, 22.
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(2) Py(T2)(e,8) =20Bp+q)a? =0 (a: B) = (0:1) in 3p+q # 0. (a,B) is arbitrary if
3p+q=0.

(6) Pa(Te)(cv, ) = 4pa® +2paf =06 (a: f) = (0:1),(1: —2).

(8) Po(Ts)(e, 8) =2pa® —2pf? =0 & (a: ) = (1:1),(1: —1).

(9) Px(To)(e, B) = 4pa® +2pf* = 0 & (a: B) = (£v~-2:2).
(10) Po(T'10)(r, B) = —4pa? —4dpaB +2pB% =0 & (a: B) = (-1 £+/3:2).
(11) Py(T11)(e, B) = 2pa® +2paf =0 & (a: f) = (0:1),(1: ~1).
(12) P(T12)(ex, B) = 2pa® +2paf+2p =0 & (a: f) = (-1 + V=3 :2).
(13) Pa(T13)(e, B) = 2pa® + 4paf =0 & (a: B) = (0:1),(2: ~1).
(15) Pp(T15)(e, B) = —6paf =0« (a: ) = (1:0),(0:1).
(16) P2(T'16)(v, B) = 4pa® + 6paf + 2pf2 = 0 & (a: B) = (1: —1),(1: -2).
(17) Pa(T1r)(e, B) = 4po® + 4paf =0 & (a: B) = (0:1),(1: —1).
(19) Pa(T19)(a, B) = 2pa® ~ 2pB° = 0 > (ar: B) = (1: 1), (1: 1),
(21) Py(Tar)(@, B) = —2paf = 0 4 (o, B) = (1:0),(0: 1).

(22) Py(T22)(ex, B) = 2(3p+q)a® +4(3p+q)af+2(3p+9)* =04 (a: B) = (1: —1) if 3p+q #0.
(a, B) is arbitrary if 3p + ¢ = 0.

The followings are the values P3(I';)(c, 8),7 = 2,6,8,9,10,11,12,13,15,16,17, 19,21, 22, for
(a0, B) such that Py(T;)(a, 8) = 0.

(2) P3(I'2)(0,1) =0if 3p+¢q #0. P3(T'1)(a, B) = —6pa® if 3p+ ¢ = 0.
(6) P5(I')(0,1) = P3(T's)(1,—2) = 0.
(8) P3(I's)(1,1) = —12p # 0, P3(I's)(1, —1) = 0.
(9) Ps(To)(v~2,2) = —P3(T9)(—v/~2,2) = 24v/~2p #O0.

(10) P3(T10)(—1+/3,2) = P3(T'10)(—1 — /3,2) = 24p # 0.

(11) Ps(T11)(0,1) = Py(T'11)(1,—1) = 0.

(12) P3(T12)(~1+4+v/=3,2) = P3(T'12)(—1 — v/=3,2) = ~24p # 0.

(13) P5(I'13)(0,1) = 0, P3(I'13)(2, —1) = 12p # 0.

(15) P5(I'y5)(1,0) = P5(I'15)(0,1) = 0.

(16) P3(T'16)(1,—1) = P3(I'16)(1,—2) = 0.

(17) P3(I'17)(0,1) = P3(T'17)(1,-1) = 0.

(19) P5(I'19)(1,1) = P3(T'19)(1,~1) = 0.

(21) P5(I'21)(1,0) = P5(I'21)(0,1) = 0.

(22) Py(To)(1,~1) = 0if 3p+ g # 0. P3(Taz)(a,8) = —6p(a+ B)° if 3p + g = 0.
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Therefore, we see that diagrams I's, I'g, I'19, I'12, T'13 are classified into (A), I's, I'11, 15, 16, 17, 19,
T'o; are classified into (B), and I'p,T'92 are classified into (C) or (D). Palette diagrams are lined
up in this order in the chart. The author used Mathematica for computations of elements of the
moment matrix and values P3(I';) (o, ). O

We give examples of non connected palette diagrams consisting of four unit weighted squares
with the type (A) or (B) in the followings.

Example 4.1 (Case of non connected palette diagrams consisting of four unit weighted
squares with the type (A) ). For a non connected diagram T’

F_{[(a,a+1)><(b,b—i—1),p], [(a+1,a+2) x(b,b+1),4q] }
" \le,e+1) x (d,d+1),7], [(@,a+1)x(b+1,b+2),—-p—qg—7][’

the moment is
G)=(¢+r(c—a),—p—q—r+r(d-0b))

and +qg+7r
G(F):(0,0)@c=a—g, d=b+p—z——.

And then

a(g+r) a(ptg+r)

— - pe(p+q+7)

M(T) = [_ q(pS-qM) (p+q)(p3~q+r) ,  det M(T') = s #0,
and the equation (2) is
+r 2q(p+qg+r + +q+r

Ifq+7r =0, (5) becomes
~2pgoa3 + (p+ q)pB° =0

and this determines two lines
(@:8)=(1:0), (p+q:29),

and
P5(I')(1,0) =0, P5(I)(p+4q,29) =2pg(p+ q)(p — @)

Hence T is classified into type (A) if p+q # 0 and p—q # 0, then. Ifq+1r # 0, (5) has solutions
(@:B)=(glp+q+7r)£/—par(p+qg+r): qlg+r)).

For (a, 8) = (q(p +q+7)E/—per(p+q+7),q(q+71)),

P3(T)(a, B) =
_pg*(g +r)(p + g +r){2pgr + ¢Pr£r/—pgr(p+ g +7) +q(r*> — /—par(p+ g +1))}

T

Hence T' is classified into type (A) if this value is not 0.

Example 4.2 (Case of non connected palette diagrams consisting of four unit weighted
squares with the type (B) ). For o separate diagram T’

F_{[(a,a+1)><(b,b+1),p], [(a,a+1)><(d,d+1),—p]}
T Nllee+1) x (b,b+1),—p], [(c,e+1)x(d,d+1),p] |’

a # ¢, b # d, we see Area(T’) = 0,G(T") = (0,0),

M(T) = {(a - c)?b _dp (a - C)g’ ~DP| et M(T) £0,
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and the equation (2) is : '
() (@, B) = 2(a — ) (b — d)pa = 0.

It determines two lines

(a:8)y=(1:0), (0:1),

and
P5(I')(1,0) = P5(I')(0,1) = 0.

Hence T is classified into type (B).

5 Application of the classification theorem to finding rela-
tions of formal diffeomorphisms

Here we explain the application of the classification theorem in §3 to finding relations of two formal
diffeomorphisms.

We have obtained the following theorems in [4] for relations of two formal diffeomorphisms in
terms of Feynman diagrams. :

Theorem 5.1 ([4]). Let v C R? be a closed Feynman diagram with Area(y) = 0,G(y) = 0.
Assume Wy(f,g) = id and f,g # id are tangent to identity and assume

//pK22 drANdy #0

with Ky = 1(f"(0)z + ¢"(0)y). Then f,g commute.

Theorem 5.2 ([4]). Let v C R? be a closed Feynman diagram with

Area(y) = 0,G(y) =0, //ngz dz ANdy = 0,//pK23 drNdy #0
and assume the moment matrix is non singular, i.e.

det [fpz?dendy [[pazydsrdy £0
[[pzydendy [[py?dzAdy '

Then Wa«(f,g) = id admits formal solutions f, g # id non commute and tangent to identity such
that Ky = £(f"(0)z + ¢"(0)y).

Theorem 5.3 ([4]). Let v C R? be a closed Feynman diagram with Area(y) = 0,G(v) = 0.
Assume Woy«(f, g) = id, f,g # id are tangent to identity,

//pK22 d:c/\dyzo,//pK23 dz ANdy #0

with K2 = 3(f"(0)x + g"(0)y), and assume the moment matriz is singular, i.e.

det Jfpa®dzndy [[pazydsndy —0
[fpzydzndy [fpy®dzndy] ™

Then f,g commute.

In Theorem 5.1, 5.2 and 5.3, p denotes the winding number of v, and the domain of each multiple
integral is the domain enclosed by ~.

We obtain the following two lemmas by rephrasing statements of Theorems 5.2 and 5.3 respec-
tively.

15
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Lemma 5.1. Assume a palette diagram I' has the type (A). Then for all Feynmaﬁ diagrams v ob-
tained from I'y, W« (f, g) = id admits formal solutions f,g # id non commute and tangent to iden-

tity such that (f”(0) : ¢"”(0)) = (« : B), where (a, B) satisfies Pa(y)(a, 8) = 0 and Ps(y)(e, B) # 0.

Lemma 5.2. Assume a palette diagram T' has the type (C). For o Feynman diagram -~ obtained
from T, assume W.«(f,g) = id, f,g # id are tangent to identity and (f"(0) : ¢"(0)) = (o : B),
where (o, B) satisfies Po(y)(a, B) = 0 and Ps(y)(a, B) # 0. Then f,g commute.

Then we obtain the following Theorems 5.4 and 5.5 as the application of the classification theorem.

Theorem 5.4. Assume I' equals the one of five in the chart in Theorem 3.1, then for all Feyn-
man diagrams v obtained from I, the relation Wo«(f,g) = id admits formal solutions f,g # id
non commute and tangent to identity such that (f”(0) : ¢"(0)) = (a : B), where (a, ) satisfies
PZ('Y)(auB) =0 and P3(’Y)(O‘a/8) 7é 0.

Theorem 5.5. Assume I' equals the one of two in the chart in Theorem 3.8. For a Feynman
diagram «y obtained from T, assume W« (f,g) = id, f,g # id are tangent to identity, and (f"(0) :
g"(0)) = (o : B), where (a, B) satisfies Pa(v)(a, B) = 0 and P3(v)(c, B) # 0. Then f,g commute.

If a palette diagram T is classified into the type (B) or (D), then there exists an (o, §) such
that Py(T")(a, B) # 0. Hence then, by rephrasing a statement of Theorem 5.1 we obtain

Lemma 5.3. Assume a palette diagram T has the type (B) or (D). For a Feynman diagram vy
obtained from T', assume Wy (f,g) = id, f,g # id are tangent to identity and (f(0) : g"(0)) =
(e : B) for (o, B) which is not the solution of Pa(y)(a, B) = 0. Then f,g commute.

And from Lemma 5.3 we obtain

Theorem 5.6. Assume I' equals the one of nine in the chart in Theorem 3.2 or 3.4. For a
Feynman diagram -y obtained from I', assume Wo«(f,g) = id, f, g # id are tangent to identity and
(f"(0) : g"(0)) = (e : B), where (a, 8) does not satisfy Po(v)(c, B3) = 0. Then f,g commute.

We give some examples of relations of two formal diffeomorphisms non commute and tangent
to identity obtained from diagrams classified into (A).

Example 5.1 (Relations of formal diffeomorphisms obtained from I's). We obtain the
following three distinct Feynman diagrams va,~ys,¥s from a palette diagram I's for p = 1.

-1 -1 -1
V4 5 Ve

2 2 2

1 —2 1 -2 1 -2
For 4,75, %,
Yo = H*xVx{HV '} xH ' »V 1 {H LV 1}xV!
sH '« {V-L H}y+«V « H*{V,H},

o= AHL VY« (VHY SV VL H VT B e (H V) +
Yo = HsxV+H+xH+xV+H 'x{VIH 1} +«V 1x{V,H}

SH{H LV sV I« H Vs H P2V L
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And we have

Wy (£r9) = fogo{f,gTP}o fCV ogl o {f=D gDy gl-1)
of Vo {g¢V, frogo fo{g f}
Wy-(£,9) = {F9,0001P 0 (g, 71P 0 go {g-D, f-1}

ogt™ Vo fCD o {f,g} 0 f,
Woyet(f,9) = fogofofogoftVo{gth fDYoglDo{g, f}
oD, gD} 0 g1 o f(-D 6 go =1 o gD,

Since T's is classified into (A), we see that the relation Wy,«(f,g9) = id,i = 4,5,6, admit
solutions of formal diffeomorphisms f, g # id non commute and tangent to identity with

(f"(0): g"(0)) = (1: 1)
by Theorem 5.1.

Example 5.2 (Relations of formal diffeomorphisms obtained from I'yg). We obtain the
following three distinct Feynman diagrams v7,%vs, Yo from 'y for p = 1.

1
1
2 ’W —2 78
<+
-2 3 -2 3
1
—2 Yo
For 7,78, 79,
Yo = H Y%V {V I H}+H+«V '« H2x{V,H} xV 1+ HxV
H{VLH DY« H WV HH VY« {V,H 1}« VL« HxV x H,
79 = H '+« Vs{V I H}«H+V ' xH '+ V+H+xV 15 H?
H{V,HY« {VH W}« {V,H}+ {V,H '}V 1« H+V x H,
Yo = VsH+xV I xH+x V2 {V L H+x{H L, V}+xH+xV 1 x H 15 {H,V}?

sH 1« {V,H}*»V1xH L.
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And we have
W+ (f,9) = fTPogo{g"™,flofogtPofPofg,flogPofoyg
o{gt, DY o fD 0 gV £,V 0 {g, (D} 0 g™V 0 fogo f,
FVogo{g" D, flofogtVofogofogto =2
o{g, fY o {9, P}yo{g, f}yo{g, FTV}og P fogo f,
Wiy (f,9) = gofogofog®o{gth, flo{f1,g}ofogbo P
o{f,9}P o fV o {g, f}o gtV o f71.

Since T'yo is classified into (A), we see that the relation Wy«(f,g) = id,i = 7,8,9, admit

solutions of formal diffeomorphisms f, g # id non commute and tangent to identity with

(f"(0): g"(0)) = (-1 £+/3:2)

Wae+ (£, 9)

by Theorem 5.1.

Example 5.3 (Relations of formal diffeomorphisms obtained from a non connected
diagram in Example 3.1). We obtain a Feynman diagram ~19 from a non connected palette
diagram classified into (A) in Example 8.1 forp=2,q=1,a=b=0 (thenc=1,d = —-2).

Y

2 1 Y10

For y10,
Yo = HxVxH U {VTLH bV H b (VL H VT o H
{H LV« H Vi Hx {H L, VI H 5V,
and
Wt (£,9) = fogofTo{gt, f0}o{g, fV o {g"1, f TV} o g o f
offD, gD} o FED 6 gD 6 fo {fD g} o fD o .

Then the relation Wy o«(f,9) = id admits solutions of formal diffeomorphisms f,g # id non
commute and tangent to identity with

(£f7(0): g"(0)) = (3:2)
by Lemma 5.1.

For a Feynman diagram -y obtained from a palette diagram with the property (A), we see that
the relation
W(f,9) o Wy (£,9) o W(f, )V =1id,
always admits solutions of formal diffecomorphisms f, g # id non commute and tangent to identity
for an arbitrary word W (f,g) of f,g, f1, ¢V since the path W(H,V) o yo W(H, V)1 also
has the property (A).
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Appendix

Here we give the classification of connected palette diagrams without area and moment consisting
of two or three unit weighted squares. There is no diagram without area consisting of one unit
weighted square, so we need not consider this case.

Appendix 1. Case of two unit squares

There exist exactly two basis of connected palette diagrams consisting of two unit squares. The
followings are the two connected palette diagrams without area obtained by attaching non zero
integers p, —p to two unit squares of the basis.

P

Their expressions are
= {[(a,a—{—l) x (b,b+1),pl,[(a+1,a+2) x (b,b+1),—p]}

and
[y = {[(a,a+1) x (b,b+1),p],[(a +1,a+2) x (b+1,b+2),-—p]}

respectively. For them

20 +1 _ 2a+3

Gy = (22 -2 0) = (-p,0) # (0,0).
ary) = RIS pBEE P B3 om0,

So we need not consider this case.

Appendix 2. Case of three unit squares

There exist exactly five basis of connected palette diagrams consisting of three unit squares as we
see in §2. The followings are the five connected palette diagrams obtained by attaching non zero
integers p, q,r to three unit squares of the basis.

i R 1 I 7]
lelalr] [ele o] Led o] g
2

The followings are their expressions, where r = —p — g so that diagrams have zero area.

1.Ih = {[(a,a+1) x (b,b+1),p],[(a +1,a +2) x (b,b+1),q],

[(a+2,a+3) x (b,b+1),—p—q]},

2. Ty = {[(a,a+1) x (b,b+1),p],[(a+1,a+2) x (b,b+1),4],

[(a+2,a +3) x (b+1,b+2),—p—q]},
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3. I3 = {[(a,a—l—l) x (b,b+1),p],[(a+ 2,6+ 3) x (b,b+1),4],

[(a+1,a+2)x% (b+1,b+2),-—p—q]},

4. Ty = {[(a,aJr 1) x (b,0+1),p],[(a + 1,a +2) x (b,b+1),q],

[(a,a+ 1) x (b+1,b+2),—p—q]},

5. T's = {[(a,a+1) x (b,b+1),p],[(a+1,a+2) x (b+1,b+2),4],
[(a+2,a+3)x (b+2,b—|—3),—p——q]}.

The followings are the moments and conditions of non zero integers p, ¢ such that G(T';) =
(0,0),i=1,2,3,4,5, for the above five diagrams.

1. G(I'1) = (—~2p —¢,0) = (0,0) < ¢ = —2p.

2. G(I'2) = (-2p~¢,~p — q) # (0,0).

3. G(T3) = (—p+¢,—p—q) # (0,0).

4. G(T'4) = (¢,—p —q) # (0,0).

5. G(Ts) = (—2p—¢q,—2p—q) = (0,0) & ¢ = —2p.

Since I'3,T'3,T'4 have non zero moment, we need not consider them. For I'y,

M(rl)z[z(f 8} det M(Ty) = 0.

And
Py(T1) (v, B) = 2pa’® =0
determines one line (0 : 1), and P3(I';)(0,1) = 0. Hence T'; is classified into (D). And for I's,
M(Ts) = [gg gﬂ ., det M(Ts) = 0.
And
Py(T's)(a, B) = 2po” + dpa + 2p5” = 0

determines one line (1 : —1), and P3(I'5)(1,—1) = 0. Hence T'; is classified into (D).
Therefore we can not obtain relations of formal diffeomorphisms tangent to identity from con-
nected palette diagrams without area and moment consisting of two or three unit weighted squares.
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