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Estimates of the Besov norm
on a bounded fractal lateral boundary and
the boundedness of operators
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Abstract Consider a cylindrical domain Qp = D x (0,T), where D is a bounded domain
with fractal boundary in R?%. Let u be a A\-Hélder continuous function on Qp with respect to the
parabolic metric p. We estimate the Besov norm of the restriction of u to Sp = 8D x [0,T] by the
LP(Qp)-norm of the sum of [V, u(Y)|dist(Y, Sp)** and [Dgy1u(Y)(dist(Y; Sp)*? for suitable A; and
A2. We apply it to show the boundedness of an operator on the Besov space on Sp and use the
result to prove the boundedness of the operator with respect to the double layer heat potentials.
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1. Introduction

Let D be a bounded domain in R? and suppose that the boundary 8D of D is a 3-set (d — 1 <
B < d), i.e., there is a positive Radon measure p satisfying

(1.1) bir? < w(B(z,r) NOD) < byr?

for all » < ro for some 79 and all z € 8D. Here B(z,r) is an open ball with center z and radius
r, and by, bs are constants independent of r, . Such a measure y is called a G-measure. We fix a
[-measure p.

We consider a bounded cylinderical domain Qp = D x (0, T) for the above domain D and denote
by Sp the lateral boundary 8D x [0, 7] of Qp.

We use the measure ur = u X-E[lo,T] on Sp. Here £[10le stands for the restriction of the 1-
dimensional Lebesgue measure to [0,T]. We also use the parabolic metric. Recall that the parabolic
metric p in R4+! is defined by

pXY) = ]z —y? + [t —

for X = (z,t), Y = (y,s) and z, y € R%, ¢, s € R.
We may suppose that 8D C B(0, R/2) for some R > 1 and rp = 3R in (1.1).
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Let p > 1 and a@ > 0. We denote by LP(ur) the set of all LP-functions defined on Sp with
respect to pur and by AP (Sp) the space of all function in LP(ur) such that

f D/s gg)yf)ﬁi(iifduT(X)duT(Y) < 0.

For f € A2(Sp) the Besov norm of f is defined by

A2 fllep = ([ VEOPdur(0)” + ([ [ D reaw dur (X)dur (V) .

Instead of balls we consider parabolic cylinders. The parabolic cylinder with center X = (z,t)
and radius r is defined by

CX,r)={Y =(y,8); le —yl <r, [t —s| <r?}.

In this paper we consider the boundedness of an operator A on the space AE(Sp) on the fractal
lateral boundary Sp. It is often difficult to prove directly that A is bounded on AZ(Sp), because
D may have a fractal boundary. So we consider a sufficient smooth function v defined on Qp and
estimate the second part of the Besov norm (1.2) of the restriction of u to Sp by the LP(Q2p)-norm
of IVu(Y)‘dist(Y, Sp)™ and |Dgy1u(Y)|dist(Y, Sp)™ for suitable 1, 72 > 0. Here

ou ou
and 3
Dypu(Y) = 5: (Y).

To do them, we consider a uniform domain by O.Martio and J. Sarvas (cf. [MS]). Recall that D
is called a uniform domain if there exist constants a and b such that each pair of points zg, yo € D
can be joined by a rectifiable arc y C D for which

(1.3) () < alzo — yol
and
(1.4) min{l(y(zo, x)), 1 (v(z,y0))} < bdist (z,0D) for all z € 7.

Here I(7y) (resp. (o, z)) stands for the Euclidean length of v (resp. the part of v between zo and
z). We may assume that a > 1 and b > 1.

Note that an (¢,00) domain, which was introduced by P. W. Jones in [J], is a uniform one (cf.
[V]). Therefore a Lipschitz domain is uniform and the snow flake domain is also uniform.

Let Y = (y,s) € R? x R. We denote by §(Y) (resp. 6(y)) the distance of Y from Sp with
respect to p (resp. the Euclidean distance of y from 8D). We easily see that §(Y) = d(y) for
Y = (y,s) € R* x [0, 7.

In a uniform domain D we gave the following theorem, which estimates the Besov norm on 8D
of a function u defined on D by the LP(D)-norm of |Vu|d(y)" (cf. [W5]).
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Theorem A. Assume that D is a bounded uniform domain such that 8D is a -set (d —1 <
B<d). Letl<p<oo. Ifl—(d-B)<a<1l—(d-pP)/p, a+(d—F)/p <X <1 andu is \-Holder
continuous on D and of C* in D, then

/ D/S w2 du@)dua) < ¢ [ [vupsy e,

where ¢ is a constant independent of u.

Corresponding to this theorem we shall prove the following theorem in §3.

Theorem 1. Assume that D is a bounded uniform domain such that 8D is a B-set (d—1 <
B < d). Further, letp>1,p—pa—d+B>0and a+ (d—B)/p <A< 1. Ifu is of class C* in
Qp and A-Hoélder continuous on Qp with respect to p, then

Ju(X) — u(Y)Ip
/Su ./SD (X,Y)B+2+ap BT arap r(X)dur(Y)
= U Vau(n)Pay e tiay + [ IQU(Y)lpa(Y)zp—pa—dde) :
e ap 0s
where ¢ is a constant independent of u.

In [W4] we proved that there exists a bounded linear extension operator £ from LP(ur) to
LP(R?+1) such that £(f) is of C* in (R%\ 8D) x (0,T) and supp E(f) C B(0,2R) x (-2,T + 2).
Using this extension operator £ and proved the following theorem in [W4].

Theorem B. Letp>1, f € AR(Sp) andp—pa—d+ > 0. Then

/ IVE()(V)Po(Y)P-re=d+8 4y
(R4\8D)x (0,T)

9 e (Y)PS(Y)2P-Pa—d+B gy
* ‘/(Rd\aD)x((]T)IBS (f)( )l ( ) <c”f”ozp1

where ¢ is a constant independent of f.

We say that a domain D in R satisfies the condition (b) if there exist positive real numbers ¢
and r; such that
|B(z,7) 0 D| > er®

for each point z € 8D and each positive real number » < ry, where |F| stands for the n-dimensional
Lebesgue measure of F if F C R™. We note that if D is a uniform domain in R?, then it satisfies
the condition (b) (cf. [W5, Lemma 2.1]).

We define, for r > 0and 0 < c < 1,

Fre={Y € Qpser <é(Y) <r}
In [W3] we showed the following theorem.

Theorem C. Let D be a domain in R?® such that 8D is a compact B-set (d —1 < 8 < d) and
satisfies the condition (b). Furtherletl <p < oo, p—pa—d+8>0and a+(d—-B)/p <A< 1. Ifu

11
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is A-Holder continuous on D N B(0, R) x [0, T] with respect to the metric p, then there is a constant
co < 1 such that

X)
/SD /sD ,0(.1;; (Y)ﬁ+2+(l’a—)¥-|d gdﬂT(X )duT(Y)

[uw(X) —uw(Y)|P
< chmmf/ / (X, V) Thpatis ﬂdXdY
"‘CO T'Co

where ¢ is a constant independent of u.

Using this theorem, instead of considering the boundedness of the operator A on A2(Sp), we
shall prove that the operator corresponding to A is bounded from a function space on (R4\D)x (0, T’)
(resp. D% (0,T)) to a function space D x (0,T) (resp. (R%*\D)x (0,T)). In §4 we have the following
theorem.

Theorem 2. Let D be a bounded uniform domain in R? such that 8D is a B-set (d—1 < 8 < d).
Further letp > 1,1 - (d-pB)<a<1l—-(d—B)/p and a+ (d—B)/p < A < 1. Assume that A
is a bounded linear operator from AE(Sp) to LP(ur) and that, if f is a Lipschitz function on Sp
with respect to p, then Af is A\-Hélder continuous on Qp with respect to p and Af is of C* in Qp.
Further assume that, for every Lipschitz function on Sp with respect to p,

[ wanmpep-re iy + Dari(Af)(Y)PO(YPPre-tRay
Dx(0,T) Dx(0,T)

< e / IV, E() (V) P6(Y)P-Pe—d+ogy
(R4\D)x(0,T)

+ 6/ _ lDd+15(f)(Y)$p5(Y)2”"”°‘*d+ﬂdY+C/ | F(Y)Pdpr(Y),
(RA\D)x(0,7)

Sp

where ¢ is a constant independent of f. Then A is a bounded linear operator from AZ(Sp) to
A%L(Sp).

We next apply this theorem to potential theory and prove the boundedness of operators with
respect, to double layer heat potentials.

If D is a bounded domain with smooth boundary, the double layer heat potential ®f of f is
defined by

(1.5) BF(X) = / / (VW (X — V), ) f(V)do(y)ds

for X = (z,t) € (R%\ D) x R, where (, ) is the inner product in R?, n, is the unit outer normal
to 8D, o is the surface measure on 8D and W is the fundamental solution for the heat operator,

ie,
exp(—%) .
W(X)=W(x,t) =< “ampere if ¢t >0,
0 otherwise.

The double layer heat potential is important not only physically but also mathematically. For
example, R. M. Brown proved that the solution to the initial-Dirichlet problem in a Lipschitz cylinder
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for the heat operator can be written by a double layer heat potential and the solution to the initial-
Neumann problem in a Lipschitz cylinder for the heat operator is given by a single layer heat
potential (cf. [B]).

If D is a bounded domain with fractal boundary, then n, and the surface measure can not be
defined. But if f is a C'-function on R4*+! with compact support, then we see by the Green formula
that for X = (z,t) e D xR

T
wf() = [Fds [ 50,9 W 00~ ¥y
T
+ /0 ds /R o TOOBIW X =iy
and for X = (z,t) € (R*\ D) x R
T
o/(x) = ~ [ ds [ (9,00, 9, (X -V

_ /0 " s /D F)A,W(X —Y)dy.

Using the extension operator £ in [W4], we define, for f € AE(Sp),
T
of(X) = [ ds [ (VENE)TWX - V))dy
0 RA\D

T
+ /0 ds/Rd\BE(f)(Y)AyW(X~Y)dy

for X ¢ D xR and

T
BFX) = - /0 ds /D (VoE(F)(Y), VoW (X — Y))dy

|

T
/ ds / ECH) (V) AW (X — Y)dy
0 D

for X € (R¢\ D) x R.
We also define, for Z € Sp,

T
K52 = [Cds [ LD, VW -1y

T
v [as [ € - @) awE - Viay
0 RIN\D

if it is well-defined, and K3 f(Z) = 0 if otherwise.
Similarly we define, for Z € Sp,

T N
Kf(Z) = - /0 s [ (VD) VW (Z =)y

)
- / ds / EF) ) = EF)Z)AW(Z - YV)dy
0 D

if it is well-defined, and K3 f(Z) = 0 if otherwise.
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It is easy to see that the operators K; and K are bounded from A% (Sp) to LP(ur). But, are
they bounded from A?(Sp) to AZ(Sp)?
Using Theorem 2, we shall prove the following theorem in §6.

Theorem 3 . Let D be a bounded uniform domain in R such that R\ D satisfies the condition
(b) and 8D is a B-set (d—1 < 3 < d). Assumethatl <p < oo and0 < f—d+1<a <1—(d-0)/p.
Then the operator K, is bounded from AP(Sp) to AR(Sp). Further, assume that for every pair of
points g, yo € R%\ D satisfing 6(zo) < ro and §(y) < ro for some 1y, there is a rectifiable arc
v C R4\ D satisfying (1.3) and (1.4). Then Ko is also bounded from AR(Sp) to AR(Sp).

2. Uniform domains

In this chapter we study a property of 2p if D is a uniform domain. At first we note a well-known
property of a uniform domain (cf. [V, 2.21 Theorem]).

Lemma D. Let D be a uniform domain satisfying (1.3) and (1.4). Then there exists a point
v € D such that i(D)
B(v, ——= D
('U, 86 )C

and for any xo € D we find a curve yo C D, which joins xg to v and satisfies
(2.1) I(y0(z0,2)) < 16ab%5(z) for all z € 7yo.
Here d(D) stands for the diameter of D and a, b are the constants in (1.3) and (1.4), respectively.

Using this, we give the following lemma.

Lemma 2.1. Let D be a unifom domain satisfying (1.3) and (1.4). Further let Xo =
(zo,%0), Yo = (¥0,50) € Qp and c16(zg) < 6(yo) < c26(zg). If § is an integer satisfying j > —1
and 298(z0) < p(Xo,Yo) < 29%16(zq), then there ezist cylinders Co, Ci, -+, Cm, C§, C1, -+, Ch
(Cx = B(zk,7r) X (ak, br), Cr, = B(zp, %) X (ai, b)) in Qp having the following properties:

)< <rpandri <---<rl, and Cp, = C/,,

(ii) dist(B(zx, %), 0D) > 3rk, dist(B(z},1},),dD) > 3r},

(iii) 2o € B(z,crx), Yo € Bz, cry,),

(iv) If y € B(zk,7%), then §(y) < crg,

(v) B(yk,c'rr) C B(zk, k) N B(2k+1,Tk+1) for some yy € D,

By, c'r,) C B(zy, i) N B(2h 41, Tyy) for some y;, € D,

(vi) [Cr| < erif*?, |Chl < e(rh)**2,

(Vii) T < Cp(Xo,Yo), r;c < CP(XO’YE))f

(vili) m < c(j +2), m’ <c(j + 2).

Here ¢, ¢’ are constants depending only on d, D, T, a, b, ¢; and ca.

Proof. We may assume that ¢y < sg. Since D is a uniform domain, we can find ¢ C D which
connects zo with v in Lemma D and satisfying (2.1). Choose 7 > 0 satisfying (o) = nT*/2.
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(1) We first consider the case that 7|so — to|'/? < |zo — yol.
Since D is uniform, there exists, for zp and yg, a curve v C D satisfying (1.3) and (1.4). We
may assume that a,b > 1. Take the point 2z’ on -y such that I(y(zo, z')) = 3I(v). Putting p = a(fb") ,

we choose the natural number m such that

1 m—2 1 1 m—1
il ht < —
P+ )" < gl < p(1+ )

(If m is non-positive, then we take m as 1).

We next take z1, 22, -+, 2m on 7y as follows:
1
l(’Y(xO,zk)) - p(l + 4b) _1’ (k = 1) e, — 1) and Zm = Z’.

Set ¢ = 2/n? and put

1 —t
tr, = to + min{cp?(1 + 4—b)2(’““1), EE’-E—-O—!} (k=1,---,m).

Since
180 — tol

C C
cp®(1+ )2(m D> 1(7)2 ZI-’EO —yol* > ZT)2|'30 —to| = 5

it concludes that ¢, = to + |so — to|/ 2.
Further, set 7o = p, rp = 51+ )1 (k=1,---,;m—1), rpp = ZIE‘LZ and define (m + 1)-
numbers of cylinders as follows:
Co = B(:L‘(),’l‘()) X (to,tl)
Cr = B(zk,rk) X% (to,tr) (E=1,---,m)
By the same method as in [W5, Lemma 2.2] we see that these cylinders have the properties (i)-(viii).
(2) We next consider the case that n|se — to|'/2 > |zp — yo|-

Let v be the point in D in Lemma D and -y the curve in D joining o to v and satisfying (2.1).
Note that B(v, —%—5—) C D. Set b’ = 12ab®. Choose the positive interger n satisfying

(2.2) P21 + )2(n—2) < _2ﬂ < P21+ 4_27)2(71—1)'

(If n is non-positive, we put n = 1). Set

_ 2(k—1 _
sk =to + p2(1 4b’)( ) (k=1,---n—-1)
and s, = tp + 23,
We next take wi, - -+, wn on o and positive numbers r{, -, r/, as follows:

1
Uvo(zo, wr)) = np(1 + 4b,) =4b'r, (k=1,---,n).

Here we note that

1 !80 — tg,l/z

< _ 1/2 < T1/2 =1
pi 7S nlso —tol /* <7 (0)

1.,
(2.3) np(1 + i <1+ =

and

. 1 1 s
dISt(wnﬁaD) 2 yl(’Yo(fBo,wn)) = ynp(l + E)
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So we can take wi, ‘-, wy, on 9. Using these points, we define (n + 1)-numbers of cylinders as
follows:

Py = B(zo,p) X (to,to + p*)

P, = B(wg,7y) X (to,s5) (k=1,---,n).

These cylinders have the properties (i)-(viii).
Similarly we join yo to v by <; satisfying (2.1) and take wj,---,w}, on v1. And we contruct
cylinders Py, Py,---,P.,.

Since D is uniform, there exists a curve 7, joining wy to w}, satisfying

1(72) < alwn — wyl,

min{l(y2(wn, z), 1(y2(z,w,))} < bd(z) for x € 7ys.

Take w"” on 7, such that I(y2(wn,w"”)) = 3i(v2) and choosing the natural number I such that

_ —_ < —_ .
(I—-1np (1 + 4b’> < 5 = Inp (1 + 46’)

(If I is non-positive, we put [ = 1.) Further, we define wp4x (K =1,---,1) on 7 as follows:

It

n—1
n(wnwns)) = C-Dmp(14g)  (h=1o=1)

1)

l('72(wna wn—}-l)) = D)

Noting that I(vo(zo, ws)) < n|so — to|'/2 by (2.3) and

(2.4) 1(72) < a(lwn — ol + |0 — yol + |yo — wy]) < 3an|so — to|'/?,
we have .
L\ _l(y) _3 1/2
— il < < = _
-t (1+57) <52 < Sanlso - ol
whence, by (2.2),
3 V2 3
1< 2 /2 Y 2 )
I-1< 2an]so to]/* x o0 — o172 2\/§a
o U(an, wn ) | lw)
" o_ Y2 (Wn, Wnik _ L. _ "_ V2
T = 4b (k 1a 7l 1) Ty 8b
and define cylinders by
sg — to|1/2
Pn+k=B(wn+k,r§c') X (to,to-{-lL—-Q‘——— (k=1,---,l).

2
These cylinders have the properties (i)-(vii).

Similarly we construct cylinders {P,’C}Z':“’;f,/ 41 along —v2. The cylinders {Pe}rt! and {P}}pH
are the desired ones. Q.E.D.
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3. Estimates by volume integrals of the gradients

In this section we assume that u is a sufficient smooth function on Q. Using Theorem C, we
shall estimate the Besov norm of the restriction of u to the lateral boundary by the LP(p)-norm
of the sum of |VulP x §(Y)" and |Dgy1uld6(Y)? (v, and 72 are suitable numbers).

By the same method as in the proof of Lemma 4.1 in [W5] we have the estimate for the Besov
norm on the product of two parabolic cylinders as follows:

Lemma 3.1. Ifl<p<oo,p—pa—d+p>0,r>0 and Xo = (zo,t0) € Qp. Further let
§(xo) > 2r and put I = (to — r2,t0 +72) N (0,T). If u is of C*-class in Qp, then

X) = (V)P
dt/ da:/ ds/ Ju( dy
~/11 B(=zg,r) I B(zg,r) p X Y)d+2+pa+d 8

< ¢ rp_p"‘_d"'ﬁ/ ds/ ]Vyu(Y)|pdy+r2‘”_p°‘_d+'@/ ds/ |Day1u(Y)|Pdy | ,
I, B(zo,r) I, B(zo,r)

where ¢ is a constant independent of Xy and r.

Using this lemma and the covering lemma for parabolic cylinders, we can prove the following
lemma (cf. [W5, Lemma 4.2]).

Lemma 3.2. Letp—pa—d+ 08>0 and u is of C'-class in Qr. For X = (z,t) € Qp and b
in (1.4) put

§(X) Jox rgy WY)AY
= — d r = ! X
TXE T G Morx IC(X, )]
Ifo<r<1,0<e¢ <1, ¢y >1, then
Z / [u(X) = nx;rx P4y
521 e (1206(X)<p(X,Y)<e22+18(X )} Fy, oy P(X, Y )EF2HPaFd=H

< o / (IVyu(Y)PS(Y )PP~ 4 | Dysru(Y)PO(Y )PP 4+F)dy,

Qp

where ¢cg is a constant in Theorem C in §1 and c3 is a constant independent of r, u.

We next prepare a measure which will be used later. Let 0 < A < d — 8. The measure v is
defined by

(3.1 @)= [ sway

for a Borel measurable set E ¢ R+,

We now are ready to prove the main lemma.

Lemma 3.3. Suppose that D is a bounded uniform domain such that 8D is a (3-set. Let
l<p<oo,p—pa—d+pB>0anda+(d—pB)/p< A< 1. Ifuis of C'-class on Qp and A\-Hélder
continuous on Qp with respect to p, then

lim sup/ / [w(X) — u(X)|P dXdy
Fv‘ <o Fr cg

0 o(X, y)d+2+pa+d B

< c( /Q IV, u(Y)P(Y)P-Pe—tBay 4 /

Qp

IDd+1u(Y>ipé(Y)%*m-“ﬁdy) ,

17
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where ¢ is a constant independent of u.

Proof. Let r be a sufficiently small positive number and ¢y be the number in Theorem C. We
write

[ AUy
Frco o(

X,Y)d+2+patd—p

_ / [w(X) ~ )P o
‘ "

e {p(X,Y)<(1/2)5(x)} P(X, Y )dt2+patd=0
|u(X) — u(Y)|P
v, ”
Fr,ooM{p(X,Y)2(1/2)5(X)} p(X,Y)d+2+patd—p
= Il + 12.

We first estimate I;. Since F}. ., is compact, there is a covering {C(Y}, 692/{;) )}’J""=1 of F,. c,, where

b > 1 is the same constant as in (1.4) in §1. Using a covering theorem of Vitali type, we can select
a subcovering {C(Xy, SN of {C(Y;, Ss%)};’;1 such that {C(Xy, Z5E)}L_ are mutually
disjoint and

J(Xk))
4
If X = (zo,te), X = (2,8) € OX, X&), ¥ = (y,5) and p(X,Y) < 2§(X), then Y €
C(Xk, (1 + £)0(Xy)). Putting ¥ = 3(1+ £), we see that ¥’ < 1. Hence, by Lemma 3.1,

Froo CUL_1C(Xk,

/ LdX
Fr.cgNC(Xx, 255k
— V4
< / dX lu(X)d zﬁ(YJ)rL_ﬁdY
C(X 0 b'6(X )N (X b6(X))nap P(X, Y )dr2tpe

< c16(Xy)PPamdth / |V u(Y)[PdY
C(Xk,b'0(X5))N2p

+  c16(Xy)%PPa—dth / |Day1u(Y)|PdY.
C(Xk,b'6(Xk))NQp

IfY € C(Xg,b'6(Xy)), then §(Xy) < 6(Y) + (14 $)6(Xy) and hence 1(1 — $)86(Xx) < 6(Y).

Consequently we have
/ IidX
Fr.comC(Xkyg{Eb_))

<

& / (IVyu(Y)PE(Y)P~Po=4+8 | | Dy, u(Y)PS(Y)2P—Po~+9) dY.
C(X e b'6(Xx))N2p

Since {C(Xk, ﬂé—gl)}fc:l are mutually disjoint, we conclude that

/ IdX
Fr,co

< e / (IVyu(Y)IPS(Y)PPo40 4 | Dyyru(Y)[PS(Y) PP~ +F) dY.

Qp

We next estimate I. Let X, Y € F,. ., and p(X,Y) > (1/2)6(X). Using Lemma 2.1 for Xy = X
and Yp =Y, we can choose cylinders Cy, - -+, Cp,, Cg, - -+, C/., such that they have the properties
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(i)-(viii). Putting

1
m = — | w(Z)dZ (k=0,---,m)
ICxl Je,
7/

o= o [ w(@)dZ (k=0,--,m)
|Ck:l Cy

and noting that 7, = n,,, we write

m—1
uX) —u@) < (X)) = ol + D Ik~ el
k=0
) m/ -1 ‘
+  |u(Y) —ml + Z |k — nfml
k=0
m—1 m'—1
= JX)+ > Hk+IV)+ D Ji
k=0 k=0

Noting that p(X,Y) > 26(X), we have, by Lemma 3.2,

/ dX / J(X)P
Frco Froogn{p(X,Y)2(1/2)6(x)} P(X, Y )d+2+patd=0

< C4/Q (IV-u(2)[P5(Z)P 7%~ P + | Dgy1u(Z)|P6(2)*P~P>=44P)dZ.

dy

Similarly

[ o .
Freo  JEnenio(xy)2(1/2)50x)y (X, Y)H24patd=5

< Cs/ (IV.u(2)[P6(Z)P~P=9R +|Dygy1u(Z)[P5(Z)P P>~ 4+P)dZ.
Qp

We next estimate Ji, = |7 — k+1|- By the similar method as in the proof of Lemma 4.3 in [W5]

we have
e < =% [ (VAZ)) + 1Dua2)10(:))dz
k k
C
b / (IV2u(2)I6(2) + | Dasru(2)[6(2)?)dZ.
Tk+1 Y Craa
Put

1 2
Te = Jaw /ck(lvzu(Z)lé(Z) +1Das10(2)|6()")dZ.

We note that r, < c7p(X,Y), where ¢7 is a constant independent of X, Y and k. Choose € > 0
satisfying 0 < d— 8 — pe and put A = d — 8 — pe. By Lemma 2.1 we see that ry is comparable §(zk).
Noting that |z — zg| < cgd(zk),

V;'(Ck) < /c é(z)—’\dZ < chﬁ“_)‘
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and Z = (z,r) € Cj, implies 6(z) < c107k, wWe have

ot Jox comynan |VUD)6(2)1 0746 (2)"*dZ

Ik < a P+
a+€fc(x cor) 0 |Dd+1U(Z)|5( )3me¢8(2)"NdZ
+ curg d+2 X
< cep(X, Y)°‘+€(M(VA)(f1)(X)+M( N (F2)(X)),

where

f1(Z) = [Vau(Z)|6(2)' 707, f2(Z) = [Dar1u(2)]6(2)* ¢
and M(z/;\’”)( fi) (i =1, 2) stands for the Hardy-Littlewood maximal function with respect to the
measure 1/)‘ Hence

m—1

D gk S eispl VI GMED () + MO () X0).
k=0

From this we deduce

/ (Zk 0 Jk) dY
(205(X)<p(X,Y)<2H16(X)}NFr, ey P(X, Y )T2HPaFA=E

< ca(@6(X))THEPE P (M) (F1)(X)P + MET)(F2)(X)P).

Since the maximal function M (v;")(f;) has the same property as usual one, we have

— Ches J)?
dX ay
j=_1/F,.,co (296(X)<p(X,Y)<25+15(X )} Fp,eq P(Xs Y)d+2+p°‘+d s
< cu o MEHF)(X)P + MEF)(F2)(X)P)d(z) X
,C0 !
<

o1 f VL u(Z)|PS ()P PP (z)=d+BRe 7
Qp

+ 015/ | Day1u(Z)|PE(2)PPaPEg(2)~HAPe 7
Qp

616/ (IV.u(Z)[P6(Z2)P~P*~%F 1 | Dyyyu(Z)|P5(2)P P>~ 4P)dz.
Qp

Similary we can estimate

> (o TP
dX = dYy
= /;u,co (295(X)<p(X,Y)<2H16(X)}Fy eq P(X, Y )EF2FPoFA=E

err [ (Vau2)PE(EP 7 & Darau( 2)P6(2P 7Pz,
Qp

Thus we have the conclusion. Q.E.D.

Proof of Theorem 1. Let u be of class C* in Qp and M-Holder continuous on Qp. By Theorem
C there exists ¢; > 0 such that

/S /S |u()‘?)y);i(£lladuz’(X)duT(Y)

Ju(X) —u(¥)P
< clhmlnf/ / (X Y)d+2+pa+d ﬁdXdY.
’V‘CO 1'00
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This inequality and Lemma 3.3 lead to the conclusion. Q.E.D.

4. Approximation in A2(Sp) and proof of Theorem 2

In this section we first approximate a function in AZ(Sp) by Lipschitz functions with respect to
p and prove Theorem 2.

To approximate a function in AP(Sp), we choose C*-functions ¢, 1 on R%, R, respectively
such that

¢=1o0n B(0,1), 0<¢<1, supp¢cC B(0,2)

and
p=1on[-1,1], 0<¢¥ <1, supp® C(-2,2).

For n € N and X = (z,t) € Sp we define
an(X) = [ 9t~ 5)(n(o - 1))dur(¥)
Sp
and

ha(X,Y) = a—}x—)w(nm — 8))é(n(z - v)).

Here we note that a,(X) > cn™?~2 for all X € Sp. Further, define, for f € A2(Sp),
HAX) = [ ha(X V)0 ) ().
D
We also note that H,,1 = 1. We have the following lemma.

Lemma 4.1. Let0 < fB—-d+1<oa<1and feAB(Sp). Then H,f is a Lipschitz function
on Sp with respect to p and :
N Hpf = flla,p =0 asn— oo.

Proof. It is easy to see that Hyf is a Lipschitz function with respect to p on Sp.
We shall first show that ||H,f — f|lp — 0 for all f € A2(Sp). Put

Inf(X) = Hnf(X)- f(X)
= ha( X, Y)(F(Y) = f(X))dpr (Y).

Sp
Then
_ _ Y) - f(X)]
< B+2,—(B8+2)/p a/ B dur(Y
o f(X) < an”n ox .2 mynsy PX, Y) B2 /pte pr(Y)
_ 1£(Y) = F(X)PP e
o
< an ( /SD X vyprra ) )
Hence

(@1) / T f(X) Pdpur(X) = 0.

21
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We next put

A, = {(X, Y)ESDXSD,p(X Y) <

3I0°§|0°

B, = {(X,Y)e€ Spx SD, p(X,
Let (X, Z) € A,. Noting that Hyl = 1, we write
|Hnf(X) — £(X) — Hnf(Z) + f(Z)

< 1(/SD ha(X,Y) = ha(Z,Y)(f(Y) = F(X)dpe(Y)| + | f(X) = £(2)]

= (X, 2)+L(X,2)
Noting that, for (X, Z) € An,

|ha(X,Y) = hn(Z,Y)]
< es(nPPp(X, 2) + 0P (X, 2)%)xox,10/m) (Y,
we obtain
L(X,Z)

—6-2)/p— Y) - f(X)|
< e3nP3p(X, Z)(1 4 np(X, Z))n(—F-D/p a/ | dur(Y
< en”p(X, Z)(1+np(X, Z)) Cx.10/mynsy PLX, Y)BF2I/P+a r(Y)

» 1/p
< en'p(X, 2)(1 + np(X, 2)) ( /C wdmm) ,

(x,10/m)nsp P(X,Y)B+2+p

whence, by Lemma 2.3 in [W3],
¢ / J XC(X,10/n) (Y)l ((X ’Y)gfﬁl'a dur(X)dpr(Y)

7 [ PRI R 2)
P < n

IN

X

+ wren | p(X, Z)~0-2-Pa gy (7))
p(X,Z2)<10/n

Y)-f(X
< s /D/ Xc(x,10/m)( )lf((X )Y)ﬁJr(erlla dur(X)dpr(Y).
From this we see that
L(X,2Z)?
// Xl(Z T dpr(X)dpr(Z) - 0 asn — oo.

Since

L(X,Z)?
// X2 Z) B+2+pad“T(X)d#T(Z) —0 asn-— o0,

we have

(4.2) // i A J(X) _pjz(;f)zggiﬁ,g) +IDF dur(X)dur(Z) -0 asn — oo.
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We next consider the integral over B,. We write, for (X, Z) € B,
|Hnf(X) — £(X) — Hnf(Z) + f(2)]

< /S hn(X, V)| (Y) = F(X)|dpr (¥) + [S hn(Z,Y)|£(Y) = £(2)ldpur (Y)
I3(X, Z) + L(X, Z).

Il

Then

IA

I3(Xa Z) p(X,Y)('B+2)/p+°‘

| 1/p
o If(Y) = fF(X)PP
cgn @) — 0P, |
’ ('/C(X,?/n)nsD p(X,Y)B+2+pe pr(Y)
whence, by Lemma 2.3 in [W3],
(X, Z)?
/ ./ ); Z) ﬁ+2+pa dur(X)dur(Z)
B IF(X) - F(V)P
pa £ = f)P
Con /SD/SD XC(X,?/TL)( ) (X Y)ﬂ+2+pa dp'T(X)dNT(Y)

x / (X, Z) 02 P dpr(2)
X,Z)>8/n

(B+2)/p+a _
c7nﬁ+2 (%) L XC(X,Z/n)(Y) lf(Y) f(X)I d/J'T(Y)

IA

IA

F(X)—f(Y)
= o / D/ XCX.2/m) (Y)[ ((X )Y)ﬁ+(2+pla dpr(X)dpr(Y).
From this we see that

L(X,Z
// X3(Z ﬁ+g+pa dur(X)dur(Z) -0 asn — co.

Similarly we also have
ILW(X,Z
// X4(Z)f3+l+pa dpr(X)dur(Z) -0 asn — oo.

Hence

az [ IO L O (X (2) 50 35— 0

From (4.1), (4.2) and (4.3) we deduce
[Hnf = flla,p — O.
Q.E.D.

We now prove Theorem 2.
Proof of Theorem 2. Let g be a Lipschitz function on Sp with respect to p. Then £(g) is
also a Lipschitz one on R? x [0, T] with respect to p (cf. §2 in [W4]). Since the function £(g) is also
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of C*° in Qp, we have, by Theorem C and Lemma 3.3,

/sD /sD |A;f]((§y ﬁi’gj F dpr (X)dpr(Y)

|Ag(X) — Ag(Y)I?
< g hmlnf/ dX/ X Y)d+2+pa+d BdY
1‘ »eQ "" CQ

INA

02/ |VyAg(Y)‘P6(Y)p—pa—d+ﬁdY

Qp

+ 62/ |Dd+1Ag(Y)|p5(Y)2P—pa—d+ﬁdY'
Qp

Let f € A% (Sp). By Lemma 4.1 the set Ay o(Sp) of all Lipschitz functions on Sp with respect
to p is dense in AZ(Sp). We can find {f,} C Aj00(Sp) such that f, — f in AZ(Sp). By the
assumption and Theorem B we have, for f, € A1,0.(Sp),

/ Vy Afa(V)PS(Y)P-P—+Bay

Qp

+ / |Day1Afn(Y)|PO(Y)2P~Pa—d+B gy
Qp

IA

C3-/ \Y yg(fn)(Y)|p5(y)p—pa~d+ﬂdy

R4\D)x(0,T)

+ 63/ [Da1E(fn)(Y)PO( y2p—pe—dt+Bgy sl fallB < call fnllfp
RAD)x(0,T) Y

Hence

/sD /so {Afn(?i'(Y)f;jlri-’c-w'z-g)l dpr(X)dpr(Z) < csllfalltp

Since || fr — fllp = 0 and ||Af, — Af|, = 0, we can choose a subsequence {f,,} of {f.} such
that

fr;(X) = f(X) pr —ae.on Sp  Afn;(X) = Af(X) pr —a.e. on Sp.

From Fatou’s lemma

I Y)[;j‘_{ifj"’dmx>dmz>

o |Afn; (X) — Afny(D)P
< g J zZ
< mint [ [ PRl O () dur(2)
< csliminf [ 2,5 = csll 12,5
Thus we have the conclusion. Q.E.D.

5. Boundedness of operators on Ay (Sp)

Let 0 < A < 1. Denote by Ay o (Sp) the family of all A-Hélder continuous functions on Sp with
respect to p. We consider Ay o(Sp) for A satisfying 8 —(d—1) <A< 1.
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We define, for f € Ay oo(Sp) and Z € R4,

1 f(2)

T
/ ds / (VYE()Y), VW (Z - Y))dy,
0 Rd\D

T
wi@) = [ds[ (D) - ENE@NLWE - Vdy.
0 B(0,2R)\D
Let f € Ay 0(Sp) and X € Sp. Choose € satisfying 0 < ¢ < A. In [W4] we have shown that
VLE(PX)] < (X P
for Y € (R?\ D) x (0,T) and
supp £(f) € B(0,2R) x (—2,T + 2).

Consequently

|1.£(X)]

IA

T
[ ds [ IVEDONTWEY)Idy
0 RAND

T
a / ds / ()M p(X,Y) "4 dy
0 B(0,2R)\D

T
1 / It _ S(—1+e/2d8 / ~6(y)’\—1|w _ y‘—d-}-l-—edy
0 B(z,R)\D

T
+ oo / ds / 5(y) e — |~ dy,
0 B(0,2R)N{|z—y|>R}

whence, by Lemma 2.1 in [W1],

IN

IA

T
/ ds / IVLED DIV, W (X, Y)dy < oo.
0 RA\D

On the other hand we also have, by Lemma 2.1 in [W1],

T
a1 < [Cds [ IO~ SO0l XVl

IN

T
s _ —d—2
er [ ds [, SIEDO) = SO ¥) 2y

T T
03/ ds/ p(X, V) 924y < 03/ ds/ |z — y|} 9 2dy < oo.
0 B(0,2R) 0 lz—y|>R

IN

Thus we have

|¢2f(X)| < oo.
Therefore we can define K; f(X) as in §1 for f € Ay oo(Sp) and X € Sp,
Similarly we can also define K2 f(X) as in §1 for f € Ay (Sp) and X € Sp.

Lemma 5.1. Let0< B —(d—1) < A< 1. If f is A-Holder continuous on Sp with respect to
p, then ¢1f and ¢of are also A\-Hélder continuous on R+ with respect to p.
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Proof. Assume that f is \-Hélder continuous on Sp and X, Z € R4+, Set
B ={Y € (R'\ D) x (0,T); p(X,Y) < 3p(X, 2)}

and
By = {Y € R*\D) x (0,T);p(X,Y) > 3p(X, Z)}.

‘We write
1617(X) — $17(2)
= | / ds / (VLEN)Y), (VaW(X,Y) — VW (2,Y)))dy|

< /1Vy8(f)(Y)[|VyW(X,Y)|dY+/ IVEF)V)IIVyW(Z,Y)|dY)
B By

+ [ VEOWIVWEY) - VW2 Yy
2
= (Ih+ 1)+ Is.
Choose € satisfying 0 < € < 1/2. Then, by Lemma 2.1 in [W1],

L < S(YP1p(X, Y)Y

C1 /
(X ,Y)<3p(X,2)

+ S(Y) 1p(Z,Y)" 4N dY

Ci /
p(Z,Y)<4p(X,2)

< (11/ It — S|—1+e/2ds/ 5(3/))‘_1]:!3 _ yl—d+1—edy
[t—s|<9p(X,2)? lz—y|<3p(X,2)

+ C]/ It _ S‘_1+€/2d5/ J(y))\—llz _ yl—d-l-l—edy
[r—s|<16p(X,2)? lz—y{<4p(X,Z)

< (X, Z)
On the other hand, if Y € By, then
p(Z,Y) = p(X,Y)~-p(Z,X)
> pXY) - 2p(X,¥) 2 2p(X,Y).

Consequently we have

IL < e | §(V)p(X,Z)(p(X,Y)42 + p(2,Y) 4" ?)dY
By

< e [ S(Y)Ma(X, Z)p(X, Y)Y,
By
If p(X,Y) > 3p(X, Z), then
3
=9l > 30(X,2) or [t~ s[> > 2p(X, 2)

We write

S
A

cp(X,2) [ e, Y)Y
{lz—y1>(3/2)p(X,Z)} % (0,T)

+ ap(X,Z) _ Sy " p(X,Y) 4 dY
RA\D)x {|t—s|>(9/4)}p(X,2)2}
= Ip + Iao.

NSR. O., Vol. 56
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We choose €’ > 0 satisfying ¢’ < min{d — 3,1 — A}. Then, by Lemma 2.1 in [W1},

Iy < cap(X, Z)/ ds/ §(y) "tz — y|" 4 2dy
[t—s|<p(X,2)2 lz—y|>(3/2)p(X,Z)
+ cp(X, Z)/ |t — |~ 1HA/2-1/2+ 24
[t—s|>p(X,Z)?
X / 5(y)>\—1|x _ yl—d—A+1—e'dy
lz—y|>(3/2)p(X,2)

< C5p(X, Z)1+2+A—3 + Csp(X, Z)1+)\—1+€'—e' — Cep(X, Z))\

and

IA

C7p(X, Z)/ lt _ 3|_1+(>‘—€"‘1)/2d3
[t—s|>(9/4)p(X,Z)?

% / 5(,!/))\—1|m _ yl—d—/\+1+e'dy
le—y|<p(X,2)

Iz

+ crp(X, Z)/ |t —s|717¢/2ds
[t—s]>(9/4)p(X,Z)? '

< 8z -y~ dy = csp(X, 2)*.
lz—y|>p(X,Z)

Therefore ¢1 f is A-Holder continuous with respect to p.
We next consider ¢of. We write

1625(X) — $2f(2)] < /B E(F)(Y) — EF)X)|AW (X ~ V)|dY
+ [ e - enlawz - vy
+ A E)Y) — EFX) AW (X — V) — AW (Z — V)|dY
= Ji+J2+ Js.

Then, by Lemma 2.1 in [W3],
n<e | P(X, ) 0(X, V)" 42dY < erop(X, Z).
p(X,Y)<3p(X,Z)

Similarly Jy < e11p(X, Z).
Since the inequality p(X,Y) > 3p(X, Z) implies p(Z,Y) > 2p(X, Z), we have

Js < c12p(X, Z) p(X,Y)p(X,Y)™*3dY < cisp(X, Z) .
p(X,Y)>20(X,2Z)

Therefore we see that ¢o f is also A\-Holder continuous on R4+! with respect to p. Q.E.D.

6. Parabolic maximal functions

In this section we introduce a parabolic maximal function, which is useful to investigate the
boundedness of an operator from a function space on (B(0,2R) \ D) x (0,T) to a functon space on
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Qp. To doit, let 0 < n < d— 3. We define a measure on (B(0,2R) \ D) x (0,T) by

vy (B) = / L (Y)Y
BEN(B(0,2R)\D)x(0,T)

We recall that, for a Borel measurable set E C R4+?,
v (E) = / 6(Y)™"dY.
) ENQp
By the same method as in Lemma 3.1 in [W5] we can see that the following assertion holds.

Lemma 6.1. Assume that R\ D satisfies the condition (b). Let 0 <n <d— B, X = (z,t) €
Qp, ' >1and 3R >r > b'd(x). Then

v (C(X,r)) < er®*277 < vy (C(X,7) N ((B(0,2R) \ D) x (0,T))) < "r+277,
where ¢ and ¢’ are two constants independent of X and r.

Fix ¥’ > 1 and let f € L'(v;). The parabolic maximal function M(v;F, v, )(f) of f is defined

as follows:
1 f(2)|dv, (Z
MEE v (F)(X) = S“P{fc(x;,;icf()glﬂ) =

for X € Qp. Note that M(v,f,v,)(f) is a function defined on Qp. ,

Using Lemma 6.1 and the covering lemma, we have the following lemma.

S 6(X)<r < R}

Lemma 6.2. (i) Let f € L*(v;) and A > 0. Then

N7 c -
X € Qo ME O > S [ @iy @)

(i) p>1 and f € LP(v; ). Then

LM(VJ,V;)(f)(X)PdVJ(X)Sc [ f@Prdy ).

(B(0,2R)\D)x(0,T)

Here ¢ is a constant independent of f and .

7. Boundedness of the operators on A?(Sp)

In this section we prove Theorem 3 in §1.
Proof of Theorem 3. First of all, using Theorem 2, we shall prove the boundedness of the
operator K. We choose € > 0 satisfying a — 2¢ > 0. Let f € A%(Sp) and Z € Sp.

o~
[ s [ VNIV W(E )iy
0 RA\D
T
< ([ as] | VBN IPB o2 p(2, )0y

T
< ( f ds / _§(Y)a et @=P)/p) (7, Y yal=d=1(B+2)/p=0) g 2,
0 RA\D
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where ¢ = p/(p — 1). Since
T .
/ ds / §(Y)I=1Ha+@=0)/p) 7 y)a(~d=1+(B4D)/p-) gy
0 RA\D
T
< / r — s|71+e/2gs
0

X / §(y) 11t d=B)/p) |y _ g ja(—d=1+(B+2)/p—e)+2=g¢ gy,
RAND .

and ¢(—1+a+(d—B)/p)+q(-d—1+ (8+2)/p—€) + 2 — eq > —d, we have, by Lemma 2.1 in
(W1],

. :
/ ds/ §(Y)a(=ttat(@=B)/p) (7 y)a(=d=1+(B+2)/p~€) g < 0.
0 RI\D ’

Hence, by Lemma 2.1 in [W3] and Theorem 1 in [W4],

T
[, @[] ds [ IGEDONTE - )l

IA

T
—pa—d+f
s [ ds [ IV IPOY e ay

X

/ p(Z,Y) P2 up(2)

Sp

< o /Tds [ Ve @ P etay < 11,
0 RAND P

Therefore ¢; is bound from A2 (Sp) to LP(ur).

Let a+(d—3)/p < A < 1. We saw by Lemma 5.1 that, if f is a Lipschitz function on Sp with
respect to p, then ¢1 f is also a A-Holder continuous on Qp with respect to p.

Let f be a Lipschitz function on Sp with respect to p and Z = (z,r) € Qp.

AN

T
aod @) < [Las [ WEDWITSSIE - Yy

IA

T
—d-3
es [ ds [ ITEAIMIAZ )y

T
oo as| VAEEY o2, YY)y
0 (B(0,2R\D)N{§(y)<R/2}

T
voafaf VLEDDIp(Z,Y) ™y
0 (B(0,2R)\D)"{é(y)>R/2}

Iy + Is.

A

If

Set g =p/(p—1) and n=¢g(1 ~a~ (d - 8)/p). Then

h<ay, [ VL E) () lo(Y) 4y
k=1

R4\ D)% (0,T))N{25~15(z) <p(Z,¥)<2*5(2)}

< e > (@ 16() / ~ VL E(f)(V)I6(Y)6(Y)"dY.
k=1 ((B(0,2R)\D)x(0,T))n{p(Y,Z2)<2%5(2)}

29
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Using the parabolic maximal function in §6, we have

Lz < i(zk_l)‘n—lf((B(o,zR)\ﬁ)x(o,T))n{p(Y,Z)szké(z)} VyE(H)T)IdY
10{% > G k& d+2—n

k=1 (2%6(2))"

< M v )(IVLENIS())(2).

Here we note that
{Y € (B(0,2R)\ D) x (0,T); p(2,Y) < 286(2)} C C(Z,2"%16(2))
and, by Lemma 6.3,

vy (C(2,2516(2)))

Il

/ d(y)""dY
C(Z,2*+15(z))N((B(0,2R)\D) x(0,T))

cr(25H16(2))TH2 .

IA

Lemma 6.2 yields

(Lo(Z2)™*YPdvf (2)
Qp

¢ / M@, v (VR EDI6C))(2)Pdv (2)
Qp

IA

IA

o / VL E(F) () PSY)P6(Y)~"dY
(B(0,2R)\D)%(0,T)

% / _ VEDY)PEY )PPy,
(B(0,2R)\D)x(0,T)

whence
) [ maEpretaz s [ (9 par i,
Qp (B(0,2R\D)x(0,T)

We next estimate I3. Since

T
L<en / ds / ~ VL E(F) X)Lz — yl=3dy
0 ((B(0,2R)\D) % (0,T))n{é(y)>R/2}

and 1 —a — (d— B)/p > 0, we have
L§(Z)2o—d=B)/p

<

([ GENEIPAY P ttay)
(B(0,2R)\D) % (0,T)

X (/ - §(Y)(-tretd=A)/p), _ yl—d—l—a—(d—ﬂ)/pdy)l/q,
((B(0,2R)\D)x (0,T)N{é(¥)>R/2}

whence

(7.2) I3§(Z)*P~Pe9tB47 < ¢y / IV,E(f)(Y)[PS(Y)P—Pa-d+Bgy.
1133) (B(0,2R)\D)x(0,T)

Therefore, by (7.1) and (7.2),

/QD l%¢1f(Z)|p5(Z)2P—pa—d+ﬂdZ

< IV E)Y)PS(Y)PPe=d*dy.

c13 / _
(B(0,2R)\D)x(0,T)
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We next estimate |V ¢1f|. Let Z € Qp. We write

T
Voo @) < [Cds [ IVEDONITLTWE =Yy

IA

T .
e [ do [ IVERW 2, Y) 2y

T
cwf dsf VLENW o, Y) 2y
0 (B(0.2R)\D)n{é(y)<R/2}

T

doafas [ VL ENW o2, V) dy
0 (B(0,2R\D)N{56()>R/2}

Is + 1y,

IA

in

Then

o0
h<es) [ V) ¥)lp(Z,Y) -2y
= J®AD)x (0,T7)n{2%-16(2) <p(2,Y) <2%5(2)}

< aey @@ [ IV,E(F)(¥)I6(Y)"8(Y) Y.
= (BO0.2R\D)x (0,1)"{p(Y,2)<2*6(2)}

Using the parabolic maximal function in §6, we have

ad —nd: 5 k(o | VyEN) (Y)Y
L&(Z) < gk—1) =1 J(B(0,2R)\D) x(0,T)N{p(¥,2)<2*8(2) }
36(Z2)" < 017,;:1:( ) (2k5(z))d+2‘"
cisM(vy vy IV E(HIE())(Z2).

IA

From this we deduce

/ 128(2)P6(2)~"dZ
Qp

IA

clgfn Mg, v )(IVLENIS())(2)P8(2)""dZ

IA

[ GEN@PEYHY) Y,
(B(0,2R)\D)*(0,T)

whence

E5(Z)Pre=4+847 < ¢y / VL E(F) (V) PE(Y)P-Pd+B Y.

Qp (B(0,2R)\D)x(0,T)

Since we can estimate I, in the same way as [, we conclude that
[ IVans(@pe(zy-retisaz
Qp

<

e / IV, E(F)(Y)PS(Y)P-Pa=d+Bay.
(B(0,2R)\D)x(0,T)

Using Lemma 5.1 and Theorem 2, we see that ¢; f is bounded on AZ(Sp).

Let us next estimate ¢of for a Lipschitz function f on Sp with respect to p. To do it, let
Z € Sp. Since

T
D < e [as [ OO - £y

31
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IA

5 IE)T) —ES)N2)P , \1/p
€23 / d /B(o 2R\D )

Z Y)d+2+72a

([(as [ vy
B(0,2R)\D

o ([ as ENX) ~ ERYDIP , 1/
24/ 4 /B(02R)\D )

X

IA

0(Z,Y)d+2tpa

we have, by Theorem 2 in [W4],

/ (D)D) < 624/ dur(2) / B(0.2R\D)x(0,7) |5(J;)((;f )Y_)dig{)p(az)lpdy
< ol flIG,p

We estimate IqungI. Let Z € Qp. Then
T
V@) < e[ asf ) - EGN@IEY) Sy
T
o [[as [ DO 0@

©.2r\D P(Z,Y)d+2+patd=p

IA

% (/ o(Z, Y)-—d—2+qa+q(d-,3)/p—qdy)1/‘1
o(2,Y)28(2Z)

027(/ ds/B ENY) - (f)(Z)IT’dy) 1/”p(z)—(1—a—(d—ﬂ)/p)‘

©, 2R)\D p Z y)d+2+pa+d [¢]

IA

Hence, by Theorem 2 in [W4],
(73) [ IVetafPa(zyi=e--9inaz < el fI2,,
Qp
On the other hand we have
o T
(Dl <en [ ds [ _ENE) - ED@IE )y,
T 0 B(0,2R)\D
In the same way as above we have
14}
(7.4) / l-5-¢2f(Z)I”5(Z)5(Z)”“’°°’“d+ﬁdZ < csoll fI1%.p
Qp OT

By (7.3), (7.4), Lemma 5.1 and Theorem 2 we see that ¢2f is also bounded on A2 (Sp). Thus we
see that K is bounded on A2(Sp). |

Noting that, R?\ D may not be uniform, but each pair of two points near D are joined by a
rectifiable arc v in R?\ D, which satisfies (1.3) and (1.4). Theorems 1 and 2 also hold in this case.
So we can prove that K5 is also bounded by the same method as in the proof of that of Kj.
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