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Abstract

" We discuss the structure of the total reconstructed sets from given two projections of a plane
figure. In case uniqueness does not hold, we have many solutions which are related among them via
modifications of switching components. We let this structure correspond a graph or a digraph. Our
primary aim is to overview the origin of complexity of non-uniqueness of the reconstruction, and to
obtain way to a good solution. But the results are interesting also as a new source of examples of
graphs.

keywords discrete tomography, two projections, switching component, switching graph

1 Introduction

We reconsider the reconstruction problem of plane figures from their two projection data parallel to
the axes. In the case of continuous figures, the solvability and the uniqueness were first discussed by
G. Lorentz [8]. Its discrete version was first discussed by Ryser [10], in terms of a matrix with only
two kinds of entries 0,1. The condition for the uniqueness of the solution, and algorithms to obtain
a solution when it is not unique, were essentially solved by them. It was also shown by Ryser that.
any two solutions are connected to each other by a series of modification of switching components.
There are many further works on this problem [5, 6, 7] etc. We too considered a problem of finding
better solutions by means of weight function estimating the goodness of the solution [2]. Here we
pose a new problem of considering the structure of the set of whole solutions, by means of a graph
attached to it. This point of view also enables to see clearly what is essential for the structure of the
solution set. Our final aim is to know how the good reconstruction image is located in this graph and
how to reach it. In this report we present genera.l properties of switching graphs together with many
examples. :

After we prepared our former version 3], we found that T. Yung Kong and Gabor T. Herman
[4] had already proposed the same notion with the name of Ryser graph and used it also to find a
better reconstruction. Since Ryser himself did not consider any graph, we keep here our naming of
switching graph, and newly add the notion of switching digraph which naturally arises from our type
distinction for the switching components.

2 Review of known results to be used

Discrete tomography is usually considered as a point counting problem for the subsets of integral
lattice Z? in the plane. We shall, however, treat a plane figure F consisting of unit squares with
the integral corner points, since it is more related to the continuous case and naturally arises as the
discretization of the latter. We shall call a unit square a cell and denote it by the coordinates of its
lower-left corner (z,y).

Thus the z-projection fy(z') of a discrete figure F' means the locally constant function on the
z-axis counting the cells of F' over these points, which just corresponds to the value of line integrals
along the y-axis of the characteristic function f(z,y) of F. We identify f,(z) with its below-graph
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set P = {(z,y) € R?; 0 <y < fy(z)}. We use similar symbols f»(y) and Q = {(z,y) € R 0< z <
f=(y)} for the other projection to the y-axis. ‘
fzy(z) denotes the re-projection of fz(y) or Q to the z-axis, which is defined for £ > 0 by

fmy(z) = meas({y; fm(y) > 37}) (1)

This apparently complex notation will become familiar if it is noticed that the last suffix always
indicates the axis along which the last projection was made. fyz(y) is defined in a similar way,
replacing the role of z, y. Furthermore fyzy(z) denotes the re-projection of fys(y), which does not
change the associated figure but is merely introduced to adjust the independent variable of the related
function from y to z. (See Fig. 18 for the illustration.)

The reconstruction problem is to determine f(z,y) from fy(x) and fz(y). The solvability condition
is

foy(2) 2 fyzy(z) for Vz € R, and fry(00) = fyay(oo).

The uniqueness condition is

foy(2) = fyzy(z) for Vz € R.

A plane figure F' is called non-unique or unique if the reconstruction problem from its projection data
has a solution other than F or not. A switching component (z1,y1) € F, (22,92) € F is a pair of
cells in F such that (z1,y2) € F, (z2,91) € F. If we replace the former pair by the latter, the two
projections do not change. It is a typical example of non-unique figure. It is known that the existence
of a switching component is an equivalent condition of non-uniqueness, and any two solutions can be
deformed to each other by a series of appropriate §witching of such pairs (Ryser [10]). A switching
component is called type 1 if (22 — z1)(y2 —y1) > 0, i.e. if it makes a positive inclination, and type 2
otherwise.

Kong-Herman [4] and independently we in [2] tried to find a better figure among the recon-
structions by modification of the switching components, employing a goodness function or a weight
function estimating the quality of the figure. We especially tried to deform all type 2 pairs to type 1.
Intuitively this modification makes the figure more condensed around the principal diagonal z = y of
the plane.

3 Examples of switching graphs and digraphs

Given a plane figure F we make a graph G, of which the vertices are the solutions of the reconstruction
problem, that is, all the plane figures with the same z- and y-projections. We draw an edge between
two vertices if the corresponding figures deform to each other by just one switching of a pair. We call
thus obtained graph the switching graph for F. It was formerly introduced by [4] and called Ryser
graph, as mentioned in the Introduction. We further give the direction to each edge so that it. is
oriented from type 2 to type 1 modification, and thus define the switching digraph. The following are

~ examples of switching digraphs for small size figures. Of course they become examples of switching
graphs if we ignore the directions of the edges.

P 0o h ot i oy o, oo
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Figure 1: Examples of switching graphs fyorv small patterns

. These seemingly enumerate all the switching graphs of order at most 5, although we have not
yet checked it rigorously. The following are fundamental examples of order 6. There are apparently
different ones, e.g. (9).and (9)' are the same graph drawn in a different way:
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Figure 2: hexagons

There are several symmetries which can be easily noticed. The reflection with respect to the
principal diagonal, or equivalently the exchange of the £ and y coordinates applied to the figure does
not change its switching digraph. Similarly, the horizontal and the vertical reflection, or the rotation
by 90 degree do not change the switching graph, but reverses the direction of all the edges in the
digraph. More generally, the switching graph is invariant under permutation of columns or rows of
the original figure, but some of the edges may change the direction in its switching digraph. Thus the
switching graphs (6) and (7) in Fig. 1 are essentially equivalent, although they do not contain literally
any common pattern. Notice that in the discrete case the rearrangement of Lorentz is achieved by
these permutations applied to the z- resp. y projections. Therefore in constructing the switching
graph, we can always assume without loss of generality, if we like, that both projections are monotone

decreasing. This would reduce these two equivalent figures to another, unique figure like

On the contrary, (8) is not related with these in the same way, although it has the same switching
graph. Whereas two graphs in Fig. 1 (1), the equality of the graph is rather obvious because of
the middle wall which serves nothing to the switching, it is not so obvious for (7) and (8) of Fig. 1:
Between these figures there is a vertex of which the corresponding patterns are in the inclusion
relation, but are not in the other vertices. The reason why their switching graphs agree will be
clarified by Proposition 4.10. We will call a figure minémal if it has the least number of cells among
those with the same switching graph. We do not know yet if after normalization to decreasing order
of projections, a minimal figure is unique to the given graph up to the obvious diagonal symmetry.

In general, it is difficult to determine the switching graph for a given figure of general size. In
this section we give examples of switching (di-)graphs. of regular figures which can be determined for
general size.

Lemma 3.1 The switching graph of a simple diagonal linear figure F = {(i,1);1 = 1,2,...,n} is a

n(n —1)
2

2-partite regular graph of degree with n! vertices.

Proof. This is simple because, for such a figure, switching is nothing but a transposition of two
columns (or rows). There are n(n — 1)/2 such possibility from any state (or solution). Moreover, the
transposition changes the parity, which proves the bipartiteness. QED

In the sequel, we let A, denote the graph given by Lemma 3.1 to use it as a building block for

more complicated graphs. Thus v(A,) = n! and e¢(A,) = m—:—l—)n!. Examples are Az of Fig. 2 (9)

4
and A, of Fig. 14 left.

In order to describe more complicated examples, we introduce new notation. We hoped to use
traditional notation in the graph theory (e.g. [1]). But these constructions do not seem to be popular
there.

Definition 3.1 Given two graphs, G, H, we denote by G %, H anew graph consisting of vertices
and edges of G, H augmented by new edges, which connect each vertex of G with appropriate k
vertices of H. (We do not make precise the concrete correspondence of vertices. In the sequel, it is
made to maximally preserve the symmetry. Also, the arrow does not intend the directed graph.) In
the special case H = G, G -, G will be simply denoted by G — G.

Given three graphs G, H, K such that K is contained as an induced subgraph of G, H (that
is, together with the original edges between the vertices), we denote by G E‘J H the pasting of G,
H through the sticking tab K. That is, we overlap G and H through the common subgraph. By

G % H we denote the graph G }J{H supplied with further edges which go from each vertex in G\ K
K

to k appropriate vertices of H \ K. In the special case G = H, G —Ul—-> H will be simply denoted by
K

35
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GgG.

K

By Poly(n, G, *) we denote a complex graph consisting of regular n-gon such that each vertex is
a copy of the graph G and that any pair of vertices (G, G) is connected by the rule *. Here % stands
for
if there are no edges added between G’s,
if an edge is added to all pairs of vertices of G’s,

if there go k edges from every vertex to selective G’s.
if G’s are pasted through the common subgraph K,

C]ﬁClx-l =

U if G’s are connected with this rule
44

In the last two cases, it is supposed that G contains mutually disjoint » — 1 induced subgraphs each
isomorphic to K which serve as different sticking tabs to paste each other. Also, the edges are added
in a way preserving as much the symmetry as possible.

Poly(n, G, l';:,') is abbreviated to Poly(n, G, K). For example, if G is the regular hexagonal graph

and K is the segment, then Poly(4, G, K') becomes a tetrahedron-like graph as in Fig. 3.

{2 o

G K
Poly(4,G,K)

Figure 3: Example of Poly(4, G, K).

Now we have

Lemma 3.2 Let us denote by L, the switching graph of a simple diagonal linear figure plus one
element F' = {(1,1);1=1,2,...,n} U{(0,1)}. (See Fig. 4.) It is recursively imaged as follows:

2(n-3)

Poly(w, Ap_a, )

/N

An~1
! :
Hence the number of vertices v(Ln) of this graph is equal to @—4——1—)', and the number of edges
- !
e(Ln) = (n=1n+2)! 1)8(n + 2) .

Figure 4: Original pattern of Lemma 3.2.

Proof. It is clear that the required graph contains two induced subgraphs isomorphic to A,, corre-
sponding to those derived patterns in which the cell (0,1) resp. (1, 1) is fixed. They are connected to
each other by a subgraph A,_; corresponding to those patterns in which both of these two cells are
fixed. Each vertex of one A, \ An—1 is connected by an edge to the corresponding vertex of the other
Apn \ An_1 which corresponds to the exchange of the cells in z-level 0, 1. The remaining patterns
are classified by the position of two cells sitting in the base row of y-level 0 which came down in

(n—1)(n —2)

these two cells are fixed, the remaining cells constitute a figure equivalent to A,—_;. Every vertex
of each A,_; has just two edges to each of A, \ A,_1 which correspond to the switching operation
returning the floating cell in z = 0 or 1 to the original base row employing one of these cells now at
the base row. Also, there is one edge from every vertex of one A,—1 to another with one common
base cell, corfesponding to the exchange of the other base cells. Hence 2(n — 3) edges from one group

place of original ones. There are ,—1Co = possibilities from (¢,1), 1 =2,...,n. Once
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Ap_y arises. Thus the above graph structure is confirmed. The number of vertices is a mere simple
combinatorial calculation: .

o(Ln) = 20(An) = v(Ano) + BTEOZD 4y — o i (== D, gy
= Hn—24(-D(n—-2))n -1 = BT
Now the number of edges is equal to
e(Ln) =2e(An) — e(An1) + v(An) — v(An-1) + Q—’—_-l—)i(”—?z—)e(,an_l)

+aln=(=2) 1)2(" =2 o(Anr) +2(n — 3)@;%("-:—2—)1)(%—1)%

=n(n—1)n!_ (n—1)(n—2)

(=1t +nl=(n—1)!

2 4
ST JRETCES PR
+2(n—1)(n —2)(n = 1)1+ (n — 3)(”—‘%(—"‘;2—)(7; —1y!
_—_(_”;_L){zmz 2 —2) 484 (n—1)(n —2)? + 16(n — 2) + 4(n — 2)(n — 3)}(n — 1)!
U LTS

We shall give another interpretation for this graph in Corollary 4.14, which produces a very simple
solution. QED

In the sequel, we let L, denote this graph. An example is Ls of Fig. 14 right. Notice that the
added element may be any of (4,5) with ¢ € [1,...,n] and 5 € [1,...,n], or vice versa. On the other
hand, if both 4, j are outside the range [1,...,n], the graph reduces to the case in Lemma 3.1 with n
increased by 1.

Lemma 3.3 The switching graph of a simple diagonal linear figure plus one element F = {(1,1);1 =
1,2,...,n}U{(1,2)} is a pasting of pairs of n — 1 copies of Ln_3 to each other through the tab Ln_,
with the remaining vertices tied by an edge, namely, Poly(n —1,Ln_1, T ).
' Ln—2
Hence the number of vertices is equal to (n + 2)(n — 1)(n — 1)}/4, and the number of edges is
(n® +9n — 4)(n — 1)(n — 2)(n — 1)!/16.

13
7 7 3 10

. 2
3 0
4
4
6 5
10
9

Figure 5: Original pattern of Lemma 3.3 and example of switching graph.

Proof. The patterns are classified by the new place of the cell (0,1) in the first column. There are
n — 1 choices. When this position is fixed, the remaining freedom is just that of Ln—1. (Imagine
the figure obtained by removing the row containing this floating cell.) Among two such, there are
common vertices which correspond to the figures obtained by moving the cell (1,2) to the position
of the other’s floating cell. These form the same graph as L,—>. (Imagine that after removing these
two rows, the remaining cells constitute L,_; where the row with y-level 2 has two cells. They are
not in the leftmost positions, but no matter.) Thus the total number of vertices is equal to

(n=1)0(Lno1) (n—l)z(n_—Z) o(Lnes) = (n—zl)n! _ (n—l)z(n—Z) (n—z—l)!
_(n+ 2)(n — 1)(n — l)!.
4




Akira Kaneko and Rina Nagahama NSR. O,, Vol. 56

Switching Graphs and Digraphs

The number of edges is

(n=1)e(Lng) - BT =D o, )y EZHEZD (1 Ly o(Ena))

_ (n=2)n+1)! (n-1{n—-2)(n=3)n! (n—1)(n—-2)n!—(n—1)
== 8 - 2 5 2 2

_(P* 490 —4)(n—1)(n —2) \
= 6 (n— 1)t

QED

Fig.5 right is a computer-generated example of digraph for n = 4. (Figures denote the value of the
standard weight function (2) shifted by 15.) Notice that we can choose any (3,7), 1 <4,7 <n,t1#j
as the off-diagonal cell to obtain the same switching graph. Thus Fig. 1 (7) serves as an example of

Lemma 3.3 for n = 3. On the other hand, if either of i, j is outside the range [1,...,n], it reduces to
the case in Lemma 3.2.

. 1
Lemma 3.4 The switching graph of two slided shells each of size m, n as in Fig. 6 has M

m!in!
1
vertices. It is regular of degree mn, hence the total number of edges is 3 (m + n)!

—(m——_],)' . E'specially,

in case n =1 it is a complete graph of order m + 1.

Figure 6: Original pattern of Lemma 3.4.

Proof. Actually, each derived pattern can be characterized by the position of the cells moved upward

from the m cells on the ground and those equal number of cells moved downward from upstairs.
Therefore the total number is equal to

min{m,n} min{m,n}
Z: mCr - n.Ck = Z mCr 'nOn-k~
k=0 k=0

)
(il——%:l. We shall give a

clearer explanation for this value in Corollary 4.14. For any such pattern, the p(;ss:ibi]ity of switching,

namely the degree at this vertex, is clearly the number of pairs of a cell from the ground and a cell
from upstairs, hence mn. QED

This is the coefficient of the term z™ in the expansion of (z +1)™*", hence

The case m = n = 2 gives 6 vertices and 12 edges, as verified in Fig. 2 (11). Cases of complete
graph are found in Fig. 1 (4), (5) and Fig. 2 (12).

Lemma 3.5 The switching graph of m by n rectangle (which is an example of unique figure) plus
one element F = {(1,5);1=1,2,...,m,5 =1,2,...,0} U{(0,0)} is a kind of suspension:

Yo
mn |

Gm,n

where Gm,n is a regular graph of min vertices with degree (m — 1) + (n — 1).

XY}
. . »
. . .
. . .
XY}
O
m

Figure 7: Original pattern of Lemma 3.5 and example for m = 2,n = 3.
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Proof. The added one cell can switch with any of the othewise immovable cells. - Thus from the
special vertex vo corresponding to the original figure there start mn edges to new figures. Since we
cannot make two holes in the rectangle they are all the vertices of our graph. Once a cell is exiled
from the rectangle, the produced hole arrows to swap each of the outside cell with another in the
same row resp. column. Thus the vertices other than vo has (m — 1) + (n — 1) edges. QED

Fig. 1 (8) is an example with m = n = 2. Fig. 7 right shows another example with the structure
of suspension made visible. '

The switching graph of a general unique figure with n elements plus one isolated element (i.e.
with no common element in its column or row) is too complicated to describe, as is easily recognized.
This case shows that whereas we have a hope to have simpler graph if we have enough elements, even
a block, which in itself could be considered as one element, may blow up by simple addition of one
independent element.

4 Properties of switching graph

We now give several abstract assertions concerning the structure of the switching graph. First we
examine characteristic features of the switching graph. The following is fundamental, but a mere
paraphrase of Ryser’s theorem that any two reconstructions can be deformed to each other by a
series of switching operation:

Proposition 4.1 The switching graph is connected.

The following lemma is very useful:

Lemma 4.2 (triangle-square lemma) If a switching graph contains a path of the form | s
then it contains either &; or I:j completing the original path.

Proof. If independent pairs P, Q and R, S switch in the two successive edges, then we can obviously
obtain a square, as in Fig. 8 A. If the switching occurs among three cells P, Q, and P’, R, where P’
is the new position of P, then we can also obtain a sqare, as in Fig. 8B, C, according to whether Q,
R is a switching component or not. Thus the remaining is the case where the third cell R is in the
same column or row as one of the first switching component, say, Q. See Fig. 8 D. This time we can
obviously obtain a triangle as shown in the figure. QED

» PI PO pQ R
Q, OR| pPin or

it OR 0 OR i

P'OIQ i O——0 PTIOQ I pi DQ: ER PLi OQ or

PiIZ0OQ Os o PD:‘.'.:Q’DS H Q il < rQ :'_'_:Q’
C2 D

Figure 8: Square-Triangle subgraphs

We have proved the following in the same time:

Corollary 4.3 Any primitive square subgraph of a switching graph agrees with either of the 4 pat-
terns: A, B1, B2, C1, C2 in Fig. 8.

The following assertions are obtained at once from Lemma 4.2:
Proposition 4.4 A switching graph has no dead end except for the one with only one edge.

Proposition 4.5 There is no primitive cycle of length > 5 in a switching graph. That is, every cycle
has a shortcut of length < 4 (possibly passing through a new vertez in case of length 4).
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Lemma 4.6 (Path association lemma) If there is a subgraph as below, we have a new path of
length < 2 between the vertices P and S.

, O—i
s Q R s Q
p p R

Figure 9: Figure for Lemmad4.6

Proof. If QS switches a pair totally different from that for QR, then we have clearly a new path of
length two from S to P back of the type Fig. 8 A. Thus assume that PQ and QS switches among
three cells common with PQ and QR. Then, If the three cells are on the separate rows and columans,
there is a square path containing PQS and not PQR as povided by either one of B1, B2 or of C1, C2
of Fig. 8. If not, there is a new triangular path PQS as in Fig. 8 D. QED

Proposition 4.7 Ezcept for the three graphs, line segment (Fig. 1 (1)), triangle (Fig. 1 (2)) and the
square (Fig. 1 (3), the degree at any vertex of a switching graph is at least 3.

Proof. Except for these three special graphs there exists at least one vertex of degree > 3 in view of
Proposition 4.5. Thus if there is a vertex P of degree 2, then there is one such adjacent to a vertex
say, Q, of degree > 3. By Lemma 4.2, PQ is contained in a cycle of length 3 or 4. From Q starts
anothe edge QS. Thus by the above lemma, P has another edge. QED

We now examiine relations between switching graphs and geometrical operations on the figures.

Proposition 4.8 (Direct product) The switching (di-)graph of the block figure as in the left of
Fig. 10, where G resp. H (by abuse of notation) stands for a figure corresponding to the switching
(di-)graph.G resp. H, is the direct product G x H of the two (di-)graphs: Its vertices are the product
set v(G) x v(H), and its edges are those between (a,c) and (b, c) inherited from the one between a
and b in G, and those between (a,c) and (a,d) inherited from the one between ¢ and d in H.

"""" mr EP
H % “

! T CEIA 7

S 19 F 5

Figure 10: Direct product: left: general image; right: example.

The proof may be obvious. Recall that if we simply make the direct sum of two patterns G, H
without the disturbing block as above, we have scarcely any means to control the resulting graph. In
particular, it is not completely determined by the two switching graphs corresponding to G, H, as
remarked after the proof of Lemma 3.5. By the way, we shall show that for the square graph of the
special example in the right of Fig. 10, this figure is minimal and essentially unique as such.

Lemma 4.9 A figure of which the switching graph is the square contains the pattern of Fig. 10 to
the right. Any other cell, if exists, does not concern the switching.

Proof. Denote by 1 to 4 the vertices. Assume that the figure corresponding to vertex 1 has a
switching component P, Q (without loss of generality we can assume their position as in Fig. 11 to
the left), and that it goes to P’, Q' in vertex 2. We divide the cases here. First assume that a new
cell, say, Q' switches with another cell R and goes to Q" in passing to vertex 3. Q” is in the same
column as Q, Q' ‘as in the left of Fig. 11. Then the three cells P’, Q”, R’ all have to return to the
original position by passage from 3 — 4 — 1. For this to be possible, either P’ and Q" or P’ and
R’ should be switched in passage from 2 to 3, and not both should be possible, because otherwise
three edges would emanate from vertex 2. If the switching of P’ and R’ is blocked, there should be
a cell in position S in the figure. But then the switching P’ and Q" should be possible, and position
P should be vacant, which would produce three edges at vertex 1, corresponding to the switchings
P-Q, P-R, P-S, a contradiction. The matter is the same for another choice.-

Thus in passage from 2 to 3, a different pair, say, R, S should be switched. Then to disturb e.g.
excessive switching of Q, R, we should have a-cell in either of T, U. If we have T, we should have no
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cell at U, because otherwise T-U would switch after the switching of P-Q, R-S. By similar argument
we conclude that there should be cells at all the positions at upper left region and no cells at the

lower right region, to block the excessive switching. We thus obtain essentially a same figure as in
Fig. 10 to the right. QED

P4y Qv OR oo s
Pit OQ OS 0 OT OR

P 0OQ iu
PO HQ' inr PO iQ’

Figure 11: Figure for proof of Lemma 4.9

The following may be obvious.

Proposition 4.10 (Complement) Let F be a figure contained in the rectangle I of the integral
lattice. Then the figure CF := I \ F has the same switching graph as F. '

In fact, a switching component of type 1 (resp. 2) in F corresponds to a switching component of
type 2 (resp. 1) in CF. Every pattern derived from F by switching corresponds to just one pattern
derived from CF. Notice that surrounding a figure by a rectangular frame of cells does not change
the switching graph. Therefore the result does not depend on the choice of I.

Corollary 4.11 The switching graph for the figure F = {(3,0);1 <1 < m} U {(0,5);1 £ 5 < n} in
Fig. 12 agrees with the one for the figure in Lemma 3.5.

g

~

m
Figure 12: Figure of Corollary 4.11.

The following assertion may sound somewhat like Hadamard-Oka’s principle of making the prob-
lem easier by raising the dimension.

Proposition 4.12 (Contraction) Assume that a row of a pattern contains m cells, each of which
is unique in their columns. Then the switching graph G for this pattern can be obtained from the
graph H of the new pattern which has these m cells in new independent m rows as follows: Search
the vertices of H which correspond to the permutations of m cells in these new m rows. Contract
these to one vertex and make a reduced graph. If these m cells are not in separate columns, delete

the corresponding vertices, together with the edges emanating from these to other vertices. The degree
m(m —

at each verter is diminished by ) by this contraction, and if there are deleted vertices, more

edges are deleted. Thus a regular graph produces a regular graph again by this process if and only if
the remaining cells are all in different columns. The same assertion holds for a column.

Proof. The relation of these m cells at this special row with other cells are the same in both graphs.
The difference lies only in the fact that while they cannot exchange among them within this rows
without help of other cells in the original pattern, they can do freely in the modified one. Thus m!
cells in the latter are united to one cell in each group of patterns with the same configuration of the
remaining cells. Thus the number of vertices reduce by the factor m!. Concerning the edges, those
corresponding to the switching among these m cells disappear, whereas those to the remaining cells
are conserved. QED

The following special case is very useful:

Corollary 4.13 The switching graph, denoted by Ly, of the pattern of cells {(1,1);0 <1 < m —
1JU{(j+m—1,5);1 < j < n} as in Fig. 13, is obtained from Amin—1 by reducing each subgraph
{(n+m—1)!

A in the latter to one vertex. Hence the number of vertices is equal to '
m!

. The graph is
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(n—1(n+2m— (n—1)n+2m—2)(n+m - 1!

2) , hence has
4m!
As a particular case, the switching graph L, of the pattern in Lemma 3.2 can be obtained from that
of Any1 in Lemma 3.1 by identifying a pair of patterns corresponding to the switching of the two cells
(n+1)!

regular, with degree

edges in total.

in the lowest row. Thus the graph is reduced to a half. Namely, v(L.) =

-1 _- ' — !
regular with degree %@___1)’ hence e(Ln) = (n +2)2(n 1) (n -Z Dt_(n l)én +2).'

. Also, the graph is

Figure 13: The total number of cells is n +m — 1.

In fact, the number of edges emanating from a vertex is equal to
(r+tm-—1)(n+tm—-2) mm-1) (rn—-1)(n+2m—2)
2 2 N 2 ’

Notice that L, in Lemma 3.2 corresponds to L, here, and the result agrees with the former one.

Notice also that the case n = 2 here is the same as the case n = 1 in Lemma 3.4. We can generalize
this as follows:

Corollary 4.14 The result of Lemma 3.4 can be obtained from Apym by applying the contraction
process of Proposition 4.12 twice, separately to the group of n- resp. m-cells. Hence the number of
(m + n)!

vertices is equal to
m!in!

Figure 15: The graph contraction procedure-2.
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Fig. 14, Fig. 15 are examples of contraction. As long as the pattern contains only one cell in
each column, the contraction procedure continues to work, producing a regular graph. In Fig. 15 the
correspondence of the vertices is shown by the numbers in the vertex circles.

Once a column contains more than one cells, however, there appear vanishing cells by contraction,
and the resulting graph is no more regular. Henceforth, the contraction becomes more and more
complicated. Thus an idea to produce all the switching graphs via contraction from the simple one
An, where n is the total number of cells, and thus deduce their properties, seems hopeless. Here is
such an example. (Vanishing vertices are those without numbering).

G

M =D
Dcﬁnng = DED“E o

Figure 16: The graph contraction procedure-3.

5 Big examples and modification strategy

As we have seen above, the switching graph of any plane figure has no dead end. Thus we can expect
to find a good weight function which makes the switching graph a partially ordered set {or poset for
short) in which the target reconstruction pattern is characterized as its global maximal element, and
there is no other local maximum. We recall here our standard weight function employed in [2]:

fly)= Y ey @)

(z,9)eF

It has the following invariance properties for the operations on the original figure: It is invariant by
the diagonal reflection; It changes by an additive constant by the shift; It changes sign and additive
constant by horizontal and vertical reflection or by the 90 degree rotation. Moreover, this weight
function is well coherent with the type modification:

Proposition 5.1 The switching of type 2 to type 1 always increases the weight function (2). Thus the
lattice structure implies the automatic achievement of the mazimal element by this type modification.
Especially, a switching digraph does not contain a cycle with circularly directed edges.

12
i

y <
L3

g
8 Oy 8
rfd B
W
10 :E H1o
[m] EI:D 7 B
mﬁm
i
9 EE [u] o 9 M 6 6
o fus]

E[EE6

Figure 17: An example of (non-)lattice structure.
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For simple figures as in Fig. 1-2, the weight function (2) makes them a lattice, and the type
modification really attains the maximal element. But the matter is not so simple for large figures. In
fact, the main difficulty in type modification process in [2] was the existence of many local maxima for
practical complicated figures, and we needed to employ a kind of genetic algorithm with “mutation”,
that is, intended recession of type 1 to type 2, to get rid of them. It is a very interesting problem to
find a criterion to see if a given switching graph becomes a lattice with this weight function (2), and
if not, whether there is always a better practical weight function to make the graph a lattice. (In
an abstract sense, such one always exists in view of Proposition 4.1 and 4.4.) Here we only show an
example of switching graph which has a lattice structure for one weight function and which does not
for another one. The left in Fig. 15 has a natural lattice structure with the standard weight function
(2), whereas the right, obtained from the former by exchange of rows and columns, hence yielding
the same switching graph, has a local maximum. The latter may be considered as the former with
the weight function modified by this exchange of columns and rows.

fw(y)

fyw(y)

~e) u(z)

Figure 18: Discrete slant ellipse and its projections

As remarked in [2], whether the global maximum is the desired solution or not is another interesting
problem. It is experimentally known that so is the slant ellipse, which is our continuous target
of concern. So let us suppose this for the moment. Local maxima arise even for rather coarse
discretization of such a natural convex figure. Fig. 18 is an example of descretized slant ellipse. How
many vertices and edges does the switching graph of this relatively simple pattern have?

Ryser-Kaori
reconstruction

A4 original
A figure

Figure 19: Computer-generated switching graph for the above figure

The answer, produced by our computer program, is rather astonishing. We have 3976 vertices,
54920 edges, the dégree ranging 25 < d < 40. In the computer-generated figure Fig. 19, vertices
are arrainged uniformly on the circle in the discovered order. Edges are drawn by white segments.
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The original figure (slant ellipse), Ryser-Kaori’s solution of deterministic reconstruction (cf. [2]), and
some examples of local maxima encountered in the process of random modifications are indicated by
the arrows.

This example clearly shows that we have little chance to attain the true maximum by a contin-
uation of good luck. We need a new strategy. Also, to treat figures of practical size, it is almost
impossible to construct the whole switching graph. We are now trying a kind of dynamical algorithm
to construct only a necessary neighborhood of the path in the switching graph which may lead from
an initial reconstruction to the final solution which is the true maximum.
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