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Abstract

Let M, be the fractional maximal operator in a quasi-metric space X. We will prove that M,
is bounded from the Choquet space LP(H?,) with respect to the n-Hausdorff capacity HZ to the
Choquet space L3P(HY,) of Lorentz type with respect to the §-Hausdorff capacity for some . To
prove it, we use the Choquet integrals with respect to Hausdorff capacities and the dyadic balls
introduced by E.Sawyer and R.L. Wheeden.

1. Introduction

Fractional maximal functions in R™ are closely related to the Riesz potentials (cf. [1]). The
fractional maximal function M, f of f with order « is defined by

S| fldz

where the supremum is taken over all balls B containing z and |B] stands for the n-dimensional
volume of B.

In 1998 D. R. Adams defined a Choquet space L¥P(HS) of Lorentz type with respect to the
Hausdorff capacity HJ, and proved that the fractional maximal operator M, is bounded from
LP(HL) to LYP(HY,) for a suitable § (cf. Theorem 7 in [2]).

In this paper we estimate the fractional maximal operator M, by using the Hausdorff capacities
in a quasi-metric space X.

More precisely, let X be a quasi-metric space with a mapping p from X x X to [0,00) having
the following properties:

(i) p(z,y) = 0 if and only if z =y,
(ii) p(z,y) = p(y,z) for all z, y € X,
(iii) There is a constant K > 1 such that

(1.1) plz,y) < K(p(z,z) + p(z,y)) forallz, y, z€ X.
In addition, assume that the diameter of X is finite and set
diam X = R.

Furthermore we suppose that there are a nonnegative Radon measure p on X and a positive
number d such that

(1.2) birt < w(B(z,r)) < byrd

for all 0 < r < R, where
B(z,r) ={y € X : p(z,y) <r}.
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We fix such a measure p. Let o > 0. Using the measure p and the positive number d, we define
the fractional maximal function M, f of a function f on X with order o by

fB |fld/~5

(1.3) , Mo f(z) = sup m,

where the supremum is taken over all balls B containing z. Here we note that, for a nonnegative
function g and a set F,

/ gdu = /oo u({z € E : g(z) > t})dt.
B 0

If g is a p-measurable function and E is a p-measurable set, then this integral coincides with
the usual one.
Let 0 < n < d and E be a set. Recall that the Hausdorff capacity H7, is defined by

(1.4) HZ(E) :=inf ¥ r(D;)",

=1

where the infimum is taken over all coverings {D,} of E by countable families of balls and r(D;)
stands for the radius of D;.

" In a quasi-metric space there is no dyadic cube. Instead of dyadic cubes E. Sawyer and R. L.
Wheeden constructed a family of balls in [6] as follows:

Theorem A. Put A\ = K +2K?. Then, for each integer k, there exists a sequence {B;-“}j (B;c =
B(z;k, \*)) of balls of radius \* having the following properties;

(i) Buery ball of radius \*~" is contained in at least one of the balls BY,

(i) > XBs < M for all k in Z,

(iti) BE N BF =0 fori # j, k € Z, where B¥ = B(x;, \*~1).

They call these balls B;-“ dyadic balls. Denote by By the family of all dyadic balls.

_ We denote by M, f(z) the supremum taken over all dyadic balls containing # in (1.3) and by
H7? (E) the infimum taken over all covering of E by countable dyadic balls in (1.4). Then we have

(1.5) Mo f(z) < Mof(z) < cMyf(z)
and
(1.6) HZ(E) < HL(E) < ¢ HL(E)

for some constants c, c'.
Recall that the Choquet integral of a nonnegative function g over a set E with respect to HJ,
is defined by

/ gdHT. — / HL({z € B g(z) > t))dt.
E 0
Under these assumptions and notations we state our theorem, which will be proved in §4.

Theorem. Let (X,p) be a quasi-metric space such that diam X = R and there exists a Radon
measure p on X satisfying (1.2). Assume that 0 <n <d, 0<a<d andp <q. Put

(1.7) Gt ={z: M, f(x) > t}.

(i) Ifn/d <p<mn/a and é = q(n — ap)/p, then

/ P HS (G)P/9dt < ¢ / |fIPdHD..
0
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(i) If p=mn/d and § = n{d — a)/d, then

sup (¢ HL,(G) < ez [ 17PdHL.
t

(i) If p 2 n/a, then
sup Mo f(z) < e / |FIPAH)?.

2. Covering lemmas in a quasi-metric space

Throughout this paper let (X, p) be a quasi-metric space with diam X = R. The function p
is called a quasi-metric. Furthermore we assume that there exists a positive Radon measure g on
X satisfying (1.2) for 0 < » < R. For any quasi-metric p there exists an equivalent quasi-metric p’
such that all balls in X are open (cf. [4]). Consequently we may assume that each ball B(z,r) in
X is open.

Let B = B(z,) be a ball and b be a positive real number. The notation bB stands for the ball

of radius br centered at z and 7(B) stands for the radius of B. We often use the following value A
defined by

(2.1) A=2K?’+ K,

where K is the constant in (1.1).
The following lemma is a covering one of Whitney type by dyadic balls.

Lemma 2.1. Let G be a non-empty open subset of X. Then there exists a sequence {B(y;,d;)};
of dyadic balls having the properties (i)-(iii):

(i) G = U;B(y;,d;) = U; B(y;, \2d;), where X is the number defined by (2.1),

(ii) There is a constant s > 1 such that B(y;, sd;) N G® # 0, where s is independent of j and G°
stands for the complement of G.

(i) 32, XB(y;,a2d;) S N for some constant N independent of j.

Proof. Let € G and put
_ p(z,G9)
r@) = sgeah
where h is the constant A > 1 in the covering lemma of Vitali type (cf. Théorém (1.2) on p.69
in [3]). Note that G is open and p(z, G°) = infyege p(z,y) > 0. Since G C UgzegB(z,7(x)), the
covering lemma of Vitali type asserts that there exists a countable subfamily {C;} (C; = B(z;,75))
of {B(z,r(z))}sec such that {C;} are mutually disjoint and

GC UjB(iL’j, h’l"j).

For each j we can choose the integer k(j) such that \*)—1 < hr; < A*G). From Theorem A,
(i) we deduce a dyadic ball B(y;, \*)+1) such that B(z;, hr;) C B(y;, \e)+1). Put d; = Ae()+1
and B; = B(y;, d;).

We shall show that the family {B;} of dyadic balls is a desired one.

Noting that d; = MO+ < X2hr;, p(z;, G¢) = 3K2A*hr; and

Pz, G%) < K(p(y;, G°) + p(z5,95)),

we have
2K \*hr; < p(y;, GO).
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Since A2d; < A*hr; < 2KX*hr; < p(y;, G°), we see that B(y;, A\%d;) C G.
On the other hand, from G C U;B(z;, hr;) we deduce G C U;B(y;,d;).
(ii) Noting that ‘

B(y;,5K3X3d;) D B(y;, 5K3\*hr;) D B(z;,4K*\*hr;)
and 4K2\*hr; = (4/3)p(z;, G¢), we see that B(y;,5K3)X3d;) N G° # 0. We may put s = 5K3)3.

(iii) Let z € B(y;,A\2d;). Then we shall estimate the length of r; by cp(z,G®) for some c¢ from
above and below. Indeed, from

3K°X*hr; = p(zj,G°)
< Kp(z,G) + K?p(z;,y;) + K*p(y;, @)
< Kp(z,G% + 2K*\*hr;
we deduce
p(z,G°)
(2.2) TP < TR

On the other hand, since
p(z,G°) < Kp(z;,G°) + K*p(, ;) + K2 p(y;, ;) < BK°A*hry,

we have

plz, G%)
5K3X%h

Let z € A2B; = B(y;, A%d;) for some j. We claim that

(2.3) T >

(2.4) B(y;,\2d;) C B(z,2p(z,G°)).
In fact, using (2.2), we have, for any w € B(y;, A\%d;),
p(z,w) < K(p(2,95) + p(y;, w)) < 2K\*hr; < 2p(2,G°),

which leads to the claim (2.4).
On the other hand, we have, by (2.3),

w(B(z,2p(2,G°))) < w(B(2,10K3X*hr;) < w(B(z;, 12K*\*hrj)).

Noting (1.2), we have
p(B(zj, 12K*N*hr;)) < Nu(B(zj,75))

for some constant N, which is independent of j. Hence
w(B(2,2p(z,G%))) < Nu(B(xj,75))-
Let z be in A\2B; (j =1,---,m). Then
mu(B(2,2p(2,G%))) < N p(B(z;,r5))
J
—  Nu(U;B(z5,75)) < Nu(B(z,20(z,G))).

Here we used that balls {B(z;,7;)} are mutually disjoint and (2.4) holds. Therefore m < N. Thus
we also have (iii).
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‘We next show that, if the multiplicity of a countable family of balls is at most N, then it has
the following property. '

Lemma 2.2. Let D be a ball and {D;} be a countable family of balls such that
(2.5) Zx,\pj < N for some N.

J
Put
Tp={j: DN D; # 9, r(D) <r(D;)}.
Then #1p < N.

Proof. If DN D; # 0 and r(D) < r(Dj;), then D C AD;. The inequality (2.5) yields that
#{j: D C AD;} < N. Hence we have the conclusion.

A countable family of balls has following subfamily which is useful to study the Hausdorff
capacity of the union of these balls.

Lemma 2.3. Let 7 > 0 and {D;} be a sequence of balls. Then there exists a (finite or
countable) subfamily {Dj;.} of {D;} having the following properties:
(1) Xjeesp T(Dj,)" < 2r(D)"  for each D € By, where

Sp={jx:DjuND #0, r(D;,) <r(D)}

(ii) Let b > 0. Then

HZ,(U;bD;) < ¢ > r(D;)",
k

where ¢ is a constant independent of {D,}.

Proof. This lemma has been proved in Lemma 2.5 in [7] in case {D;} are dyadic balls. We can
prove Lemma 2.3 by the same method as in the proof of it, even if {D;} are not dyadic balls and if
D e By. .

The integral with respect to the Hausdorff capacity H?, does not always have the property such
that, for a nonnegative function f,

(2.6) ; /D j fdHD < c ] fAHD,

even if {D;} are mutually disjoint. But, we shall show that the inequality (2.6) holds for a suitable
subsequence of {D;} as follows:

Lemma 2.4. Leta > 0,0 <7 <n <d and f be a nonnegative function. Assume that {D;}
be a sequence of balls such that
> xap, N
J

for some constant N. If {D;,} is a subsequence of {D;} satisfying (i) and (ii) in Lemma 2.3 for T,
then

(2.7) Z/ fdH? < c/ fAH?,
k7 Dik U;Dj

where ¢ is a constant independent of f and {D,}.
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Proof. Put F = U;D;. We may assume that [, fdH7, < co. This means

and hence

By (1.6) we have
(2.8)

/oo HL({z € F: f(z) > t})dt < o
0
Hl({zx e F: f(z)>t}) <oo for yu—ae.t.

Hl.({z € F: f(z) >t}) <co for u—ae.t.

Fix t satisfying (2.8). For € > 0, there exist balls {Q;} C By such that

and

(2.9)

{zeF: flz)>t} CUQ;

Y r(@)" < HL({z € F: f(z) > t}) +e

2

Since ok xxp;, < N, the number

#{]k? : Qi nDjk: # 0, T(QZ) < T(Djk)}

is at most N by Lemma 2.2. Lemma 2.3 yields

2r(Q))7 > Y (D)

ik€Sq;

Noting that n/7 > 1, we have

Hence

>

27r(Q)" = Y (D))"

Jr€SQ;

@+ 1) 3 (@)

(2

2/7 3 Q)" + 3 3 r(@)N

i

3 ) LIRSy ) Q)"

i Dy NQ:#0,r(Dj, )<r(Qs) i Dy, NQi#0,7(Dyy ) 2r(Qs)
1
> > r(D)" + 5 > r(@:)")
k  D;, NQ:i#0,r(Dj, )<r(Q:) Dj) NQ:i#0,r(Dj, )2r(Q:)

1
N > HL(Dj, NUiQs).
k

Using (2.9), we have

@+ YNHL{z € F: f(z) > t}) > Y HL{z € D;, : f(2) > t}),
k

whence, by (1.6),

cHL({z € F: f(z) > t}) > Y HIL({z € D;, : f(z) > t}).
k

NSR. O, Vol. 56
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Since this holds for p-a.e. t, we have

Il

> fdH?

kY Dig

S [ HL(e € Dy f@) > ihar
k

AN

o0 .
c/ Hgo({azeF:f(:c)>t})dt=c/ fdHD.
0 F
Thus we have the conclusion.

The relation between the integral with respect to p and the integral with respect to the Hausdor{f
capacity is as follows:

Lemma 2.5. Let g be a nonnegative function and 0 < n < d. Then

d/n
fowse(f )"

where ¢ is a constant independent of g.

Proof. Using the property {1.2) of y, we can prove this lemma by the same method as in the
proof of Lemma 3 in [5].

3. Estimates of fractional functions

In this section we prepare several lemmas with respect to fractional maximal functions.
Let 0 < o < d and 0 < n < d. Here d is the number satisfying (1.2). Recall that

Gt ={z: M.f(z) > t}.
Noting that G; is open, we see that there exists a sequence {B;} (B; = B(y;,d;)) of dyadic balls
satisfying (i)-(iii) in Lemma 2.1. Fix such a covering {B;} of G.

Lemma 3.1. Assume that a > 2(3K3s)2—op{*~N/ (0= 4nq £ is o nonnegative function.
Then, for x € Gat N By,

tz € B, r(B) < i(—BJ—)}

d
—t<sup Jp fdp e

2 <Py
Here s is the number in Lemma 2.1, (ii) and by, bs are the constants in (1.2).

Proof. Let € Got N B;. Then at < Iy + Ize, where

d .
Ly = sup{;(f%(—g%)/g :z€ B, r(B) < Z"_(%l}

and . )
Izmv = SUP{MB—B;(igw—d 1z € B, r(B) > f%}

Therefore at/2 < I, or at/2 < Iy,. First, assume that at/2 < Iz,. By Lemma 2.1, (ii), we can find
z; € G§ N B(y,, sr(Bj)). Let @ € B and 7(B) > r(B;)/K. Denote by y the center of B. Then

p(y,z) < Kplz,y;) + Kp(y;, ) + K2 p(x,y)
< Ksr(B;)+ K?r(B;) + K?r(B) < 3K3sr(B),

27



28

Hisako Watanabe NSR. 0., Vol. 56
whence z; € B(y, 3K3sr(B)).
Using that M, f(z;) < ¢, we have
oo - dps r(B;)
L. < (3K3s)d-ape—D/dy(d-a)/d Jsxcssn 1 : 5 T(B;
2 < (3K°s)*%h by Sup{,u(3K3sr(B))(d—“)/d z € B, r(B) > 7 }

< (3K38)d-—abga*‘d)/dbéd_o‘)/dt.

Hence a < 2(3K3s)d=2p{*~D/4p{#=2)/4  This is a contradiction to the assumption. Therefore we
see that at/2 < I,.

Lemma 3.2. Lett > 0 and f be a nonnegative function. If

s fdu r(B;)
t<Sup{W.$EB, T(B)< },
then
(B e [ fdg,
3K Bj
where c is a constant independent of {B;}.
Proof. Let x € B;. We choose € > 0 satisfying
[ fdp r(B;)
t <t+2€§ Sup{m M EB, T(B) < T}

Then there is a ball B; such that z € By, r(B;) < r(B;)/K and

[p. fdu

Assume that B, N G§ # 0 and pick z € B, N G§. Then
t+e< Myf(2) <t.

This is a contradiction. Therefore B, N G§ = @ and hence B, C G;. Denote by xg the center of B.
Let y € B,. Then

p(Y5y) < Kplys,z) + K2p(e,z0) + K2 p(z0,Yy)
< Kr(B;)+2K?*K~r(B;) = 3Kr(B;).

Hence B, C B(y,,3Kr(B;)).

Since B; C Ugep,; By, we can find, by the covering lemma of Vitali type, a countable subfamily
{Dr} C {Bz}zeB, such that {Dg} are mutually disjoint and B; C UghDy for some h. Using (1.2),
we have :

tu(By) T < 437 p(hDR) @ < ert Y r(Di)
k k

at S u(D)E <Y [ fan
k t YDk

& / fdu < e / fd.
UrDyg 3KBJ'

IA

IA

Thus we have the conclusion.
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We next show that for a sufficiently large number a the integral of f over 3K B; is comparable
to the integral of f over 3KB; \ G-

Lemma 3.3. Let f be a nonnegative function. Then, for sufficiently large number a,

1
/ fau> 2 / fdu.
3K B;\Gas 3K B,

Proof. Let z € B; N Gy and a > 2(3K3s)4=2p{*D/4p{#=2)/?  From Lemma 3.1 and Lemma
3.2 we deduce
at _ f3KB]- fau
2 = 7 u(By) e
Hence, by (1.2),
at _ s szsBj fdp
2 = "'\ L(3KsB;)d-e
where z; € G§ N B(y;, sr(Bj;)) in Lemma 2.1, (ii). We note that the constant cy is independent of
f, j and t. Therefore we have

)/d) < coMaf(z;) < cat,

262
e
3K B;NGay a J3kB;

If we take a > max{dcy, 2(3K3s)d—ap{*~D/dp{d=e)/d1 then
1 2

1
/ fau < / fdp.
3KBjI’lGat 3KB_7'

Consequently

1
/ fdu= [ gau- [ Sz [ s
3K B;\Gat 3K B; 3K B;iNGas 3K B;

4. Proof of Theorem

In this section we prove our theorem.

Proof of Theorem. Let t > 0, f be a function and G; be the set defined in (1.7). Recall that
{Bj} is the covering of G = G; of Whitney type by dyadic balls in Lemma 2.1. Fix a sufficiently
large a satisfying Lemma 3.3. Using Lemmas 3.1, 3.2 and 3.3, we have

(4.1) tu(By)@=/4 < C1/ fldp < 62/ |f1dp.

3K B, 3K Bj\Gat

Noting that dp/n > 1, we see, by Hoélder’s inequality, that

tu(By) 1o o[ g,
3K Bj\Gaz

(i) By (1.2) and Lemma 2.5 we have
(42) rByer < [ |fpanz,
3KB;\Gat

For the sequence {D;} = {AB;} of balls and 7 = 1 — ap Lemma 2.3 asserts that one can
choose a subsequence {\Bj, } of {\B;} satisfying (i) and (ii) in Lemma 2.3. Note that A > 3K and
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>-;X»2B; < N by Lemma 2.1, (iii). Therefore we apply Lemma 2.4 to the function |f[Pxg,\q,, and
the sequence {AB;, } of balls. Then, by Lemma 2.3, (4.2) and Lemma 2.4,

_ - Ce
HY-oP(U;B;) < o5 r(B; )"~ < & / \FIPAHT,
WB) < @ L@ Ee [

< Z |FPAHT,.
? JG\Ga:
Hence
(4.3) HIor(Gy) < D / \FPAHT,.
? JG\Ga:

On the other hand, let {@Q,} be an arbitrary covering of G; by balls. Since

Z T’(Qj)"—ap ( Z 7,(Qj)cz(r)~<>zp)/p)za/q

J )

= (Yor@)O)" > HE (G,

J

v

we have
HI(G)P/9 < HIZ*P(Gy).

Using (4.3), we have

I

Il

/ HS (G)P/9tPdt

0

/ HI-oP(Gy)tP~1dt < Cg/ t‘l(/ |fIPdHZ)dt
0 0 Gt\Ga.t

- /0 £ /0 H,({z € Gy \ Gur : [f(@)? > r})dr.

IA

Fubini’s theorem yields

~
IA

oo Mo f(z) 1
o [ HLQUP > Thar [ T Sae
0 Mo f(z)/a

IA

cs loga/|f|dego.

Therefore o
/ HS (G)P/9tP~1dt < cg / |f|PdHT,.
0

Thus we have the conclusion.
(ii) Assume that p =n/d and § = n(d — a)/d. From (4.1) and Lemma 2.5 we deduce

tu(B;) @)/ < ¢y /

|Fld < cof f \F7/ )",
3KB;

3K B,

whence, by (1.2),

(4.4) 3/~ (B;) = 47/ (B;)" /e < ey / ||/ 4dH,.
3KB;
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Using Lemma 2.3 for 7 = 6 and {D;} = {AB,}, there exists a subfamily {AB,,} of {AB;}
satisfying (i) and (ii) in Lemma 2.3. By (4.4) and Lemma 2.4 we have

#/@0H (G) < eat DY r(By,)
k

IA

cm}:/sKB |f[PdHT, < c14/|f|”dH;’o.
k Ik

This leads to the conclusion (ii).
(iii) Assume that p > n/a. Noting that ap — n > 0 and

[ 151 ([ 1519070y iy,
B B

we have, by Lemma 2.5,

Mo f(z) < sup(/ Ifldp/"d,u)"/dpﬂ(B)(ap—n)dp,
B B
< 615M(X)(Qp"n)dp(/|f|dego)l/p'
Hence
Mo flloo < cr( / \flrdE) .
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