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Abstract. The purpose of this paper is to analyze the system of confluent
hypergeometric partial differential equations satisfied by @, in P1(C) x P*(C)
from the view point of Gevrey asymptotic analysis and k-summability. This
system possesses the singular loci x = 0,y = 0,z = y of regular type and
x = o0,y = oo of irregular type. We treat it, near the irregular singularity
x = oo or y = oo except (z,y) = (00, 00).

1 Introduction

The purpose of this paper is to analyze the system of confluent hypergeo-
metric differential equations

0w 0w ow
xw+ym+(7—x)a—x—ﬂw—0
8w w ow
yé—y—2+x5;8—y+(7—y)@—ﬁw—0 (1.1)
8w ,Ow Ow
(m“y)axay—ﬁa—Fﬁa—y—-O

in two variables in P*(C) x P!(C) from the view point of Gevrey asymptotic
analysis and k-summability. In this paper we assume that 8,05 ,v7 — 8 —
B,8—0 —v08+ 03 ¢ Z. This system possesses the singular loci z =
0,y =0,z = y of regular type and z = 0o,y = oo of irregular type. We treat
it, near the irregular singularity £ = oo or y = oo except (z,y) = (o0, 00).
Erdélyi [2, 3] showed that the system admits solutions expressed by

/ Pt — )Pt — y) 7 etdt, (1.2)
C

where C is a suitably chosen path, and gave various series expansions of solu-
tions and monodromic relations. Furthermore Shimomura [10] gave asymp-
totic expansions of the solutions expressed by (1.2) and Stokes multipliers
using monodoromy matrices.
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Our methods are different from them. We explicitly construct formal solu-
tions and actual solutions having Gevrey asymptotic expansions through the
Borel-Laplace transform and compute Stokes multipliers by using relations
of Borel transforms. In Sections 2 and 3 we give definitions and notations,
respectively used in the following sections. We give main results with their
proofs, namely asymptotic solutions and Stokes multipliers near y = oo (z
: bounded) in Section 4. In Section 5, without proofs, we give similar re-
sults near = oo (y : bounded). In Section 6 we give the relation between
asymptotic solutions given in Sections 4 and 5 and the solutions given by
Shimomura [10].

This is the first of a sequence of papers. In the forthcoming paper we will
study the behavior near a singular point (z,y) = (oo, 00).

2  Preparations

In general, formal solutions are divergent series near an irregular singular-
ity, but we construct actual solutions which admit asymptotic expansions of
Gevrey order. This fact is described by many authors (see, e.g., Balser [1],
and Heish and Sibuya [5]). We briefly explain the definition of the asymptotic
series of Gevrey order and that of Gevrey asymptotic expansion. Let D be
a domain in the complex plane C. Denote by O(D) the set of holomorphic
functions in D. We further denote by O(D)][z]] the C-algebra of all formal
power series with coefficients in O(D). We denote by S(d, «, p) the sector

' o
{z: ]2l > p, |argz—d| < 5},

where d is an arbitrary real number, « is a positive number and p is a
non-negative number. When p = 0, we use the notation S(d, «) instead of
S(d, ,0). Also, a closed sector is a set of the form

§=58(d,00) = {z: 12| 2 p, |4 —arg 2] < 5}

with d, a and p as before
Firstly, we define the asymptotlc series of Gevrey order s.
Definition 2.1 Let s be a positive integer. The formal series
m=0

in O(D)][2]] is said to be of Gevrey order s as z — oo uniformly on a domain
D if there exist non-negative numbers Cy > 0 and C; > 0 such that

|em(w)] < Co(D(m + 1))*CT

forue D andm=0,1,2,....
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We denote by O(D)[[z]]; the C-algebra of all formal power series of Gevrey
order s in z with coefficients in O(D) as z — oo.
Secondly, we define uniformly Gevrey asymptotic expansions.

Definition 2.2 Set V = S(d,o,p) and W = S(d,a,r). Let s be a posi-
tive: number. A function f(u,z) is said to admit an asymptotic expansion
p(u,z) =37 cm(w)z™™ of Gevrey order s as z — oo in V uniformly on a
domain D in the u-space, if :

(1) p(u,2) = Y o _scm(u)z™™ is of Geuvrey order s as z — oo uniformly on
D, v

(2) for each W such that 0 < p <r and 0 < a < «, there exist non-negative
numbers Ky and Ly such that

Zcm w)z™| < K (D(N + 1)) (Lw) V||

forue D, z€ W, and for N = 1,2,‘....
If the conditions given in Definition 2.2 are satisfied, we write for short

f(u,2) ~5 p(u,z) inV uniformly on D.

We denote by A,(V, O(D)) the set of functions holomorphic in (u, z) € DXV
and having an asymptotic expansion of Gevrey order s as z — oo uniformly
on the domain D.

Furthermore, if the opening of V' is greater than ¥ (where s = 715>7 namely
20 > T, in the above definition, p(u, 2) is said to be k-summable in direction
d uniformly on the domain D, and f(u, z) is called k-sum of the power series
p(u, 2) in direction d uniformly on D. We say that p(u,z) is k-summable
uniformly on D whenever p(u, z) is k-summable in all directions but finitely
many directions (see, e.g., Balser [1]; note that we work near the point at
infinity while they do near the origin). We treat only the case £ = 1 in the
following argument. Then p(u, z) is frequently said to be Borel summable
uniformly on D and its 1-sum is said to be the Borel sum. Next, we define
the Borel transform and the Laplace transform as follows.

Definition 2.3 Suppose that o € C and that 8 € C\ {0,1,2,...}. Let D
be a domain and s be a positive number. For the product of Gevrey formal
power series Y o_o cm(u)z™™ € O(D)[2]ls, e and 2P, namely

co
p(u, z) = e*? Z Cm(u)z ™A™,
m=0

we define the formal Borel transform of it as below,

cm ()

Bp(u, ) = er+ (e m
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If the integral :
—a+too(9) |
/ | Bp(u,n)e”*"dn

«

converges, then we call it the Laplace transform. of %p(u n) in direction 0,

and denote by £(q, 9)%p(u z). If £, 9)58p(u z) 1s analytically continuable in
D x S(8,v) with v > 7, we can verify that this 'mtegml 1is the Borel sum of
p(u, 2) in the direction 6.

3 Notation

Here we employ the notation
e® .= 2™ (X e ).

By F(a,b,c; z), we denote the hypergeometric function expressed as

® ambm m
F(a,b,c;z) = Z%c—))ﬁn—z ’

and by 1Fi(a,c; 2) the confluent hypergeomtric function expressed as

1F1(a, G, Z) Z (c)(:)T)m "

m=0

Denote by L& (s) the Laguerre polynomial expressed as

0= (0 5) 5

=0

Let T'(8, 3,7, s; u) be a power series of the form

, (B)(B+8 —1+1),
(6,8 50) =3 Fy(B+8 —y+v-+1, f—y-+v+2, ),
W,y t, T

which converges for |s| < +oo, |su| < 1. Let U(3, 8,7, s;u) and V (8, 5,7, s; u)
be a formal power series given by

U(ﬁ,ﬂ’,%s;u)=2(ﬁ) B+ 1)y s 1FL (B, v — B —v,s)u
v=0

(L
and o
V(8,87 su)=> (1-B),P.(B,5,7 )",
v=0
where

P(B.8,7,5) = Z(ﬁ')"‘*(jy)fj( Ll p(g-rm)

NSR. O, Vol. 56
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4 Solutions near y = co (z is bounded)
We begin with the case where (x,y) satisfies

O<argzr <7 <argy <27, 7 <arg(y — ) < 27. (4.1)

4.1 Formal solutions

Theorem 4.1 Near y = oo (z is bounded) we have formal solutions as fol-
lows:

V. =-T(1 - B)e Py 8V (8, 8,7, 2,1/y),
Jo-mi LB+ B =7+ DI =)

Yo = F=rly=F'T(8, 8,7, 2,1/y),
g () y 7T, B,7,x,1/y)
~ 27‘('2'65,” A

Y+ = =3y P U(,@l,,B, Y, T, *1/y)'

T'(y—-p)

Proof of Theorem 4.1 We try to find a formal solution of the system
(1.1) expressed as

w = e¥xly=° Z w; iy (4.2)
Jil=20
By substituting (4.2) into
0?2 0
T 5 W 8 8w+(fy—x)——w Bw =0,
we obtain the recurrence formulae,

(b +7+ 1)(b +7—-v— c)wj.H,l — (b + 5+ 5)U)j’l + a(b +7+ 1)wj+1,l+1 =0,
ab=0,
b(b— 1+ — c)wop + awpy = 0.

By substituting (4.2) into

82

3} 0
y8y2w+ w+ (y—y)=—w—Fw=0,

oy oz Oy

we also obtain,

ala — Dwjyo — (2a(—c—1—-1)+alb+j) + by — (—c—1 - 1) — Bwji41 =0,

a(a—1) =0,
ala — Dwo1 + (—2ac+ ab+ c+va — fweo = 0.
From the recurrence formulae above, we derive the following:

Case ) a=0,b=0 —~v+1, c=0;
Case2)a=0,b=0, c=70,

39
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Case3)a=1,b=0, c=v-0.

Casel)a=0,b=0—vy+1, c=0":
If we set wo o = 6(5'—;3)m1“(ﬂ+ﬁ’ v+ 1)I(1-8) then

T(B'—~+2)
7 P(,B + ﬁl - -+ 1)F(1 ﬂ) ’ ot
— (8= v+, ~B (g /).
e T3 — v+ 2) y T, B, x, 1/Y)

Case2)a=0,b=0,c=0":
2 B8/ wi
If we set woo = IJ(T;e ok then
2miel ™

Wy = W 'U(B, 8,7, 1, —1/y).

Case3)a=1,b=0,c=vy-0":
If we set wpo = —I'(1 — #)e ?™, then

ws = —T(1 = B)e ™y eV (8, 8,7, z,1/y).

4.1.1 Gevrey asymptotic estimate

Theorem 4.2 Assume that R is an arbitrary large positive constant. Then,
(1) Y_ is a power series of Gevrey order 1 of 1/y uniformly for |z| < R.

(2) Yo converges uniformly for |x| < R and |z| < |y|.

(3) Y, is a power series of Gevrey order 1 of 1/y uniformly for |z} < R.

Proof of Theorem 4.2 (1) For all positive integer n,

B)m B =8)n-m(l —0)n m+03 -n—1
ZZ()W Jn—m( )( >< + )

m=0 j=0 —m(l)J(ﬁ/ - 'I’L) m— .7
B (V=B =B)n-m TA=F+n)l(B =n) (Dm 1 j
= T;HZO Wm Do N@ —n+j)  ()j0m,;TA-5 5"
S

m

<> IF(n - y-ﬁ'+1>i}m 5

=0

sin(8 —n+7)
sinmw(8 — n)

leHIﬁ "1+ ly=B-F —1)"™1+R)™> [T(n—j—F+1)

j=0

e (0B R) s
Spa - a-g -y {HEE }Zu“( =)

=
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1_ <g1+|6—1 )g1+R))"+1

1 THy—B—A—1] - o
<+l =8-6—1))" Y IT(n—j—p+1)
— (+[8-1)(1+R) .
‘F(]‘ ﬁ )l 1 "— 1+y—8-6"=1] i=0

1
STA=B)+h—f—F —1- A +1F -1+ B)

X |l = 8= F = 1) = (18— 1)+ BN - — 8+ D)

=0
(2) Put
— i r_ y ;
Anm) = 15mjlsnmlﬁ y+n+g+ 1|
We may suppose that
-1
14 IIB——I < ag
a('n,,m)

is valid for all n. Then we have, for |z| < R,

lUﬁAﬁ+H—v+1%
(UnlF —7+2)n
| B)lB+ 8~y + D).
ORI

> ™ 8—1 8—1
g;ol‘(m+1) <1+ﬂ'—fy+n+m+1)"'(1+,8’—'y+n+2)

(BIn(B+B —7+1), N <1 + _‘!fn;flnl))
Wn(B@ =7+2)n |4z T(m+1)

BB+ —7y+1), i (agR)™
m=0

1B B+ —v+n+1,6 -y+n+2,71)

X

IN

S ORCEETS) T(m +1)

(BIn(B+8 =7+ Dn| oo

ST 0.0 =712 |©

Since
(B)n41(B+8"'—v+1)n+1 |ea,oR
lim (Dn+1(B' =v+2)n+1 -1
n—oo I (B (B+L —7+1)n leaoR ’
(1)n (B —v+2)n

the convergence of Y, follows immediately.

(3) Put »
ﬁ(n,m) = min h"'ﬁ,—n_'"j]'

0<jsm—1
We may suppose that

g 4
T ks ki RPN
/B(n,m)
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is valid for all n. Then we have, for |z| < R,

CARCESESI PP
< (ﬁ’)n(ﬁéf)n%%)n g%l“(ﬂ fn:qz))lf((;y ﬂﬂl::)+m) m
< (ﬂ’)n(ﬂ;l—)nv+1)n ;I‘rrﬁ-l < vf;’[f;z;:)(l ﬁj.ﬂ_/@z:nﬂ
< [@nlZ 1, ir(mz (o w+g(7:m?+n|)”
< [(@0(2 ~r+ 1 5 L
S Gy AR D M CER R

4.2 Gevrey asymptotic solutions

We construct actual solutions which have asymptotic expansions of Gevrey
order 1 through the Borel-Laplace transforms of the formal solutions Y_ and
Y,. Also we can find that Yj is equal to the Borel-Laplace transform of the
solution Yy (Theorem 4.1).

Theorem 4.3 We have the following explicit Borel transforms of Y., Y, and
Y,.
s A I'it—-g ’ ,
(VBE)(=,0) =—1:§—-—5—§<1 o)L F (B, — 5 (1+0)a)
F+p —y+1HI'(l - p)
L@ —~+2)I(g)
x VP YR (B+ B — v+ 1,2+ 8 — v (1+v)z)

2miel ™ _ a1 ,
Ry AR TR G A A CR DR

To compute the Borel transforms of Y_, Y, and f/)r, we use the following
propositions.

(2)B(Yo)(x, v) =& P

(3)B(Y:)(z,v) =

Proposition 4.1 Let A be a parameter. Then

fors) G)n
F )\ __1\nn .
1Fi(a, c; As) nEO T+ 1)), (A= 1)"s"1 Fi(a+n,c+n;s),

1Fi(a,c;As) =A CZ T _l_c)ln)(l — M) Fi(a,c—n;s).
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The proof of Proposition 4.1 is given in Erdélyi [4].

Proposition 4.2 We have
(1 — e / u P (4 — ) ™edu
c(0)

— _(_1)16—,3’7ri(1 /Bl) F(l . 6 ) (IB,(].) l)mL(ﬁ' - 1)( )

Here the path of integration and the branch of the integrand are chosen in
such a way that they have the following properties:

(1) C(0) is a loop which starts from u = ocoe™™, encircles u = 0 in the
positive sense and ends at u = ocoe™.
(2) The branch of u!=™F (u — z)™ is taken such that

argu =, arglu —z) =
at the end point u = ooe™ of the path of integration.

Proposition 4.2 can be found in Erdélyi [4] and Shimomura [10].

Proof of Theorem 4.3 As for (1), using Proposition 4.2, the relation
between the B-function and I'-function and the integral representation of
1F1(8,7 — B'; (1 + v)z), we have

B(Y_)(z,0)

oo 1
= (1 - )1+ o) 1;2—% 1()i)7;§7m1“ﬁ(l +ﬂ7)z -

1 a0\ l—-m—pg' MU
x (—1 —v) /C(O)u (u—z)"e"du
B'N-1(1 y-B'—-1 )Y =B = 8)n
U= (k) g;ommun Clm+nty—F)
1 _ \ntm n—p3" _ m
X (=1 —v) /C(O)u (u —z)™e"du

— BNt 1 )81
SRS 7y v ey AUl >3

n=0 m=0
X (—1— v)”+m/ u P (0 — )™ du
0(0)

(] — BN — sy —
S ) LB (v ﬂ 5’ (1+v) /G(O) / —1-v)su—o)}"
X Z —T-zl—!{(—l —v)(1 = s)u} v P11 — s)1FF _le“dsdu

B(B+m,y—p—08 +n)
(Dm(Ln
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F(l )O+W”ﬁllmf”%”EEWW—ﬁ%1+w@@

=(1 - e(ﬁ'))
_ra-p¢)
T(v-p)

As for (2), using Proposition 4.1, we have
B(Yo)(z,v)
_ o @-pml B+ — 7+ VI(1 - ) Z (BNB+06 —y+1)
LB —~v+2) W =y + 2L+ 5)
x g TSR (B4 B~y + 1, ﬁ —7+l+2;x)
o8/~ il (B+B —y+V)I(1=05) 54 !
I8 — v+ 2)I'(8)

As for (3), using Proposition 4.1, we have

(1 4+ )P R (8,7 — B (1 +v)z).

%(i}:’.)(m,’l})

= 2mie”™ (B =7+ 1)l

Ty = pr(B) - z (1), —v)o? L (8,7 - 8 — s z)
2miel ™

=15 =@ GO TIRG,y — 85(L+ )a).

By explicit formulae, the singular points of %(Y )arev=—1and v =0,
and those of B(Y,) are v = —1 and v = 0. Therefore we can consider the
Laplace transforms of B(Y_) and B(Y,) except one direction. So we see that
Y., Y,, Y+ are Borel summable by Laplace transforms.

Theorem 4.4 (1) Y_ is Borel summable except for the positive direction of
real axis.

(2) Yo is Borel summable in all directions.

(3) Y. is Borel summable except for the negative direction of real axis.

We construct actual solutions which have asymptotic expansions to the
formal solutions uniformly for z through the Laplace transforms of B(Y.)
and %(f@)

Since SB(Y ) is singular only at v = —1 and v = 0, we can see that
L1 91)( (Y_)) is integrable in the direction for #; = 7. Here the branch of

e WB(Y_)(x,v) is taken such that
argv=m, arglv+1)=m

at the end point v = co. Also, for 6 € (0,27), £(_1,6,)(B(Y_)) is defined in

the sector 3
T . T

— < -7t < —

5 <arg(e”"yv) <

NSR. O., Vol. 56

F(B+6 —y+1,8 —v+2;(1+v)x).
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ie.,
3 )
?7r-91 <argy < g—~91’

because exp(e™™yv) tends to 0 as v tends to infinity. Using the fact that
e~ WB(Y_) ~, 0asy — oo and by Cauchy’s integral theorem, L1 (BY)
is analytically continuable to a function, noted Y_(z,y), in the sector

7r<ar <57I'
g S ABY = 5

where
Y_(z,y) 2 Y.
Since ‘,B(Y+) has singular points only at v = —1 and v = 0, we can see
that £, 92)(% (Y)) is integrable in the direction for 6, = 0. Here the branch
of e=¥*B(Y.)(x,v) is taken such that :

argv=m, arglv+1l)=m

at the end point v = co. Also, 2(0,92)(58(?4_)) is defined in

T<ar (e™™ v)<3ﬂ‘
g S U YU T

ie.,
3= 5w ‘
- — 0y <argy < - — 0,.

The function 2(0,0)(% (?4_)) is analytically continuable to Y, (z,y) in the sec-
tor

7(<ar <7ﬂ-
5 < argy < —,

where .
Y (z,y) >~ Y,. |

Theorem 4.5 Assume that R is an arbitrarily large positive constantv. Then,

A

Y_ ~q Y_
3
uniformly for |x| < R as y — oo through the sector |argy — 7| < — 5 and

Y+ at} Y_|.

uniformly for |x| < R as y — oo through the sector |argy — 2m| < 3;
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4.3 Stokes multipliers

Considering £0,0427)(B(Y4))(x,y), we can show that £(042r)(B(Y))(z,y)
is defined in the sector 5 < argy < 5 in a similar way. Let Y, be analytic
continuation of £(012x) (B(Y,))(z,y) in the sector =t <argy < &

We note the following proposition in order to compute Stokes multipliers.

Proposition 4.3 (Relation between B(Y_) and B(Y,))
BY,)(xz,v) = —(1 — ePNB(Y_)(z,v)

Proposition 4.3 immediately follows from Theorem 4.3 and the property
of the I'-function.

Theorem 4.6 We have Stokes multipliers between the system of solutions
(Y_,Yp,Y,) in the sector {y : £ < argy < 3£} and that of solutions (Y_,Yp,Yy)
in the sector {y : 3£ < argy < 3}:

) 1 0 (1—e0P)(1-el)
(Y.,Y,Y,)=(Y_,Y,,Y,) {0 1 0
: 0 0 1

Outline of the Proof of Theorem 4.6
We would like to obtain the relation between the system of solutions
(Y_,Y,,Y,) and that of (Y_,Yp,Y,). We compute lim,_g 2(0,,,+€)(ﬁ3?+) -
2(0,7,_5)(%}7+). Note that the path of integration is distributed as in Figure
1.
argv =m+¢€
arglv+1)=3r—¢

arg(v+1l)=m—¢

argy =m—¢

Figure 1

Then, in the sector {J < argy < 3—2”-},
~ co(el+e)t) .
Y, = / e VB (Y, )dv
0
oo(e(vr—e)'i) L
= / e VB(Y,)dv
0
oo(e(afr-—-s)i) o oo(e(w—-e)i) o
+ ( f e " B(Y, )dv — / e BV, )dv)
-1

-1

, Oo(e(-zr—s)i) o
=Y, — (1 —e#)) / e B(Y. )dv
-1
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is satisfied for an arbitrary small € > 0. Using Proposition 4.3, we have

5 , ) oo(e(vr—s)i) L
Y, =Y, +(1—-e0P)(1—ef ))/ e VB (Y_)dv
-1
=Y, + (1 -1 - ey

for an arbitrary small € > 0. Thus we obtain

) 10 (1— e(v—ﬁ’))(l — e(ﬂ’))
(Y_,K],Y_l_) = (Y_,%,Y+) O 1 O
00 1

5 Solutions near z = oo ( y is bounded)

5.1 Formal solutions

In the same way as in section 4, we can obtain the following results.

Theorem 5.1 Near x = oo with bounded |y|, we have formal solutions writ-
ten in the form

A~

Xy =-T(1 - BeP"zf"e"V(8,8,v,y,1/z),

’ F f— F —f
= e(ﬁ_ﬁ )i (6 + ?‘(6 Z_:_ll_)z)(l 16 )yﬂ—7+1$—ﬁT(IB’ IBI’ Y Y, 1/:6)’

X_= 27T’i6ﬂ7rir_(’ylt'ﬂ‘—)x_ﬁU(ﬂ) /817 Y Y, —"1/1‘)

Proposition 5.1 We have

Xo

(1 — e u "™ (u — y)™etdu

= —(1)'e (L - (L - B) 5 L)

Here the path of integration and the branch of the integrand are chosen in
such a way that they have the following properties.

(1) C(0) is a loop which starts from u = ocoe™™, encircles u = 0 in the
positive sense and ends at u = coe™. .
(2) The branch of u=™=A(u — y)™ is taken such that

argu =7, arg(u—y) ==
at the end point u = coe™ of each path of integration.

Proposition 5.1 can be found in Erdélyi [4] and Shimomura [10].
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5.1.1 Gevrey asymptotic estimate

Theorem 5.2 Assume that R is an arbitrary large positive constant. Then,
(1) X is a power series of Gevrey order 1 of 1/z uniformly for |y| < R.
(2) Xo converges uniformly for |y| < R and |z| > [y|. :

(8) X_ is a power series of Gevrey order 1 of 1/x uniformly for |y| < R.

5.2 Gevrey asymptotic solutions

We construct the actual solutlons which have asymptotic expansion through
the Borel-Laplace transforms of the formal solutions X_, X, and X,. We
can find that X is equal to the Borel-Laplace transform of the solution Xj.

Theorem 5.3 We have the explicit Borel transforms of X'_, XO,X+ as fol-
lows :

/v _F<1 — /6) y—B-1, 8- / A .
B(X 1) (y,u) ~m(1 +u) P R (B, y = B (L + w)y);
N . I1-4
BXo) ) = LTI )
x uf TP R(B - -+ 1,2+ 8- (L+u)y);

o 2mriePm
BX Ny, w) = Y1 4 u) P F(B Ay — B (1 + w)y).
In the same way as of the case y = oo (z is bounded), the singular points

of B(X,) are w = —1 and u = 0, and those of B(X_ ) are u = —1 and
u = 0. Therefore we consider the Laplace transforms of B(X,) and that of
%(X ) except one direction. So we see that X+, Xo, X _ are Borel summable
by Laplace transforms.

Theorem 5.4 (1) X_ is Borel summable except for the negative direction
of real axis.

(2) Xo is Borel summable in all directions.

(3) X, is Borel summable except for the positive direction of real azis.

We construct actual solutions which have asymptotic expansions to the
formal solutions uniformly for y through the Laplace transforms of %(X;)
and %(X ). Since QS(X.,.) is singular only at u = —1 and u = 0, we can
see that £_14,) (%(X+)) is integrable in the direction for 6; = m. Here the

branch of e~**B(X,)(y,u) is taken such that
argu=m, arg(lu+1)=m

at the end point v = co.

Since %(X_) has singular points only at © = —1 and u = 0, we can see
that £(,6,)(B(X_)) is integrable in the direction for 6, = 0. Here the branch
of e B (X_)(y,w) is taken such that

argu=m, arg(lu+1)=m"
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at the end point v = co. Also, we can verify that X is an analytic function,
that £_1.(B(X,))(z,y) can be defined in {z: % <argz < ¥}, and that
2(0,0)(%()2_))(93,31) can be defined in {z : 3 < argz < 3£}, employing an
argument similar to that of the case y = (:c is bounded). Let X, (x,y) be
the analytic continuation of 2(_1,ﬂ)(%()2’+))(x,y) in {z:-% <argz < ¥}
and X_(z,y) the analytic continuation of 2(0,0)(%(X_))(x,y) in{z: 7% <
argz < I}
Consequently the following theorem can be proved.

Theorem 5.5 Assume that R is an arbitrarily large positive constant. Then,

X, ~ X+ |

uniformly for |yl < R as y — oo through the sector |argz — | < 37”;
X_ ~ X

uniformly for |y| < R as y — oo through the sector |argz — 2w| < §—27—T

5.3 Stokes Multipliers

Let X_(z,y) be the analytic continuation of £, rramy(B(X))(z,y) in {z
=3 < arga: < 2} and X, (z,y) the analytlc continuation of £, os2m (B(X)(z,9)
in {m - <argz < Z}.

Theorem 5.6 (1) Between the system of solutions (X_, Xy, X4) in the sec-
tor {z : £ < argz < %} and that of solutions (X_, Xo, X.) in the sector

{z:—% <argz < 3}, we have

1 0 0
(X_, X0, X1) = (X_, X0, X4) 0 10
(1—er=)1—e®) 0 1

(2) Between the system of solutions (X_, Xy, X,) in the sector {x : —% <
argz < 2} and that of solutions (X_,Xo, X) in the sector {z : =3 <
argz < 5}, we have

e(_ﬂ)

(X—7X07X+> = (X—7X07X+) 0
1

OO =
O~ O

Theorem 5.6 is proved in a similar way to that of the proof of Theorem
4.6. B
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6 Relation to the solutions given by Shimo-
mura

Shimomura [10] gave the system of solutions of (1.1), as follows.
We begin with the case where (z,y) satisfies (4.1), namely

O<argz <m<argy < 2w, w < arg(y — z) < 2m.
Denote the integrand of (1.2) by
flz,y,t) = tﬁ+ﬁ’—7(t _ x)“ﬂ(t _ y)_ﬁ'et,

which possesses the branch points at ¢t =0, z, y.
Consider the integrals

== [ fay,t)dt,

Cy)
20 = (1 - e(v—ﬁ—ﬁ,))—l f(l’,y,t)dt,
Cc(0)
2= (1—e®) flz,y,t)dt
C(=)

Here the paths of integration and the branch of the integrand are chosen in
such a way that they have the following properties (cf. Figure 2(a)):

L] m . m

(a) Figure 2 (b)

(1) C(a) (a =0,z,y) is a loop which starts from ¢t = coe™™, encircles ¢ = a
in the positive sense and ends at t = coe™.

(2) C(z) lies over C(0) and C(y) lies under C(0) in the t-plane.

(3) The branch of f is taken such that

argt =m, arg(t —z) =m, arg(t—y) =7 (6.1)

at the end point ¢ = coe™ of each path of integration.

Hereafter we treat the integrals near x = oo obtained by analytic continuation
along a curve which starts from a point satisfying (4.1) and is included in
the domain |z| > |y|. Furthermore, under the condition

RB+06 —v) > -1, R(=p)> -1, R(-F) > -1

16
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we can write these integrals in the form

24 =/ fdt, 29 =

where the branch of f is taken such that (6.1) is satisfied at —oo, and the
paths are located as shown in Figure 1(b) when (4.1) is satisfied.

fdt, z_ =/ fdt
v

0

Theorem 6.1 Near y = oo,
Y. =(1-e¥) 1z,
Yo =2 — 24y
Yy =(1—e®)z+eD - e('*“ﬁ"ﬁ'))z+.

Proof of Theorem 6.1 We can verify Theorem 6.1 using Proposition 4.2
and the following propositions.

Proposition 6.1 Assume that none of a,c and c — a is an integer. Then,
we have

/ ta—l(s __ t)c——a—letdt
(—s,—0,+s,+0)

_ F(G)F(C - a’) —a a—c)\ c—1
=T (1 — e (1 — )5 Fi(a, ¢, 8),

where (—s,—0,+s,+0) denotes Pochhammer’s double loop which starts from

5, encirclest = s, t = 0,t = s, t = 0 in the sense of each sign attached
S

before and returns to 5, and the branch of the integrand is taken in such a
s
2.

way that argt = arg(s —t) = 27 at t = £ in the case of args = 2m.

Figure 3

°0

The proof of Proposition 6.1 follows immediately from the integral rep-
resentation of 1 Fi(a,c, s).

Proposition 6.2 Assume that none of a,c and c—a is an integer. Then we
have '

/ t (s — 1) tetdt = e (1 — N (e — 1)1 Fi(a—c+ 1,2 — ¢, 8),
C(s,0)

where C(s,0) denotes a contour which starts from t = coe™™, encirclest = s
and t = 0 in the positive sense and ends at t = coe™, and the branch of the
integrand is taken in such a way that argt = 7,arg(s —t) = 0 at the end
point t = ooe™.
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The proof of Proposition 6.2 can be found in Shimomura [10].

The following theorem is similar to that of Theorem 6.1.

Theorem 6.2 For the solutions given in Section 5,

X+ =24,
Xo = el (5 — 2), .
X = e(—ﬂ){e(v—ﬂ—ﬁ’)(l — e(ﬁ’)) Zo+(1— e(v—ﬁ’—ﬁ’)) 20}
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