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Abstract

In this paper, trimmed sums of nonnegative multi-indexed i.i.d. random variables with slowly
varying tail probabilities are studied. By using point process method, the author proves a functional
limit theorem; i.e., the convergence in law with respect to multi-parameter processes over the space
of all functions which are “continuous from above with limits from below” endowed with Skorohod’s
topology.

1 Introduction

Let X;, X5, - be a sequence of independent, identically distributed (i.i.d.) nonnegative random
variables with common distribution function F'(z), and let S, = X3 + X2 + -+ - + X,,. Now in this paper,
we shall assume that

1-—F(z)=1I(z) z=>0, (1)

where [(z) is slowly varying at co. We shall assume also {(z) > O for every z > 0 to avoid exceptional
cases, and denote ﬁ by L(z); it is sometimes more convenient to consider its reciprocal since I(x) is

non-increasing. Notice that L(z) is nondecreasing, slowly varying and right-continuous. Since every
linear normalization of S, leads to a degenerate limiting distribution in this case, we consider a non-
linear normalization of Darling type: 1L(S,) (see [3] for the results). For the process +L(S[ny), the
convergence of the semi-group was obtained by [11], and its weak convergence in cadlag function space

was obtained by [6]: Let X, 2, X denote convergence in law of random elements of the function space
D([0,00) — R) endowed with Ji-topology. This notation shall also be used to express weak convergence
of the laws of random elements of any other topological spaces. When we need to emphasize the space,

we write, for example, X, 2, X in D(]0,0) = R).
Theorem A ([6]) \
Under the assumption (1),
1
~L(Stni)) Zy m(t), n— oo in D([0,00) — R),
where m(t) = Jnax, p(s), (m(0) = 0), and p is Poisson point process with intensity measure z~°dz.
<s<

The present paper is an extension of Theorem A. We shall treat the case of the trimmed sum and
multi-dimensional time parameter. Let {Xi, iy, iss i € N,d = 1,2,---} be a system of multi-indexed
i.i.d. nonnegative random variables with common distribution function F'(z), and let

SNl,m,Nd: Z Z Xﬁ,'“,id (NkEN).

11 <Ny ig<Na
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For every r = 0,1,2,- -, we define the trimmed sum by

SNy, Ny Jdforr =0
83 e =% Swae g = (MP |y 4ME) ), for L<r< Ny Ny
0 ,for r > Ny -+ - Ny,

where

k
MJ(\,) N, = k-th  max
1, »iVd (i1, ,ig)€
(0.N1]><<--x(0.Nd]‘

i1, ide

r—1

[(ntl],)-n Jntal
D([0,00)¢ — R) which denotes the totality of real-valued functions which are “continuous from above with
limits from below” endowed with Skorohod’s topology (see [9] for definition). We usually prove the weak
convergence in function space by proving weak convergence of the finite-dimensional distributions and
then proving tightness. However, it dose not seem easy to check the well-known conditions for tightness
such as Bickel and Wichura’s moment condition (see [2] and [1]), thus we shall adopt a direct method: On
a suitable probability space we shall construct processes which are distributed like #L(S[(;t—l ]1) . 7[ntd]), n =
1,2,--- and which converge to a limiting process almost surely in Skorohod’s topology. In order to state
the limiting process; we define i

In this paper we shall prove the convergence in law of a process ;{;L(S ) over the function space

(m('r) (tla Tt :td))tk207 (m(r) (0’ e 70) = (07 T ,0))a

where

m(r)(tli U atd) =r1-th (s r_r}_a‘zc)ep(sla e )sd);
(O,tllj')o-:xazo,td]

and p is Poisson point process of d-dimensional time parameter with its mean measure z~2dz.

2 Main theorem

Our main result is the following theorem.
Theorem 2.1 Under the assumption (1), for everyr =1,2,---

1 — ” .
ﬁL(S{(ml]l,)--.,[ntd]) 2y ! )(tl,--- ,td), m— 00 in D([O,oo)d — R).

We divide the proof into two parts. It is clear that Theorem 2.1 follows immediately from the following
two propositions: '

Proposition 2.2 For every ¢y, -+ ,t4 >0
luM” ) Zs mM(ty, -+ ,ts) n— oo inD([0,00)% = R)
nd [nt1], ,[nt4] 1 ybd s .

Proposition 2.3 For every T1,--- , T, >0

; L 7 igtr=1 Lrou® —
P L B ) = g M ) 1200

(0,T1]1x---x(0,Tg]

We shall prove this theorem only for 7 = 1 and d = 2, because the case of d > 3 and r > 2 can be treared
by similar means as r = 1 and d = 2 replacing maz with r-th maxz.

Proof of Proposition 2.2.

Let U be a random variable uniformly distributed on (0,1), and let V; ; (i,5 = 1,2, - - ) be independent

copies of V = —15 Now we shall define a real-valued point function p, as follows. The domain D, of
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Pnis {(&,2): 41,42 = 1,2,...} and we put p,(t1,t2) = V‘;é‘é for (t1,t2) = (%, %) Thus the counting

Ny, (dtydtpdz) = > Y O i iz Yirga ) (dhrdbrdz),

measure of pn is
i1 <[nt1 12<[nt2]

where 6, 1, ») denotes Dirac measure located at (t1,t2, ). Now notice that

B[Ny, ([0,t1] % [0,82] x (-’B 00))]

= XY A= Y Pl < )=kl

i1<[nt1)iz <[nta] i1 <[nt1]ia<[nte] Vissia

tlxtg = E[N,([0,t:] % [0,15] x (z,00))], 71— co.

This implies that the point process {p,}. converge in law to the process p which was defined at the
previous section. (For details see [8]. See also [7].) Then we can construct the process p, which converges
to p almost surely on a suitable probability space. No confusion of notation should occur, and thus we
shall not distinguish between p,, and p,, for simplicity. Consequently, it holds that

mgbl)(tl)tZ) & m(l)(tlat2)a n— ooan([ano)Q - R)7

(1) _ . <z —1 k4 . . . .
where my,” (t1,t2) = max_ Pn(s1,82). Since X;, 5, ~ L™1(Vj, 4,), where ~ means equivalence in distri-
(0,611% (0,23

bution, we have that
1
LMD o) & S IE 0 D (1, 12))).
We also have that
1 _
EL(L l(nz ) mg‘tl)(tl’tQ))) ~ mgzl)(tlat2)> n — 00,

where f(z) ~ g(z) means lim;_, ;1(% = 1, because we can show that L(L~}(z)) ~ = as £ — oo from
the fact L(z) is slowly varying. Consequently, we have that

L@

S LM ) 2y mW(t1, 1), n— oo inD([0,00)2 = R),

which completes the proof of Proposition 2.2.

Proof of Proposition 2.3.
Since we have that

t1
S{nty],[nta] z Z Z L~ . “’12 / / / (n®z) N, (dsidssdz),

i1 <[nt1}ia<[nt2]

it is sufficient for the proof of this proposition to show that for every 17,75 > 0

1 t1 pta
lim sup | 'EL(/ / / LY (n%z)N, (dsidssdz)) — —%L(L‘l(nzmg)(tl,tz))) =0 a.s. (2)
nTee Lfe n 0o Jo Ja>0 n

»T11X(0, T2

t1 pto
To this end, we shall divide / / / L™ (n?z)N,, (ds1dszdz) into two parts as follows:
>0

t1 pto t1 pta
/ / / (n?z)N,, (ds,ds2dx) +/ / / ~H(n?z) Npe (ds1dsadi)
o<z<e z>0

X5 (ty,t2) Y3 (t1,t2),
where pf, = p, - 1(p, >c}. Notice that

| TLI*EL(XZ(%E) + Y (t1,t2)) — nigL(L_l(n2m$zl)(t1’t2))) ‘
<| ﬁl—jL(erl(tl:t2) + Y5 (t1,t2)) — ;L%L(er(thtz)) | + | _L( = (t1,t2)) — —L(L Ln2m (t1, 1)) |,

and hence it is sufficient to show the following two claims; for every 13,7y > 0,
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N1 1 1 “1/.2. (1
(i) lim SUp | S LYr(t,82)) = 5 L(L™ (n m (t1,62)) |= 0 a.s.
(0.T11x(0, T3]
.. . 1 1
(ii) nh_}rréo (fgge | ﬁL(X,i(tl,t2) + Y (t1,82)) — mL(Y:(tl,tg)) =0 a.s.

(0,T1]x (0, T3]

Let us begin with (i). We can replace Y;;(t1,t2) by the form of finite sum since Npe is finite almost
surely. Let ng(e) = Npe ((0,00)%,R,.), which is a random variable depending on ¢, and let mD (b, 1) =

 max 25, (s1, 82). Now it follows that
$1,82)€
(0:t1]x(0,t2])

L Lo(e) - L7 @2 - mP 1)) ()

1 —1/.2 ¢ 1 1 €
LT 0 m (6, 1))) € LYV, 1)) < —

n2

and we shall show that it holds almost surely,

1 1
lim  sup | = L(no(e) - LR - *m{P (t1,12))) — S LELH(n? - =mP (1, 12))) |= 0, (4)
e (0T, " "

for every T7,7T> > 0. To this end, first we observe that

1 1
lim  sup | —L(no(e) - L7 (n - *mD (b1, 82))) = 5 LIL7 (- *mP (b1, 1)) |

n—=00  (41,i9e N n?
[, 71105, T2}

) 1 _ 1 _
< lim  sup | EgL(no(E) L7 (n? - em{D (1, 19))) — ﬁL(L Y(n? - em{) (t1,2))) |

N0 (¢9,t9)€
(0,T1]U(0,T2)

. 1 -
< fim o sup {] 5 Lno(e) LT TmiD (k1 8)) — m (b, ) |
0<Emy "(21,t2)

<emD(1y,12)
1
+ | TmP (ty,15) — EZ—L(L"l(nz EmB(tr,12))) | }-
Now we have that for every A > 0 and z > 0,

i LALT () (5)

N300 n2

since L™!(z) is rapidly varying and increasing. This convergence is uniform for z on every finite interval,

-1 2
since L(LQM is monotone in z and its limiting function is continuous. Therefore for every 11,75 > 0,

it follows almost surely that

. 1 _ . 1 _
nh_)rr;o sup | EL(no(s) L7 emD (4, 1)) - 7—1—2_L(L Yn? - em(t1,t5))) |= 0. (6)
[s.grllfx:fe),ETQ]
Next let us consider the part of (0,€] x (0,¢]. It follows that
1 1
li 2 T=1(,2 e (1) e ALY 2 e (4t
Jmsup | Ee(e) L7 om0, ) — I e 1)
o1 —1(,2 1
< lim = L(nofe) - L7 (- “miD) (e,)))
1
< lim {| —L(no(e) L7 2 emB(e,e)) — mP (e, e) | +m P (e, )} (7)

If we choose € > 0 so that € < emsll)(tl,tg), then Emg)(tl,tz) = mg)(tl, t2). Therefore from (5) and the
fact that m%l)(tl, ts) converges to m(D)(t1,t,) almost surely as n — oo, it holds that

[RHS of (7)] = mM) (e, e).



September 2005 A functional limit theorem for trimmed sums of multi-indexed i.i.d. random variables with slowly varying tail probability

Since m(Y) (g, e) converges to 0 as € — 0, we conclude that almost surely

o 1 _ 1 _ '
fim lim | sup | 5 L(no(e) - L7 mD (b, ) = 5L oD (1, ) =0 (8)
(0,612

We have (4) from (6) and (8), and hence (i) is proved.
Next we shall show (ii). Since NV, is infinite, we can not adopt the same argument for X&(¢1,¢;) as
that for Y2 (¢1,t2). Thus we shall use the following proposition.

Proposition 2.4 For every ¢ > 0, it holds that

1 .
limsup — L(X7(t1,t2)) <€, foranyty,ty > 0.

n—oo T

We postpone the proof of it until Section 3 and return to the proof of (ii). If we choose € so that e < émﬁl),

then from (i) and Proposition 2.4 it holds that for all sufficiently large n '

1 € 1 £ 1 £
ggL(Yn (t1,t2)) < n_zL(Xi(tlat2) + Y (t1,t)) < n—2L(2 Y (1, ta2)). (9)

Since L(z) is slowly varying and it has been shown that 2 L(Y;(t1,¢2)) converges uniformly, we have for
any 11,715 > 0,

1 1
lim sup —L(2 Y (t1,t2)) — =LY (t1,¢
”_’w(tl,tz)e(O‘Tl]x(O,Tg]| L (t1,12)) — S LY, (t1,22)) |

. 1 LR YE(h, 1))
= 1 L(YE (1)) | S in L T2))
dm o sup S L) | e

(0,T71]x(0,T3)

-1]=0 a.s. (10)

From (9) and (10), (ii) is shown immediately. This completes the proof of Proposition 2.3.

3 Proof of Proposition 2.4

For the proof of Proposition 2.4, we prepare

Lemma 3.1 Let L(z) 2'0,:13 > 0, be nondecreasing and slowly varying at co. Then for every 6 > 0,
there exist an fo(x) and As such that

(i) L7 (z) < fo(z) <L7H((1+60)z), for any z > As,

(i) % is nondecreasing,  for any x > As.

Proof
T e(t
It is known that L(z) is slowly varying if and if L(z) = a(z) exp[/ 6(T)dt] for some a(z) and e(x),
1
where €(z) — 0,a(z) = a < 0o as ¢ — oo (see [4]). We can assume that e(z) is continuously differentiable,
and that a{z) > 0 and e(z) > 0 here (see the proof of corollary of [4] p.282 ). Furthermore from easy
c(z)z
computation we have L™!(z) = exp[/ b(t—t)dt], where we assume that c(z) — ¢ > 0,b(z) — oo as
T — Q. !
We shall begin with the proof of (i). Notice that it holds for every § > 0, as z is sufficiently large,

e(z) < (1+ $)e < (14 8)c((1 + 8)z), therefore we have that

c(z)z (1+é)cm c((14+68)z)(1+68)z
/ b—@dtS/ ’ @dtg/ 5) 4y
. ¢ ) ¢ . t
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(1+ Jez b(t
Put fo(z) = exp| / (t)dt] and then the proof of (i) is complete. We shall next prove (ii). Since
1

(145)c 9 5
eal [ Fd={a+3)P
1

we have immediately that

T (1+§)em pyy —
5O far el [ M0 2y

Now, since b(z) — oo as £ — 00, it follows that @z%ﬂ is uniformly increasing as z is sufficiently large,
and this completes the proof of Lemma 3.1.

Proof of Proposition 2.4.
We devide X¢ (¢1,t2) into two parts as follows

to ty
/ / /0<1<E n x)an (dSIdSde / / /0<z<5 —l(n x) Pn (d31d52d1‘)
put

n a:>A n z<A

I + II.

Let us begin with the part I. From Lemma 3.1 we have that

1</t1/ / f‘;ffm;)( 2 Ny, (ds1dsade) < L7 (n2(1 + e //t2/>0 . (dsydsydz). (11)

Since the convergence of p, has been shown, it follows that

t1 to t1 12
// / z? Ny, (dsidsydz) —>/ // Np(dsidsadz) a.s. n— oo.
0 0 x>0

Therefore we have that for every § > 0, it holds that almost surely

lim sup T%L (R.H.S. of (11)) = limﬁsup %L(L‘l(nz(l +0)e)) = (1 + d)e.
n—roo

n—roo

Hence it follows that

lim sup —L(I) <e as. (12)

n—roo

Next we shall consider the part I1. Note that [nt;][nts] is the total number of points of p,, and hence
we see that for every T, T (0<t; £T1,0 <t < T3),

t2
Ir< / / / reae Ag)N (ds1dsadz) < L7 (As)[nt1][nts] < L™ (As)n*T1 .

nzm<A5

Since we see that lim —5L(n2) = 0, we have that
n—roo N

lim —L( HAs)n T\ T,) = lim —L( H=o.

n—oo n n—roo n

Therefore it follows that

lim -—L(II) =0, (13)

n—rod n

and hence from (12) and (13) we have

lim sup —-—L(X (t1,t2)) = lim sup L(I +II) <,

n—rod n—roo

which completes the proof of Proposition 2.4.
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