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Abstract. In this paper, we treat several conditions concerning the measurability of norms. Some
of this note continue with the result obtained in [13]. We solve a few open questions in [13]. Moreover
we reinvestigate the Gauss cylindrical measures by correlating it with Kuo’s conjecture.

1. INTRODUCTION

The notion of measurable norms was introduced by Gross [4]. This gives a condition that the Gauss
cylindrical measure is extensible to a measure. It plays an important role in the measure theory on
infinite dimensional Hilbert spaces. Afterwards, another notion of measurable norms was introduced

by Dudley-Feldman-LeCam [2]. These two notions are not equivalent for a general cylindrical measure.

There are several conditions around these two notions of measurable norms, and we research them in
[13]. In Section 4, we solve two open questions in [13]. ‘

In the next section, we present a new definition about Gauss cylindrical measures which was
introduced by Baxendale. There we research them and compare them with the Gauss cylindrical
measure defined in original sense. '

Finally in Sections 6 and 7, we present Kuo’s conjecture and study some facts around it.

2. PRELIMINARIES

Let X be a locally convex Hausdorff space over the real field R , X’ its topological dual, (-,-) the
natural pairing between X and X’ and B(X) the Borel o-algebra of X. Let {{1,... ,&n} be a finite
system of elememts of X’. Then by E we denote the operator from X into R"™ mapping = onto the
vector ((z,&1),...,(x,&)). A set Z C X is said to be a cylindrical set if there are £1,...,&, € X'
and B € B(R"™) such that Z = Z~!(B). Let Cx denote the collection of all cylindrical sets of X.

A map p from Cx into [0, 1] is called a cylindrical measure if it satisfies the following conditions:

(1) m(X) =1
(2) Restrict p to the o-algebra of cylindrical sets which are generated by a fixed finite system
of functionals. Then each such restriction is countably additive.

By putting pe, ... ¢, (B) = w(E~1(B)) each cylindrical measure y defines a family of Borel proba-
bility measures.

Next we introduce two kinds of measurable norms defined on a Hilbert space. Let H be a real
separable Hilbert space with norm |- | = 4/(-,-). Let F be the partially ordered set of finite dimen-
sional orthogonal projections of H and F'D(H) the family of all finite dimensional subspaces of H.
P > @Q means PH D QH for P,Q € F. Also a subset E of H of the form E = {z € H;Pz € F}isa
cylindrical set, where P.€ F and F is a Borel subset of PH.

First, we define the canonical Gauss cylindrical measure, and define two measurable norms.

Definition 2.1. The canonical Gauss cylindrical measure is the cylindrical measure « from Cg into
[0, 1] defined as follows:
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If E={x € H; Pz € F}, then

. L \m "
F) = (—-) / e_l’g— dm,
V(E) =) |,
where n =dimPH and dz is the Lebesgue measure on PH.
Remark 2.2. If H is an infinite-dimensional space, then -y is finitely additive, but is not o-additive.
n 2 2
In general, we denote by v*(Z) = (L) e~ 5 dz the Gauss cylindrical measure with parameter
VvV 2wt F

t(0 < t < c0). 7" is the caonical Gauss cylindrical measure. In this paper, we denote the canonical
Gauss cynlindrical measure by 7.

Definition 2.3. A semi-niorm || - || in H is said to be (G)measurable or y-measurable if for every
€ > 0, there exists Py € F such that v({z € H;||Pz|| > €}) <e for VPLP; and P € F.

This concept was introduced by Gross in 1962 [5]. It was the starting point of the successive
research concerning the abstract Wiener space. In Definition 2.3 , we can replace v with p which is
any cylindrical measure defined on H. Such a case we say that || - || is u-(G)measurable.

We can redefine the above concept as follows:

Definition 2.4. A semi-norm || - || is said to be pu-(G)measurable if for every € > 0, there exists
G € FD(H) such that u(N. N F + F+) > 1 — ¢ whenever F € FD(H) and F1G, where N, = {z €
H;||z|| < €} and F* is the orthogonal complement of F.

The following measurability was introduced by Dudley-Feldman-LeCam in 1971 [2].

Definition 2.5. A semi-norm || - || is said to be p-(D)measurable if for every € > 0 there exists
G € FD(H) such that u(Pr(Ne) + F1) > 1 — ¢ whenever F € FD(H) and F1G, where Pp is the
orthogonal projection of H onto F.

Let E be the completion of H with respect to the norm || - || and ¢ the inclusion map of H into E.
If || - || is 7-(G)measurable, then the triple (i, H, E) is called an abstract Wiener space. The norm |} - ||
is continuous and p-(D)measurable if and only if 4(u), where i(u) is the image of p under the map <,
is countably additive.

It is easy to see that (G)measurability implies { D)measurability. But the converse is false generally
([10], this is the 1984-Example).

We define the chraracteristic functions and the continuity of cylindrical measures.

Definition 2.6. The characteristic function ¢ of a cylindrical measure p on H is defined by

- i(€,x)
P(€) L "> p(dz)
where £ € H.

Definition 2.7. Let y be a cylindrical measure on H. u is said to be continuous if the characteristic
function of p is continuous.

Proposition 2.8. ([9, Proposition4.4.1]) Let u be a cylindrical measure on H. Then the followings
are equivglent.

(3) p is continuous.

(12) If the generalized sequence {&,} C H tends to zero, then we have

lim pg, ([-6,6]) =1
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for some (each) § > 0.
(41) Suppose limg €4 = 0. Then it follows that pe, weakly converges to do.

Next we inrtoduce the definitions of Banach spaces of type2 and of cotype2.

Definition 2.9. Let B be a Banach space, {£,} be a sequence of independent random variables, each
of which is distributed by the standard Gaussian law, and {z,} be a sequence in B.

)

2
(i) B is of type2 if (300, |zal® < oo implies the almost sure (a.s.) convergence of the series
o0

n=1 mngn *

%S . . oo 1/2
(i1) B is of cotype?2 if the a.s. convergence of the series 3., z,&, implies (3252, |zn /) <00

3. SEVEN CONDITIONS

In this section we recall seven conditions that are similar to measurable norms.

Theorem 3.1. Let H be a real separable Hilbert space with norm |- | = +/(-,-), p be a cylindrical
measure on H, || -|| be a continuous norm defined on H, B be the completion of H with respect to || - ||

and i be the inclusion map from H into B. Moreover, let Y be the bidual B” of B with weak*-topology
o(B"”,B’) and j be the inclusion map from H into Y. Then the following seven conditions satisfy the
relations: (i) = (i1) = (i11) = (W), (1) = () = (v)  (vi) = (vii)

If u is continuous, then the following condition satisfy the relations: (#i1) = (vi) and (iv) = (vii)
(7) For any € > 0 there exists N € N, where N is the set of all natural numbers, such that n >m > N
implies ‘

u({z € H;||Paz — Pral| > e}) <e

for every sequence {P,} C F such that P, C Ppy1(Vn € N) and P,, converges strongly to the identity
map I (we write P, S I).
(%) || - || is @ p~(G)measurable norm.

(#41) There exists a sequence {P,} C F with P, /' I, which has the property that for any € > 0 there
erists N € N such that n > m > N implies

u({z € H;||Prx — Pnz|| > €}) <e.

(iv) There exists a sequence {Pn} C F with P,, /' I, which has the property that for any € > 0 there
exist N; € N and n. € N such that N > N. and n > n. implies

u({z € H; sup |[[Pez|| > N}) <e.
1<k<n

() || -1 s @ p-(D)measurable norm.
(vi) i(p) (i.e. poi™t) is extensible to a measure.
(vit) j(u) is extensible to a measure.

Proof. (i) = (it) (see Baxendale [1, Theorem 2.4])
(4¢) = (#4t) (see Baxendale [1, Theorem 2.4])
(4it) = (iv) (see Harai [8])
(v) & (vi) (see Dudley-Feldman-LeCam |2, Theorem 2])
(é47) = (iv) (see Yan [15, Theorem 3.1])
(iv) = (vii) (see Yan [15, Theorem 3.3] and Gong [3, Theorem 1.1])

Remark 3.2. ([2]). The above conditions (1), (ii), (ii), (v) and (vi) are equivalent for -y.
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4. ||-|l; AND || - ||, ARE pia-(D)MEASURABLE
We constructed four norms (|| - ||;, || - la, |+ |l and || - ||,) and two cylindrical measures (ua and
1b), and we examined the relation with seven conditions in Theorem 3.1 in [13]. Here we study two
open questions in [13]. So we recall the definitions of || - ||;, || - || 4, #a and .

Let e, = (0,...,0,1,0,...), where 1 appears in the n-th place. It is clear that {en},_;,  1is a
complete orthonormal system (CONS) on £2.

We define two norms || - ||; and || - ||, as follows:

Let {an}n=1,2,.,. be the sequence of non-negative real numbers such that a1 < a2 < a3 < ... and
Qp, — 00 as m — oo. Denote by I'y the convex hull of the set {+an(e1 +e2+...+en);jn=1,2,...},
B; the open unit ball of #2 and U; = I'y + B;. It is obvious that U is open, convex, absorbing and
circled. we denote by ||z||, the gauge of Uy at z € £2. Then | - ||, is a continuous norm defined on £2.

We define ||z||, = 1/3202 , (22)?, where = 300 | ne,. Then || - ||, is a continuous norm defined
on £2.

We define two cylindrical measures p, and up as follows:

Let (£2)" be the algebraic dual of £2, equipped with its weak topology o((£2)", £2), and (-, -) be the
natural pairing (¢2)* x £2 — R. Then a cylindrical set in (¢2)* and in ¢2 can be described as

Z=A{z € (®);((@,&), . (2,&)) € D}

and

| Z={ze (&), (:¢)) € D}
where &1,... ,&, € £2 and D € B(R™), respectively.
We choose an algebraic basis J of £> containing {en},_; o . Define a and b € (£2)" as follows:

(a,en) =1forn=1,2,...,
(a,ea) =0for ea € T\{€n}n1a. .
(ben) =nforn=12,...
(b,ea) =0 for ea € T\{en}n_19, .

Let 64 and &, denote the Dirac measures at the fixed points a and b in (¢£2)" respectively. Then
the induced measures p, and up on £2 are defined by

Ma(Z) = 6a(2),
po(Z) = 8u(Z), respectively.

We know that || - ||; and || - |, satisfy the condition (#i:) for pa in [13, Theorem4]. So if pa was
continuous, they would fulfill (v) and (vi) for pa. But pa is not continuous. So we have to prove that
|- 1l; and || - ||, are pa-(D)measurable directly. Though s, has no relevance to open problems, we will
prove that uy, is not also continuous.

Proposition 4.1. pa is not continuous.

Proof. Let pa be restricted to the linear span of the —1%-(61 + - +en). Let || - ||,2 be the £2-norm.
k(3

Then we have
e1+---te n 1
2 = =y [ =0
n% 22 nz \/ﬁ

when n — c0. On the other hand,

(Ma)_'}B_(el+"'+en) = 6(8’—1%-(31_‘_-"8”)) = 5—7;-‘7 - 511%’

n4 n
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so that it follows from Proposition 2.8 that u, is not continuous. O
Proposition 4.2. uy, is not continuous.

Proof. We consider the restriction of up to the linear span of the %en. Then we have

1 1
I-eall, =4/ 55 =5 =0
n £2 n
when n — oo0. On the other hand,

(b)) 1e, =O(b,Le,) =01,

so that up is not continuous. 0O
Theorem 4.3. || -||; is pta-(D)measurable.
Proof. Let E be the completion of £ with respect to the norm || - ||;, and j be the inclusion map

of £2 into E and denote by j’ the dual operator of j. Let (-, )z be the natural pairing E’ x E — R.
EL @~ 5E

To prove that the norm || - |}, is pa-(D)measurable, it suffices to show that j(ua), the image of pa
under the map 7, is o-additive on (E,Cg).

Claim. a vanishes on j'(E').

Proof of Claim. Suppose y € E’ is given. We have to show that (a, j'(y)) = 0. Since (a, es) = 0 for

all eq € J\ {€n}tn=1,2,..., we may assume j’(y) is of the form Zﬁ;l Ape,, where Ay, A, ... ,An € R.
Now define a sequence {z™}—1,2,.. in £2 by
1
" =ey,

2 =e1 + ez,

z™ =€+ +em,

Then (eg, ™) =1 for m > k, so {j'(y),z™) = Zﬁl:l A, for all m > N. Moreover, since {j'(y),z™) =
(y,5(2™)) g, we obtain (y, j(z™)) g = 22;1 A, for all m > N. Therefore,

N
(1) Jim (,5(@™)p =) An.
n=1

But by constructions of {a,,} and Uy, we know that a,,z™ € Uy, so that |[z™|; < 1/am. The
assumption oy, — 0o as m — oo implies ||z™||; — 0 as m — oco. Therefore,

(2) mh'_x)xlooj(x )=0 in E.

Thus by (1) and (2) we deduce that ZN A, =0, and hence (a, j'(y)) = ZN

n=1 n—1 An = 0. This proves
our claim.

Let ¢ be the canonical map of (¢2)" into (E’)*. Then our claim implies i(a) = 0, so that i(da) is
the Dirac measure 6 on (E’)*. Therefore, j(u,) is extendable to §y on E, so it is o-additive on (E,Cg).
]

Theorem 4.4. |- ||, is pa-(D)measurable.
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Proof. Let F be the completion of £2 with respect to the norm || - ||,, and j be the inclusion map
of £2 into E. Denote by j' the dual operator of j. Let (-,-); be the natural pairing E' x E — R.
BL@y~25E
Now define the sequence {z™}m=1,2,.. in £2 by
xl =e1,

x2 = e1 + ey,

™ =e1+ -+ em,

For any ¢ > 0, there exists V € N such that

15@™) ~ 5™ ls = [3emir + -+ enlla = 1/ Shomss ()’ S € forevery n>m > N.

Since {j(z™)} is a Cauchy sequence, there exists € E such that
. Cmal
Jim_Jlo — 3™l =0,

Suppose that y € E’ is given. We assume j(y) is of the form Eﬁ;l A,e,, where A, Ay,... AN €
R. Then (ex,2™) = 1 for m > k, so (j'(y),z™) = Y0 | A, for all m > N. Moreover, since

G (y), ™) = (y,3(=™)) g, we obtain (y,3(z™)) g = 27]:;1 Ay, for all m > N. Therefore,

. N
®3) W, 2)p =) _ An.
n=1
N
Let 4 be the canonical map of (¢2)" into (E')*. Since (a,e,) = 1, we have (a,j'(y)) = ZAn.
n=1
Therefore,
N
(4) (ia),y) = ) An.
n=1

Thus by (3) and (4), we have
(5) (i(a),y) = (v, 2)p-

The set {y € E';j'(y) = Zﬁ;l Anen, N €N, A, € R} is dense in E’. Then (5) and the definition of
a induce that i(a) is continuous at zero in E’. So we have (i(a),y) = (y,z)g for all y € E'. Therefore,
j{ua) is extendable to 6, on E, so it is o-additive on (E, Cg). a

5. ANOTHER (GAUSS CYLINDRICAL MEASURE

The comparison between the Gauss cylindrical measures by Baxendale and the original one was
researched in [14]. Here we concretely construct a cylindrical measure on £2 using the same a as we
introduced in Section 4, and we denote it by v,. We mention the definition of vy, later. It is the Gauss
cylindrical measure in the sense of Baxendale but it is not the original Gauss cylindrical measure. In
this section, we study the seven conditions in Theorem 3.1 by comparing v and va.

First we recall the Gauss cylindrical measures by Baxendale.

Definition 5.1. ([1]) Let E be a separable Banach space.
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(a) A Borel probability measure XA on R is Gaussian if either

(2) A =do
or
(¢¢) There exists t > 0 such that for B € B(R)

A(B) = \/_/e = dzx.

(b) A cylindrical measure u is Gaussian or u is a Gauss cylindrical measure if every one dimensional
distribution p¢ (i.e. the image of y under £ : E — R) of u is Gaussian on R.

(¢) A Gauss measure on E is a Borel probability measure on E which restricts to a Gauss cylindrical
measure.

Remark 5.2. 4 and 7! are also the Gauss cylindrical measures in the sense of Baxendale.

Definition 5.3. Let E be a real separable Banach space and u be a Gaussian cylindrical measure on
E. We say p has variance A if there is a self adjoint A € L(E, E') such that ¢(u, £) = exp{—(&, A¢)/2}
for all £ € E'. Here A is called self adjoint if (¢, An) = (n, A¢) for any &,m € E'. Let L(E,E') be the
family of bounded linear operator from F into E’ and ¢(u,€) is the characteristic function of p.

Let a be the element of (¢2)" such that
(a,en)=1lforn=1,2,...,
(a,eq) =0 for eq € J\{en}n=1,2,...-

Let yg be the canonical Gauss measure on R, 4} be the measure induced by a function f : R —
(€2)i (t — ta). i.e. 7} is the image measure of yg under f. Define a cylindrical measure v, on £? by
’Ya(Z) = WZ(Z)a where Z = {:l: € (e2)*1 (($7§1)7 oo 7(:17,571«)) € D}1 Z = {x € 62’ (((I), 51)7 ey <$;§n)) €
D}, &, ..., 6p€ffand DB (R™). Then 4, is a Gauss cylindrical measure in the sense of Baxendale,
but is not a canonical Gauss cylindrical measure. Further, it does not coincide with 4 and does not
have a variance [14].

The following results are shown in the similar way as Theorems 4.3 and 4.4.

Theorem 5.4. | - ||; is va-(D)measurable.
Theorem 5.5. || - ||, is va-(D)measurable.
Next we consider a norm || - ||, again and study the relation of vy, and || - ||5.

Maeda showed that || - ||5 is pa-(D)measurable and not pa-(G)measurable in 1984 [10]. This example
gave the fact that the measurability of Dudley-Feldman-LeCam differs from that of Gross.

Let {Bn},—1 2. be a sequence of non-negative real numbers such that Bay = 0 for m = 1,2,...
and {B2m—1}m=1,2,.. be an increasing sequence such that B2,,—1 — oo as m — oo. Denote by I's
the convex hull of the set {£83,(e1 + ez + -+ +e,);n = 1,2,...}, By the open unit ball of £2 and
Uz = 'y + By. It is obvious that Uz is open, convex, absorbing and circled. We denote by ||z||, the
gauge of Uz at = € £2.

Theorem 5.6. || - || is va-(D)measurable.
Proof. It can be shown by the similar method of Theorems 4.3 and 5.3. o
Theorem 5.7. || - ||, is not va-(G)measurable.

Proof. It suffices to show that there exists a positive number g9 > 0 such that for every G € FD(£2)
there exists F' € FD(¢2) satisfying F1G and v,(eoUz N F + F+) < 1 — &.

Let G be an arbitrary finite dimensional subspace of £2, and {¢'}j=1,2.....» be a CONS in G. Then
each ¢/ is of the form & = 3772 la’e, where o) € R for j =1,2,...,nand i = 1,2,.... Then we
have the following matrix A:

1 1 1
Q... O . Oy
A= : :
n n
aq (&Y an+m
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where m is chosen such that rank A = n. Suppose N > n 4+ m. Then the next equation has its
solution in R?t™,

zy
: "a%NH
(6) A Tn = :
: —O0GN 41
m1’),-{—’!1’1,
By construction we know that af —0asi—ooforj=12,...,n Therefore, for every § > 0, we

may choose a positive integer N(> n + m), N sufficiently large, such that the equation (6) has the
solution 1 = M1,... , Tntm = Nn+m Satisfying

(7 | Joax Imi| < 6.

Now choose a number § > 0 in (7) such that

m+n+t-+ Mpm +1
(8) 2 3 3
(m)"+(m2)" +-- + (Inm)” +1
Let 7 =me1+ - + Mnimentm + €2N41 and F be the one dimensional subspace of £ generated
by 7. (&) =01for j=1,2,... ,n, so that F1G.
Put ¢ = I, where | - | is the Hilbert norm of £2, then

>1
5

(a ¢)_ (aaT) M +n2 4+ ngm +1
,Q) = =

= .
T b g2+ 1)

Let 1 = f(:¢) 715——;6“% drthen 0 <e; < % Put g0 = min(ey, %)

Now we show that (a,¢)¢ & oUs. Suppose this is not the case. Then (a,¢)¢ € £oUs implies
that (a, $)¢ may be written (a,¢)p = X + Y, where X € ggI's and Y € g¢B;. Since X,Y € £2, X
and Y are of the form X =} °, Xse; and Y = ) o0, Yie;, where X;,Y; e Rfor i =1,2,.... Then
(a,¢)p = oo (Xi + Y;)e; and by (8) we have

Xon +Yan =0

and
At apm+1

1
X +Y: = > —.
2N+1 2N+1 T2+t e 4 1 3
The fact X € gol'2 implies that Xony = Xany1. Therefore,
771 +"72++77n+m+1
Mm%+ + Mnsm® + 1

On the other hand by (8),

| =

—Yon41 }= | Xon+1| = |Yan| < €0 <

MmAmt s+ opm + 1
m2+ -+ Npgm® +1

and since N is sufficiently large, we reach a contradiction. Therefore we have (a, ¢)¢ & eoUs.
By (a,$)¢ & eoUz, we obtain ¢¢ ¢ eoUs for any ¢ > (a,¢). Since (ya)g =720 ¢~

e 1
a(eoUs N F + FL) = (1) ,(colUa N F) < 1—2 /
¢ (a,¢) V2T

and the proof is complete. o

?

ol =

1
—Yoni1 ' > 3" [Yon41] >

m2
e z2de=1—21<1—¢1 <1-—¢p,
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We conclude that Gauss cylindrical measures of Baxendale contain not only the canonical Gauss
cylindrical measure and +* but also another cylindrical measure. And they do not have a particular
property that the conditions (¢), (é%), (4i%), (v) and (vi) in Theorem 3.1 are equivalent. This property
characterizes the Gauss cylindrical measures in the original sense.

6. KUO’S CONJECTURE AND ITS PERIPHERY
In 1973, Kuo offered the following question:

“Let || - || be a y-measurable norm in H, does there exist an orthnormal basis {e,} of H such that
ooz llenl® < oo 77

In 1980 Kwapien, Szymanski and Tarieladze solve this problem affirmatively (5].

In this section, we give three examples. In the examples, we show that there is an orthonormal
basis {e,} such that - | llen||* = 400 for y-measurable norms. The first and second examples are
well-known. The third example contain a result of Goodman when a = 1/2. We could not get the
paper of Goodman, so we give the proof and generalize it.

Example 1. Let A be a Hilbert-Schmidt operator. Put ||z|| = |Az| for z € H, then || - || is 7-

measurable. Moreover, it is clear that > o, llea|l® < co and its value is constant for all orthonormal
basis {en }.

Example 2. Let C[0,1] denote the set of R-valued functions z(¢) in the unit interval [0, 1] with
z2(0) = 0. Let C’ consist of all R-valued functions f such that f is absolutely continuous, f(0) =0
and f’ € L?[0,1]. Define an inner product {-,-) in C’ by

1
(f,9) = /0 f'(t)g' (t) dt.

Then C’ is a Hilbert space and C’ C C[0,1], and C[0, 1] is a Banach space with the supreum norm
||| = supp<t<1 |#(t)|. Hence (i,C’, C[0, 1]) is an abstract Wiener space. ||-| is a measurable norm for
any Gauss cylindrical measures on C’. Let {e,(t)} be an orthonormal basis in C’ defined as follows:

en(t) = V2{1 — cos(n — %)’Rt}.

(n—3)m

Since |len|| > v/2, it follows that 3.0, |len|* = +oo.

Example 3. For (z1,%2,... ,%n,...) € £2, put
(z1, 22, ... s Zn,...)|| = supn™ |z,
Then if oo > 3, we have that | - || is y-measurable. Moreover, if a > 3, there exists an orthonormal

basis {e,} such that 3 |len||> < 00, and if & = 1, there exists an orthonormal basis {e,} such that
2
3 fleall® = oo. |
Proof. If || - || is y-measurable when a = %, then || - || is 7-measurable when o > —;— Moreover, the
existence of {e,,} such that Y27, [len[* < 00 or 3%, |len||” = oo is shown by taking an orthonormal

basis {€n }n=1,2,..., where e, = (0,...,0,1,0,...), 1 appears in the n-th place. Therefore here we show
that || - || is y-measurable when o = 3.
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Note that the following inequality holds:

k
1 2
—x /2d _ o—k2/2
e z>vV1—e .
[«k \/27!’

In fact, put £ =rcos8,y = rsinf. Then we have

k 2 k pk ' /2 ok
/ e 24y | = / / e~ @ 240 qy > /W / e 2rdrdg = = (1 - e_kz/Q) ,
0 o Jo 0 0 2

and this proves the above inequality.
Fix € > 0 and put

AR Ty
aN = ——e ¥ /Pdr (N=1,2,...).
kl;[l\/—s\/ic‘ V2T

Since the series Y52, e=*"¥/2 converges, the infinite product [[32, V1 — e-<"#/2 also converges. The
sequence {an}n=1,2,... is decreasing and it follows from the above inequality that

an > Hvl—e—az’“/2>0
k=1

for all N = 1,2,.... Thus, the infinite product [[;; f:{% \/%é‘mz/ 2dz converges, so that there
exsits N € N such that n > m > N implies

n evk
H / 1 e~ 2y 1

— < E.
k1 —eVE V2T
Let P, be the projection from £2 onto the linear span of {e1,...,en}. Then, for any n >m > N

y({z € 2 : ||Ppx — Ppz|| <e}) >y({z € £?: |ap| <evk k=m+1,...,n})

n evVk 1 2

= H / ——e™ 2y
k=m-1 —evk 2m

>1—e¢,

and this implies the y-measurability of || - ||. 4

7. THE EXTENTION TO A BANACH SPACE OF TYPE 2 OR OF COTYPE 2

In the preceding section, we see that the y-measurability of a norm || - || implies the existence
of orthonormal basis {e,} in H such that 3 % |len|* < co. When Banach spaces completed with
respect to || - || is of type 2 or of cotype 2, we have the following theorems.

Let {£,} be a sequence of independent random variables, each of which is distributed by the
standard Gaussian law.

Theorem 7.1. Let H be a real separable Hilbert space, || - || be a y-measurable norm defined on H,
B be the completion of H with respect to || - || and i be the inclusion map from H to B. If B is of
cotype 2, we have y HGnH2 < oo for every orthonormal basis {e,} in H.

Proof. Since ||- || is 7-measurable, i(-y) is extendable to a measure on B. For any orthonormal basis
{en} in H, the distribution of Y oo, i(en)&n is i(y) and > oo i(en)&n almost surely converges. Since
B is of cotype2, we have 32 |le,||* < oo. O

Theorem 7.2. Let H be a real separable Hilbert spce, ||-|| be a norm defined on H, B be the completion
of H with respect to || - ||, © be the inclusion map from H into B. If B is a Banach spce of type 2,
then the following statements are equivarnt:
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(a) ||| s y-measurable.
(b) There exists an orthonormal basis {e,} in H such that 322 |leal® < +oo.

Proof. It follows from [5] that (a) implies (b). We prove that (b) implies (a). By assumption, there

exists {e,} such that Y -, lli(en)||> < co. Since B is of type?2, it follows that S0 L i{en)é, almost
surely converges. Since the distribution of Y o>, i(e,)&, is i(7), || - || is y-measurable. o

REFERENCES

[1] P. Baxendale, Gaussian measures on function spaces, Amer. J. Math. 98(1976), 891-952.
[2] R.M. Dudley, J. Feldman, and L. LeCam, On semi-norms and probabilities,and abstract Wiener spaces, Ann. of

Math. 93(1971), 390-408.

[3] F. Gong, A note on generalized Gross and Minlos theorems, Dirichet forms and stochastic process (Beijing,1993)

171-173, de Gruyter, Berlin, 1995.
L. Gross, Measurable functions on Hilbert space, Trans. Amer. Math. Soc. 105(1962), 372-390.

]
[6] S. Kwapien and B Szymanski, Some remarks on Gaussian measure in Banach spaces, Probab. Math Statist.

Vol.1(1980), 59-65.

[6] H.H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math. 463, Springer-Verlag, Berlin, 1975.
[7] K. Harai, Measurable norms and related conditions in some examples, Natur. Sci. Rep. Ochanomizu Univ. Vol.54,

No.1(2003), 1-7.

[8] K. Harai, The correction of “Measurable norms and related conditions in some ezamples”, Natur. Sci. Rep. Ochan-

omizu Univ. Vol.54, No.2(2003), 11.

[9] W. Linde, Probability in Banach Spaces—Stable and Infinitely Divisible Distributions,John Wiley and Sons. Chich-

ester 1983.

[10] M. Maeda, Some ezamples of measurable norms, J. Math. Anal. Appl. 98(1984), 158-165.
[11] M. Maeda, Generalized rotationally quasi-invariant cylindrical measures, J. Math. Anal. Appl. 114(1986), 100-110.

] M. Maeda, K. Harai and R. Hagihara, Some ezamples and connection between cylindrical measures and measurable

norms, J. Math. Anal. Appl. 288(2003), 556-564.

[13] M. Maeda, K. Harai and M. Shibuya, Some remarks on seven conditions approzimating to measurable norms, Sci.

Math. Jpn. 59, No.3(2004), 495-504.

[14] A. Takizawa, The comparsion between Kuo’s definition and Bazendale’s on Gauss cylindrical measures, Master

thesis (in Japanese), 2004.

[15] J.A. Yan, Generalizations of Gross’ and Minlos’ theorems, Lecture Notes in Math. 1372, Springer-Verlag, Berlin,

(1989), 395-404.

GRADUATE SCHOOL OF HUMANITIES AND SCIENCES, OCHANOMIZU UNIVERSITY, TOKYO 112-8610, JAPAN
E-mail address: k-co@dog.email.ne. jp

11



