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ABSTRACT. We consider a compact metric space (X,d) such that X is a S-set (8 > 0). In
this space, we define a-Riesz capacities and investigate the relationships between these capacities
and Hausdorff measures.

1. Introduction

Let RY be the N-dimensional Euclidean space. The Bessel capacity is important as a way of
characterizing certain small subsets of RY. The following estimates for the a-Bessel capacity Ba,p(Br)
of a ball B, of radius r are well-known (cf. [7], [1]).

Theorem A . Letl <p< oo and a > 0.
(i) If ap < N, then there exists a constant C > 1 such that
CHrN =P < Bay(By) < CriV=er
for all B, of radius r.

(ii) Ifap= N and 0 <7 < 1, then there exists a constant C > 1 such that
1 1
C(log ;)1—10 < Bap(Br) < C(log ;)H’
for0<r <.
On the other hand the Hausdorff measure provides another approach to investigate small subsets of

RYN. Let h(r) (0 < h(r) < +c0) be an increasing function, defined for » > 0, and satisfying h(0) = 0.
Let E C RY. For any 4, 0 < § < oo, a set function AJ is defined by

AS(E) = infi h(r;),
Jj=1

where the infimum is taken over all coverings by countable unions of balls B(z;,r;) satisfying r; < 4.
And the value defined by
Aw(B) = lim AL ()
—

is the Hausdorff measure of E with respect to the function h.
The relationships between the Bessel capacity and the Hausdorff measure have been investigated. The
upper estimate for the a-Bessel capacity in term of the Hausdorff measure is as follows (cf. [1]).

Theorem B . Let 1 < p < 00, 0 < ap < N and E C RN. Set h(r) = rN=°P for ap < N and
h(r) = (log, %)1“3” for ap = N. Then there is a constant C > 0 independent of E such that

Bop(B) < CAL(E),

and moreover, Ap(E) < co implies Bq p(E) = 0.
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The set function Ag° is often more useful than the Hausdorff measure itself. It is called the Hausdorff
content or the Hausdorff capacity.

The lower estimate for B, in term of Hausdorff content is also stated in Adams and Hedberg [1] as
follows;

Theorem C . Letl1<p<oo,0<ap< N andp = % and let h be an increasing function on [0, co)
such that h(0) =0, and

/1 h(r) p—iic—iz<oo
“Jo \rN-orp r )

Let E C RY be compact satisfying AS°(E) > 0 and choose §, 0 < § < 1, so that

h(d) < AP (E).

8 p'~1 1 p'—1
h(r) dr ,_1/ 1 dr
H= L T AR(E)P L a
[ ) e [ (ots)

Then there is a constant C > 0, independent of h and E, such that

Set

W (E) < CHP™'Bayp(E).

In particular By p(E) = 0 implies Ap(E) = 0.

In this paper we consider a compact metric space (X, d). Since the diameter of X is finite, we suppose
that the diameter of X is R. Furthermore, suppose that X is a 8-set (3 > 0), i.e., there exist a positive
Radon measure p on X and positive real numbers by, by, Rp such that

bir? < pu(B(z, 7)) < borP

for all point € X and all positive real number r < Ry, where B(x,r) stands for the open ball of radius
r centered at z. Such a measure y is called a S-measure on X.
Fix a f-measure y. We may assume that

bir? < w(B(z, 7)) < w(B(z,r)) < borP (1.1)

for all r < max{3,h}R by choosing different constants by, b if necessarily. Here h is the constant in
Theorem E in §2.

In this spsce X we will find the estimates corresponding to Theorem A. Change of variables is effective
in RY but we can’t directly apply them in a metric space (X, d). We also note that the Bessel capacity
with order « is comparable to the Riesz capacity with order « in a fixed ball of R¥Y.

Let 1 <p<ooand 0 < a< . Let E be a subset of X. We denote by M (E) the set of all positive
Radon measures on E. Then we will define the (o, p, u)-Riesz capacity Cq p,, on a B-set X. We consider
an a-Riesz kernel on X x X, i.e.,

Ka(way) = d(xvy)a_ﬂ (0 <a< ﬁ)

Let f be a non-negative, u-measurable function and let v € M™¥(X). We define a-Riesz potentials
K.f(z), and Kov(z) by

Kof(z) = /X Koo, 9)f)duly) ze€X,

Kov(z) = /X Ko (z,y)dv(y) z e X.

For the kernel K, on X x X we also define the (a, p, u)-Riesz capacity Cq p ,(E) of a set E.
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Definition 1.1. Let 1 < p < oo and F be a set. Denote
F(Ko,p,p, B) ={f € LP(p) : f 20, Kaf =21 0n E},
and
Cap,u(E) =inf{/ fPdp : f € F(Ka,p, m, E)}.
If F(Ka,p, 1, E) is empty, we regard Co p u(E) as oo.

By the properties of a S-set and using distribution functions we obtain following two theorems corre-
sponding Theorem A, which will be proved in §4.

Theorem 1. Let0<a<fBandl <p< g Then there exists a constant C > 1 such that
C~ipPor < Capu(B(zo,m)) < Crh—ar
for allzg € X and 0 < r < R.

Theorem 2. Let 0 <a< 8,1 <p < oo, ap = and by, by be numbers in (1.1). Furthermore put

2by 1 1 1 1
m = erlﬁ, N2 = e?  and C:—“ min{;n—l, %, %}. (12)

Then there exists a constant C > 1 such that

_ R R _
C™'(log 5)1 P < Cop,u(B(o,7)) < C(log *2—7:)1 ?,

forallzg € X and 0 <r < (R.
Next we define the s-Hausdorff measure of a set E (s > 0) by
HE(E) = lim H3(E) =supH3(E),
d-—o00 §>0
where )
HI(E) = AS(E) for h(r)=r°.

We next consider the upper estimate for the a-Riesz capacities in term of the s-Hausdorff measure
corresponding to Theorem B. The upper estimate is given as follows.

Theorem 3. Let0 < a< (3,1 <p< g— and by be the number in (1.1). Further, let E C X and set
h(r) = rP=2P for ap < B and h(r) = (log %)1_1’ for ap = B. Then there exists a constant C > 0,
depending only on «, 3, p and by, such that

CapulE) < CAL(E) (1.3)

where 6 = R for ap < 3 and § = (R with ¢ in (1.2) for ap = 8. Furthermore, if ap < B and Ap(E) < oo,
then Cap u(E) = 0.

We next state the correspondence to Theorem C. Frostman’s lemma is usually proved in Euclidean
space. But Mattila also has proved, in a compact metric space, the theorem corresponding to Frostman’s
lemma (cf. [6, 8.17 Theorem]). By using this, we shall prove the following theorem in a metric space.

Theorem 4. Let 1 <p <00, 0 < ap < B and put k = 8 —ap+ ¢ for e > 0. Suppose that E C X is
compact. If Cop ,(E) =0, then H¥(E) = 0.

Theorems 3 and 4 will be proved in §5.

15
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2. Maximal functions on a (-set X

Hereafter we assume that a compact metric space X is a [8-set such that the diameter of X is R.
Two [-measures are equivalent in the following sense (cf. [5, Proposition 1 on p.30]).

Proposition D . Let y1 and ps be B-measures on X. Then there is a constant C > 1 such that
C iy < pe < Cpa.

Proposition D is proved in RY. But it’s proof is available by small change under our assumptions.
Fix a B-measure p on X. And we see by (1.1) that the measure p satisfies the doubling condition in
the following sense;

Proposition 2.1. There is a constant b such that for any x € X andr >0
w(B(z,2r)) < bu(B(z,7)). (2.1)
We use the following covering theorem of Vitali type in [3, Theorem (1.2) on p.69].

Theorem E . Suppose that E C B(z, Ry) for some Ry > 0. If a family {B(z-,7)} of balls covers E,
then there exists a countable system of disjoint balls { B(xj,r;)} such that {B(zj, hr;)} covers E for some
h>1.

We next define the maximal function on the 8-set X and mention some poroperties of it. We define
the maximal function M f of a locally p-integrable function f by

1
MIG) = e Lo

and, for 0 < o < (3, the fractional maximal function M, f by

|f(W)|du(y)

1
M, f(z) = sup —————s— d .
o) =sp— s [ 1Id0)

We also define a maximal function and a fractional maximal function Mv, M,v of a positive Radon
measure v on X by

1
MV(fE) - ig% ,LI,(B(CL',T')) -/B(:v,r) dy(y),
1
M, = —_— dv
IO = e o o™

The following propositon can be shown by the usual method.

Proposition 2.2. (i) If f € L*(u) and A > 0, then

al{e € X« Mf(@) > AD) < Siiflleror
(i) If f € LP(u) (1 < p < 00), then M f € LP(u) and
1M Lo < Cllfllzre-
(iii) If v € MT(X), then
p{ze X : Mu(z) > A}) < %/du.

Here C' are constants independent of f, A and v.
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Proposition 2.3. If f € L} (u) and A > 0, then

plz € X+ Mauf(@)> 2D < O(5, [ Ifldw=,
where C' is constant independent of f and .
Proor. For any A > 0 we put
Ex={zeX : My,f(z) > A},

Let x € Ey. Then there exists a ball B, with center z and

1
A< (e —
< (M(Bw)ﬂ_a /Bz \fldp,

1 B
<5 [ a7

By Theorem E there is a disjoint subfamily {By,} of {Bz}zer,, Bz; = B(z;,7;) such that

and hence

E, C UjB(iBj, h'l‘j).

Hence, by (1.1)

K(EN)

IA

w(J;(B(zj, hr;)) < ZN(B(CCJahTJ)) < thBZT

< hﬂzﬂ (zj,75) <C’Z>\/ |fldu) == 22
where C = Z—fhﬁ. Since {Bg, } is disjoint, we have

<Z§ / Vs < (5 [ 111wy

whence

W(Bx) < O /X \Fldu)7Es

3. Capacities and potentials

In this section we will define capacities and potentials for a general kernel and state a fundamental

properties of these.

By a kernel on X x X we mean any non-negative symmetric function K on X x X, such that K(-,y
is lower semicontinuous on X for each y € X, and K(z,-) is u-measurable on X for each z € X. Le
be a non-negative, y-measurable function and let v € M™*(X). We define potentials K f(z), and Kv(z

by
_ /X K(@,y)fW)dpy) ze€X,

Kv(z) = /X K(z,y)dv(y) zeX.

For a kernel K on X x X we also define the LP-capacity Ck p,.(F) of a set E.

17
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Definition 3.1. Let 1 < p < oo and E be a set. Denote
F(K,p,u, BEy={fe€LP(u) : f>0,Kf>1o0n E},

and
Ciepu(E) = inf{ / Pl f € F(K,pu E)}. (3.3)

If F(K,p, p, E) is empty, we regard Ck p . (E) as co.
By the usual method we see that the LP-capacity has the following properties.

Theorem F . Let 1 < p < oo. Then
(i) E1 C Ey implies Cxp . (Er) < Crpu(E2),
(ii) for any set E, Cx pu(F) =inf{Ckp.(G) : ECG, G open},
(iil) B =U, E; implies Ckp,u(E) < 3252, Crp,u(Ej),
(iv) for a decreasing sequence {F;} of compact sets,

CK,p,u (ﬂ;‘ile) = Jlggo CK,p,u(Fj)a

(v) for an increasing sequence {E;},
Crppu(Uje 1 Bj) = JI}EEO Crp,u(Ej)-
A capacity satisfying the properties (i), (iv) and (v) in Theorem F is called Choquet capacity. Thus,
by the capacitability theorem of G. Choquet [2] we see that following theorem holds.
Theorem G . Let 1 < p < oco. Then all Borel sets E are capacitable for Cx p ., i.e.,

Crpu(E) = sup{Ckpu(F): FCE, F compact}
= Inf{Ckpu(G) : GDE, G open}.

We say that a property holds (K, p, p)-q.e., if it holds on X except a set of (K, p, u)-capacity zero.
The following propositions can be proved by the same methods as Theorem 2.3.10, Theorem 2.5.1 and
Theorem 2.5.3 in [1].

Proposition 3.1. Let 1 < p < oo and E be a set. If Ckp,(E) < oo, then there is a unique fg €
LA (X, ) such that Kfg > 1 (K,p,p)-g.e. on E and

/X(fE)pdN = Ck pu(E).
We call the function fg the capacitary function of E, and K fg the capacity potencial of E.
Proposition 3.2. Let 1 < p < oo and F be compact. Then
O pu(F)? = sup{v(F) : v € MF(F), ||Kvl|ry <1}
The capacity of a compact set F' can be represented by means of a positive measure on F.

Proposition 3.3. Let 1 < p < oo and F be compact. Assume that Ck p  (F) < co. Then there is a
measure vp € M1 (F) such that

ve(F) = [ (Kve) di = Cicpu(P).
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4. (a,p,p)-Riesz capacities for balls

The main purpose of this section is to prove Theorem 1 and Theorem 2 which estimate the (a, p, 4)-
Riesz capacity of balls.
To do it, we begin with elementary formulas.

Lemma 4.1. Let v € MT(X).
(i) If 0 < A < B, then

/ d(z,y)* Pdu(y) = (8- ) / BN (B, 1))de + Pu(Blo, 1)
d(z,y)<r 0

for all r satisfying 0 <r < R.
(ii) If A <0, then

/ d(z,y)*Pdv(y) = (6 - N) /R t* Py (B(, t))dt — r*Pu(B(z,r)) + R*Pu(X)
d(z,y)>r T

for all r satisfying 0 <r < R.

Proor. Let 0 < A < 8. We can write
=N [ P uB@na = G- [ 00 ( / du<y>> at
0 0 d(z,y)<t

— A [ A=B=1g44 | 4
B-XN) /d e ( /d (m,y)t t) v(y)

- / Az, 9)*~Pdu(y) - Pu(B(z,r).
d(z,y)<r

This leads to (i).
Next let A < 0. In a similar way, (ii) follows from

(B=2A) / "’ Py (B(x, t))dt

R
= —A A=p-1 dv d
(BN / . < / " <y>) i
R R
_ . A—fB—1 » A—B—1 v
(I@ )\){ d(z,y)>r (/d(w,y)t dt) 4 (y) * /d(w,y)<r (fr ! dt) ; (Z’J)}

= /d( - d(z, y) Pdv(y) + TA*ﬁV(B(ac,r)) — R/\_BZ/(X).

The A-Riesz potentials for balls are as follows;

Proposition 4.2. There are constants C1, Co > 0, depending only on X\, B and by, by in the number in
(1.1), such that for allzo € X and 0 <r <R

(1) Ccrlrt < / d(zo,z)* Pdu(z) < Cir*, 0<A<B.

d(zg,z)<r

(ii) / d(zo, ) Pdu(z) < Cor*, X <O0.
d(zg,z)>r
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Proor. The assertion (i) follows from (1.1) and Lemma 4.1, (i). To prove (ii), let A < 0. By Lemma
4.1, (ii) we have

R
/ d(z, z0)*Pdu(z) < (8- Nb, / tA1dt + by R
d(zo,z)>r r
-
= bgﬁ X (RA - 7')\) + bzR)‘
S A ; Bb27")\>
which is the assertion (ii). o

We next consider the estimate corresponding Proposition 4.2 in the case where A = 0. We shall apply
this proposition to Theorem 2.

Proposition 4.3. Let p > 1, 0 < a < B and by, by be the numbers in (1.1). Furthermore, let n1, n2 be
the numbers in (1.2).

(i) If0<a <ma < b< R, then
b
/ d(zo, ) Pdu(z) > Cslog —.
a<d(zo,z)<b a

(i) If0<a<mnea <b< R, then
b
/ d(zo, ) Pdu(z) < Cylog —.
a<d(zg,z)<b a

Here constants Cs, C4 are independent of a, b.

Proor. We first show (i). By using a distribution function we have

/ d(zo, ) Pdu(z) = /oo p({z:a < d(zg,z) < by N {x: d(zo,z) P > t})dt
a<d(xzg,z)<b 0

/ba p{z:a < d(zo,z) <t~ F})dt

—B

Y%

- /b: {u(B(@o,t™#)) — p(B(xo,a))}dt

b
> b1/ t=1dt — bzaﬁ/ dt > biflog — — bs.
-8B bR a

The inequality ma < b implies by < %blﬁlog %. Hence
1 b b
/ d(zo, ) Pdu(z) > =bBlog — = Cslog —,
a<d(wo,z)<b 2 a a

where C3 = 1b:.
We next show (ii). Since

/ d(zo, z) Pdu(z)
a<d(zg,z)<b

= /Ooo p({z: a < d(zo,z) < b} N {xz: d(zo,z)™? > t})dt

bR
/0 p({z : d(zo,x) < b})dt +/b p({x: d(zo, ) < t_%})dt

-8

IA

-8

b—F a
bgﬁ/ dt+b2/ 1dt = by(1+ Blog 2)
0 b—B a

IA
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and nga < b, we have

/ d(zo,z) Pdu(z) < 2b2610g9 = Cy4log 9,
a<d(zo,z)<b a a

‘where Cy = 2bs 3. O

The capacity Cy p,.(B) for a ball B is estimated as follows;

Proposition 4.4. Let 0 <a < f,1<p< g and p’ = 1%. Then there is a constant Cs > 0 such that
for allr >0

1-p
9l-po(a—B)p min{ (L( 52 d(zo, x)(a—ﬂ)p’d'ul(m)> , 2(5—-a)P0;—PTﬁ—-aP} (4.1)
T0,T)Z4T

1-p
< Capu(B(zo,r)) < 2(=ep (/ d(mo»m)(a—ﬁ)p/dﬂ(m)> .
d

(zo,2)>2r

Proor. We first show the upper estimate of Cyp . To do this, let 2y € X and assume that
[ Kavper(u) < 1 for a measure v in M*(B(zo,)). Then

’

p
||Ka1/“ip'(‘u) 2 /d (/—d(may)a_ﬂd’/(y)) dﬂ(x)
(zo,z)>2r B(zo,r)

'

—
v

p
= ( / <2d<xo,x>>““ﬁdv<y>> e
d(xg,z)>2r B(zg,7)
= Q(Q—ﬁ)P’y(B(xO’T))P,/ d(z0, 2) A% dp(z)
d(zg,z)>2r

whence
—1/p/
v(B(zg,r)) < 9h—a (/ d(xo,a:)(o‘_ﬁ)p'du(x)> .
d(xg,x)>2r

Taking the supremum over such measures v, we have, by Proposition 3.2

~1/p'
Ca,p,u(B(fCO,"”))% <207 (/d d(xo,iﬁ)(a_ﬁ)p,d/i(w)) )

(zo,z)>27

which leads to the right-hand inequality of (4.1).
In order to prove the lower estimate of Cy p 4, let v be the measure p restricted to B(zo,r — €) and

normalized, i.e.,
1

/f(y)dvr(y) = m/}g(mo’r_e) f(y)du(y),

for a sufficient small ¢ > 0 (¢ < 7). Then we have

’

P
/ ( / d(x,y)a‘ﬂdvr(y)> dpu(z)
d(zo,z)>2r B(xzg,r—¢)

l 2To. T a—f3 > ? z
‘/d(zo,a:)ZZT (/B(a:o,r—s)(zd( o >) d T(y)) d,u,( )

= 9WB—a)p / d(zo, )PP gu(z)
d(xo,x)>2r

IA

21
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and, by (1.1) and Proposition 4.2, (i),

’

P
/ ( / d(ay)a—ﬂdur(y)) du(z)
d(zo,x)<2r B(zg,r—¢)

’

p
r ' _
< wBE I [ ( [ ey ﬁdu(y)) du(z)
d(zo,z)<2r B(z,37)
< (0i27PrP) P (C1(3)*) by(2r)P = Cor 3T,

where Cs = (3b7228C1)? by2°. Therefore

’ 7 ’ ap—p3
ey < 2max(20 [ dao, )0 du(), Cor ¥,
To,xT) 24T

whence

R
’ ’ »’ —‘L, B—c
L2 [|Kavillg 277 min{2e = ( [ daayeor du(m>) , Gy 717,
d

(z0,z)>27
Thus, again by Proposition 3.2 we have

Copu(B(20,7)"? > Cop,u(B(o, 7 — €)"/?

—-1/p'
’ ’ — /. Boap
> vh(Blao,r - )27 win(2e~? | | d(zo,2) P du(a)| ,C5 Y rFE)
d(xg,z)>2r
’ 7 o ——lr B-ap_
= 271/P'9a= 0 min{ / d(zg, z) PP du(x) , 2672 P rr e ],
d(wo,z)>2r
which leads to the left-hand inequality of (4.1). o

ProoF oF THEOREM 1. Let zg € X and 0 < r < R. We first show the left-hand inequality.
Noting that (o — B)p’ + 8 < 0 and using Proposition 4.2, (ii), we have

1-p
/ d(mo’x)(a~ﬁ)pldﬂ(x) > (C2(2T)(c"_ﬁ)p'+6)1*? = C;_Pgﬁ—aprﬁ-ap,
d(xo,x)>2r

where Cs is the number in Proposition 4.2, (ii). Hence, by Proposition 4.4, we have
Copu(B(xo,r)) > 217P2=AP min{C, ~Pof~op oB-c)pCi—Pypb-ar (4.2)

where C5 is the number in Proposition 4.4.

We next show the right-hand inequality. Let ||[Kqv||;(,y < 1 for a measure v in M¥(B(zo,7)). If
L7 (u)

x € B(zg,r) and y € B(zo,7) then d(z,y) < 2r. Hence, by (1.1),

7

y4
12 Kty 2 [ ([ e fane)| dutw)
(1) B(wo,r) \JBlwomn)

= 2@ (@=BP (B (xq, 1))? w(B(xo,7))
> 2(°‘_ﬁ)plb1ravp_—_lﬁz/(3(x0, ’I‘))p/.

Thus

—_ 12 pg-ap
v(B(zo,7)) < 2°7%0,7 1% .
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Taking the supremum over such measures v, we have, by Proposition 3.2,

—ap

—— ~—P
Copn(Blao, )7 < 2770, +55%,
whence
Capu(B(@o, 7)) < 200~y ~Prher, (4.3)
By (4.2) and (4.3) we have the conclusion. O

Proor oF THEOREM 2. Note that r < (R implies 2r;7 < R. By Proposition 4.4 and Proposition
4.3, (i) we have

1-p
- R ,_
d(xo,w)_ﬁd,u(y)> < Z(ﬂ“a)p(}g P(log 5;)1 P,

Cop,u(B(zo, 7)) < o(B—a)p (/
d

(zo,x)>27

where Cj is the number in Proposition 4.3.
Similarly, by Proposition 4.4 and Proposition 4.3, (ii) we have

Y

1-p
Copu(B(zo,7)) 21=79(a=B)P min{ ( / d(zo, x)‘ﬁdp(:c)) , 2W—eroi—ry
d(zo,x)>27

v

R -
2177228 min{(Cy log Z)l_p, 98- Ci—PY,
where (5 is the number in Proposition 4.4. The inequality r < 5}% implies (log 2%)1"” < 1. Hence

R
Copu(B(wo, 7)) 2 21772 PP min{C; 7, 2~ 7P} (log 5

By Theorem 1 and Theorem 2 we can obtain the following consequence.
Corollary 4.5. Let 0 < oo < 3. Then
(i) fl<p<?Z, then Copn(X) < oo and Copnu(B(z,r)) >0 for everyz € X and 0 <r < R.
(ii) If ap = B, then Cqop,u(B(z,7)) > 0 for every z € X and 0 <r < (R for ¢ in (1.2).

5. Hausdorff measures and («,p, 1)-capacities

In this section we give upper and lower estimates, Theorem 3 and Theorem 4 for a-Riesz capacities
in term of s-Hausdorff measures in §1. To prove Theorem 3 we prepare the following lemma.

Lemma 5.1. Let 0 < a< B, 1 <p< g, p = p% and v be a measure in MY (X) such that Kqv €

Lp/(u). Then there exists a non-negative, lower semi-continuous, non-increasing function kg on R¥ such
that Kov € LP (u) for the kernel Ko(z,y) = ko(d(z,y)) and

. ) CK (B(:l!,’f‘))
1 YEopp\ AL T) N (5.1
5o (i'EE Copu(B(,7)) )

Proor. For each integer j we put

¢;(y) = d(z,y)* P dv(z).

/2“j <d(z,y)<2-i+

Then we note that K,v(y) = Z ©;(y).

j=—oco

23
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Step 1. We first claim that there is a non-decreasing sequence {a;} such that a; > 1,a; — cc as j —
o0

o0
oo and Z a;jp; € 5 (). In fact, by the Lebesgue convergence theorem we have klirgo Il Z il e () =
. v

Jj=—o0
0, and hence there is an increasing sequence {k;} C N such that || Z @il Lo () < 27%. Now, set a; =i
J=k;
for k; < j < kiy1 and a; =1 for j < k1. Then we have
oo o0 ki+1—1
I Z ajSDjHLP’(p,) < |l Z aj‘Pj”Lp’(m + HZ Z aj‘Pj”Lp'(”)
j=—o0 j<ki i=1 j=k;
oo oo
< |l Z (JDJHLP'(“) +Z’L|| Z ‘PJ'HLP’(M
<k =1 j=ki
b .
< Kol per ) + D270 < oo

=1
Step 2. For t € R* we put ko(t) = a;t* 8 for 277 <t < 279+ and ko(t) = t*~# for ¢ > 1. Then ko
is a non-negative, lower semi-continuous, non-increasing function on R*. And for each y € X we have

o0

Kov(y) a;d(z,y)* Pdv(z) + d(z,y)* Pdv(z)

A‘jgd(w,y)<2—j+1 j<1 /2—de($’2!)<2-]‘+1

Jj=1

o0

- ZajSDj(y)‘i‘Zij(y) = Z aj(pj(y).

<1 Jj=—o00

Hence Kov € L? (p).
Step 3. We show that (5.1) holds for Ko. Let zo € X, 0 < r < min{3, R} and n be a measure in

MF(B(zo, 7)) such that |[Kon||z. () < 1. By Holder’s inequality we have

[ Kandu < w(Blo,r)) P11 Kol| o
B(zo,r)

If ¢ € B(zo,7) and y € B(zo,7), then d(z,y) < 2r. Hence

U > (Kol gy > a(Blao, )" /B . Kondu
EQ,’I‘

u(B(zo,))H? /B( N (/B(m . ko(d(ﬂc,y))dn(iﬂ)> du(y)

p(B(o,7)) ko (2r)n(B(z0,7)) u(B(20,7))
(b1r?) 1= ko (2r)n(B (20, 7)),

Il

AVARAY

whence
n(B(zo,7)) < b 7P/Pp(8=00) /P (20) 1,

Thus, by taking the supremum over such measures n and Proposition 3.2, we have
Co.pu(B(@o, 1)V/? < b 7P/ Pr(B=BR) gy (2r) .

Since 0 < 2r < 1, we can find a natural number j, such that 2777 < 2r < 277~+1, Hence, by Theorem
1, we have
CKO,P,/J (B(x()’ T)) < b%_pa]‘_f’Q(ﬂaa)pCCa,p,#(B(x0> 'r))’

which leads to (5.1). a

The Hausdorff measure has the following property (cf. [4]).
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Lemma H . For every set E in X there is a Borel set G of X such that E C G and Ap(E) = Ap(G).

Proor oF THEOREM 3. We first show (1.3). We may assume that AJ(E) < co. Let € > 0 be
arbitrary and let {B(z;,7;)} be a countable covering of the set E such that 0 < r; < ¢ and

> h(ry) < AL(E) +e
J
If ap < B, then it follows from Theorem 1 that
CapulE) > Copu(B(zj,ry)) <> Cri~P < C(AL(E) +¢).
J J
If ap = 3, then, by Theorem 2,
Copu(E) < Zc pu(Blzj,r) <> C log— 2P < C(AY(E) +¢).
J

Thus the inequality (1.3) holds.

We next prove the second assertion. To prove it, we show that Co p,u(E) > 0 implies Ay (E) = oco. If
Copu(E) = 0o, then by (1.3), An(E) > AS(E) = co. So we may assume that 0 < Ca,p,,(E) < c0.

Let E be a compact set. By Proposition 3.3 there is a measure vy € M1 (FE) such that

ve(B) = [ (Kovp) dis = Cap (B

Since Kovp € L¥ (1), by Lemma 5.1 there exists a non-negative, lower semi-continuous, non-increasing
function ko on R* such that Kovg € LP (u) for the carnel Ko(z,y) = ko(d(z,y)) and

o (B, 7))
1 0,0, —
M (S0 G (B(@ 7))

Then, for € > 0, there is a number dg, 0 < §g < R, such that

OKD:P,#(B(m> ’r))
vex Capu(B(x,1)

Let {B(z;,7;)} be a countable covering of the set E satisfying 0 < r; < §p. Then, by Theorem 1 and
(5.2) we have

<e for0<r <dy. (5.2)

Cropu(B) < ZCKo,p,u(B(mja""j))
< swp Gees ORI (S (Bleyry)
<

Ce Z h(?‘j).

Therefore 1
An(E) 2 Aff(E) 2 Gz Ckopu(E)-
Since 'p € MT(E) and || Ko Mrer(uy <1, by Proposition 3.2,

HKOVEHLP ()

ve(E)
| Kovell Ly (&)

I]KOVE“LP'(/J)
CKo,p,#<E)% 2 > 0.

Thus we see that Ap(E) = oo as ¢ — 0.
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To prove the second assertion of Theorem 3 for a general set E, it is enough to prove it when E
is a Borel set. Because, for a general set F, by Lemma H there is a Borel set G such that £ C G,
AL(E) = A(G) and Cq p u(G) > Cyop u(E) > 0. If E is a Borel set, then, by Theorem G, we have

Capu(E) =sup{Capu(F) : F C E, F compact}.
Since Cq p,u(E) > 0, there is a compact set F' C E such that Cyp ., (F) > 0. Thus
A(E) > An(F) = oo

which proved the second assertion. o

By Lemma 4.1, (i) and (1.1), we see that the following lemma holds.

Lemma 5.2. Let v € MT(X) and 0 < XA < 3. Then there ezists a constant C > 0 such that
/ d(z,y)* Pdv(y) < Cr’*Mu(z) for 0 <r < Rand z € X.
B(z,r)

Proposition 5.3. Let v € MY (X) and 0 < o < B. For any A > 0 there exists a constant C > 0 such
that

p{z: Kov(z) > A}) < C(—i\- /X dl/)?f_a.

Proor. We note that

d(z,y)* Pdv(y) < r* Pu(X).
d(z,y)>r

We claim that N .
Kov(z) < (C+1)v(X)F Mu(z) 7 . (5.3)

Indeed, if Mv(z) = 400, then (5.3) holds. So we assume that Mv(z) < co. Put r = (%)1/5. The
above inequality and Lemma 5.2 yield

Kav(z) = /( ) + /( )Pty
d(z,y)<r d(z,y)>r

Oy P My(@) + (o) 9/ u(X)

= (C+ Dw(X)YPMy(z)P~>/8,
Thus we see that (5.3) holds. Using Proposition 2.2, (iii), we have

p{z: Kav(z) > A} < p({z: (C+ Du(X)¥PMuy(z)B~2)/8 > \})

A —x
cree) D

< or(LCHDUI)P 515 0 / = C'(C + 1)ﬁ/(ﬁ—a)(§/ )P/ =)
X

= p({z: My(z) > (

A X

which shows the proposition. 0

We prove the following fundamental property by using the covering lemma of Whitney type (cf. [3,
Theorem (1.3) on p.70]).

Proposition 5.4. Let v € M*(X). Then there ezist constants a > 1 and b > 0 such that
p({z: Kov(z) > a\}) < beP= p({z : Kov(z) > \}) + p({z : Mav(z) > e\})

for every A >0 and 0 <e < 1.
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Proor. By the lower semi-continuity of K,v, the set {z : K v(z) > A} is open. Then, by the
covering lemma in [3, Theorem (1.3) on p.70] there exists a countable family of balls {B;}jen, B;j =
B(zj,r;) with the following properties;

(i) {z: Kov(z) > A} = UjenBj,
(i) > en 1B, < hy for some hy € N,
(iii) B(zj, horj) N{z : Kqv(z) < A} # 0, for some hy > 2 and every j € N.

Let a > 1 and 0 < ¢ < 1. We decompose {B;} into Ay and Ay. If B; intersects the set {z € B; :
Myv(z) < e}, then B; € Ay, otherwise B € As.

First, suppose that B = B(z,r) € Ay and 2o € B such that M,v(zo) < e)X. Denote the restriction of
v to B(z, hor) by v1, and set v = v — v4. Let B(zg) = B(zo, 2hor). Then we have

/' din < / dv = p(B(20)) 5 Mav(zo) < eMa(B(x0)) 7%,
X B(zo)

whence 0 5
B8 e, _&
il s < (ZVp==
(o5 [ 807 < G u(Bla)
This and Proposition 5.3 yield
aA 2e,_8_
pl{z s Kan(2) > 5}) < C() 725 u(Blo)). (54)

On the other hand, the assertion (iii) shows that there is a point z; € X such that d(z1,2) < hor and
Kov(z1) < A If y € B(z,hor)® and z € B, then

d(z,y) > d(z,y) — d(z,z) > har — 7

and
dly,z1) < d(z,y)+d(z,z1) < d(z,y) + 7+ hor
d(z,y) _ 2hed(z,y)
<
= d(x’y)+(1+h2)h2_1 < h2—1 )
whence

2hy \P7* _ 2hy \P7® 2hs \P O
< o—p < < A
Kava(z) < (h2 — 1) /X d(y,z1)* Pdrs(y) < (h2 = 1) Kava(z1) < T

Thus, if a is choosen so that a = 2(%)‘3_0‘, then Kove(z) < %*. Hence
{x € B: Kqv(z) > al} C {x € B: Kqui(z) > %/}}
In this case it follows from (5.4) and (1.1) that
pl{z € B : Kov(z) > ad)) < OC2) 7% u(B(zo)) < 0" u(B),

where ¢ = Ca 7" g—f(Zh2)ﬁ.
We next suppose that B € Ay. Then B C {z : Mov(z) > eA}. By the assertion (ii) we obtain

p{z: Kav(z)>ad}) < Y Cemau(B) + p({z : Mav(z) > eX})
BeA,

C'hemm u({z : Kav(z) > A\}) + p({z : Mav(z) > eA}).

IN

This is the desired inequality. O

We shall show the equivalence of the LP-norm of K,v and M,v.
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Proposition 5.5. Let 1 < p < 0o and 0 < a < 3. Then there exists a constant C > 0 such that
C™HIMav|| 1oy < || Kavl|ze(wy < ClIMav|| o (5.5)
for allv € MT(X).

Proor. Noting that, for each r satisfying 0 <r < R,

B—c
o— b
KaI/(ZII) Z T ﬂ/ dl/(y) Z Lﬁ/ dU(y),
d(@,y)<r w(B(z,r))# JB(=r)

we have .
| Karllzegn = b7 [[MavllLeg,

which is the left-hand inequality of (5.5).
The right-hand inequality of (5.5) follows from Proposition 5.4. In fact, we obtain, for any ¢ > 0,

/t u{z : Kov(z) > a)\})/\p_ld)\
0
< b / p{z : Kav(z) > AP)A"HdA + / p({m : Mov(z) > eA})IAPT1dN,
0 0
whence

o? / " e Kov(z) > AP
0

< b /t p({z : Kav(z) > ADAPTIAA + 677 _/Et p({z : Mav(z) > A})NP 1A
0 0

If € is chosen so small that be oz < 1477, then
2

o / " { Kav(z) > A1)
0

< %a“” /Ot,u({iv : Kov(z) > AP)APLdN 7P /Ogt u({z : Mav(z) > )\}))\p—ld)\.

Since these integrals are finite, we have
at et
a_p/ p{z : Kov(z) > AN < 25"7’/ p({z : Mav(z) > A}HAP"td),
0 0
whence [|Kov||1e(u) < 2YP2||Mav|| 1o O

We shall now look at Proposition 5.5 from slightly different point of view. Let n € Z and E be a subset
of X. We will use the notation diam E that stands for the diameter of E. Further we denote by B, (x)
the open ball of radius 2™ centered at x. We let ng be the smallest integer such that diam X < 2770,
We recall that LP({9)-norm for a sequence {f,} in 19 is defined by

P

Ity = [ (Z lfn(w)lq> ' du(z).

Then we see that Proposition 5.5 gives the following corollary.

Corollary 5.6. Let 0 < p < oo, 1 < g < oo and 0 < a < 8. Then there are constants C,C",C" > 0
such that for all v € M*(X)

Kooy < CliMav||Lequy < C'l{27* P u(Bo(2)) ool Lraee)
C'I{27™ Ay (Bn(2)) 22 | e ey < C'I{27™* Pu(Bo (@) Ingll Lo )

<
< CY|KaVl|oe -
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Proor. For ecach z € X we have

d(z,y)*? < Z 27t (1 ) ¥) = 1B, (2) (V)

n=ngp

207 N " 2 Blg w(y),

n=ng

IA

whence
Kav(z) < 2P« Z 2~ Ue=B)y(B,(z)).
n=ngp
Similarly we have
Kov(z) > (1-207F) Y~ 27m@=B)y(B, ().
n=ng

In other words,
2P Ko (@) < {2 u(Ba(@)}5 i < T g Kav(2). (5.6)

Next, for 0 < r < R we choose an integer n, satisfying 27"~ < r < 277 *+1, Then

1 ap
o [ ay) = b7 OB, @)
w(B(z,r)) 7 /Bzr)
a—B
< by P20 (Ba(2)) 155 e
Hence s
Mav(z) < b7 |{27" P u(Ba(2)) )55 lie=. (5.7)
We recall that for each sequence {a,} and 1 < g < co we have
I{an} i < [[{an}lie < |[{an}{l (5.8)
Thus, by (5.6), (5.7) and (5.8) we obtain the desired estimates. o

The following lemma is the result of Frostman type in a compact metric space. P. Mattila proved it
by using the Hahn-Banach extension theorem (cf. [6, 8.17 Theorem]).

Lemma I . Let 0 < § < 00 and 0 < s < oo. There is a positive Radon measure v on X such that
v(X) = A}(X) and
v(E) < (diam E)° for all E C X with diam E < 4. (5.9)

In particular, if H(X) > 0, then there exist § > 0 and v satisfying (5.9) and v(X) > 0. Here

HX) = inf{ch(diamEj)s : chlgj >1on X, ¢; >0, (diam E;) < 6}.
J J

Remark 5.1. Let k, § > 0. We also define, for k> 0 and § > 0,

HE(E) = inf{> (diam E;)* : diam E; < 6, E C U,E;}.
J

Then we see that HY is comparable to HE.

We next define Wolff’s potentials.

29
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Definition 5.1. Let 1 < p < oo, p' = 25, 0 < ap < B and v € M*(X). Wolff’s potential W[, is
defined as follows:
WEp(@) = D (@0 Pu(Ba(a))” . | (5.10)
n=no

Remark 5.2. Wolff’s potential W, () is comparable to

2—70
/0 (%)p'_l% (5.11)

We can use (5.11) instead of (5.10).
Proposition 5.7. Let 1 <p < o0 and 0 < ap < B. Then there is a constant A such that
/ Kov(z)? du(z <A/ z)dv(z) foreachv € MT(X).

Proor. Corollary 5.6 yields

[ K@ dua) < CllECPuBal@))EI o

- C/ 3 (@ BBy () die)

n=ngo

= C Z a0 /X (/Bn(x) V(Bn(m))p"ldV(y)) dp(z)

n=ng

= C ) 27eAr /X ( /B » V(Bn(a:))”’*ld,u(m)) dv(y)

n=ngo

Noting that z € B, (y) implies B,(z) C B,-1(y), we have, by (5.10),

/X Ko(e) du(z) < C Z g=n(a=p)P / V(B (1))~ (B ())d(w)

< Cb / S 9@ By (B, () du(y)
n=ng
< C'by / 2)dv ().

0O
Proor or THEoOREM 4. Put k = (3 —ap+e. Let E C X be a compact set. Assume that

H*(E) > 0. Then, by Lemma I there is a measure v in M*(E) such that v(B(z,r)) < (2r)* for all balls
B(z,r) and v(E) > 0. By Proposition 5.7 we have

[ Karta)) duta) < A [ W2 (a)dv(a),
X X

where A; is a constant independent of v. From Remark 5.2 and k = 8 — ap + ¢ it follows that

27 "0 27 "0 k
y v(B(z,t)) 1 dt t* o gdt
Wa,p(m) < A2/0 (W) t < As 0 (tﬁ~ap) T As.

Thus

\1»4

[|Kavl|per < <A1/ A4d1/(:17)> ——A51/(E)Fl’.
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Using Proposition 3.2, we have

Therefore we have Cq p,,(E) > 0. Thus we have the conclusion.
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