Estimates of the α -Riesz potentials in metric spaces

Akane Iwamura

(Received June 25, 2004) (Revised August 18, 2004)

ABSTRACT. We define an α -Riesz potential operator on $L^p(X, \mu)$ in a quasi-metric space X with a doubling measure μ , satisfying a certain lower estimate of the measure of a ball. For this operator we give estimates of weak type.

1. Introduction

Let Ω be a domain in \mathbb{R}^n . By means of distribution functions, sharper results than the Sobolev inequality have been obtained by several mathmaticians, O'Neil [6], Peetre [7], Brézis and Wainger [1], Hansson [3] and Maz'ya [5]. The following result is one of them, which follows from results of O'Neil [6] and Peetre [7].

THEOREM A. Let 1 and <math>u be a function in $C_0^{\infty}(\Omega)$, with $||\nabla u||_{L^p(\Omega)} \le 1$. Then there exists C > 0 such that

$$\int_0^\infty t^{p-1} |\{|u| > t\}|^{1-p/n} dt \le C, \tag{1.1}$$

where C is a constant independent of u and |A| stands for the n-dimensional Lebesgue measure of a set A.

As the limiting case of Theorem A the following result is also obtained by Brézis and Wainger [1], Hansson [3] and Maz'ya [5].

THEOREM B. Let Ω be a bounded domain in \mathbb{R}^n and u be a function in $C_0^{\infty}(\Omega)$, with $||\nabla u||_{L^n(\Omega)} \leq 1$.

$$\int_0^\infty \frac{t^{n-1}}{\log^{n-1}(2|\Omega|/|\{|u|>t\}|)} dt \le C,\tag{1.2}$$

where C is a constant independent of u.

Inequalities (1.1) and (1.2) are regarded as estimates in the Sobolev space $W^{1,p}(\Omega)$. On the other hand it is well-known that, if m is a non-negative integer, then $W^{m,p}(\mathbf{R}^n)$ is identical with the Bessel potential space $L^{m,p}$ as a Banach space. Here

$$L^{m,p} = \{G_m * f : f \in L^p(\mathbf{R}^n)\}$$
(1.3)

for the Bessel function G_m of order m and the norm $||G_m * f||_{m,p}$ is defined to be the L^p -norm $||f||_p$. But even if m is not integer, G_m is defined. So, for a non-negative α , $L^{\alpha,p}$ is regarded as a Sobolev space with a fractional order in the case $\Omega = \mathbb{R}^n$. We note that the Bessel function with order α is comparable to the α -Riesz function $|x|^{\alpha-n}$ in a fixed ball.

In 2002 J. Malý and L. Pick [4] considered a quasi-metric space X with diamX=R/2 and a positive Radon measure μ on X with $\mu(X)<\infty$ (See §2). Here diamX stands for the diameter of X. Further they assumed that μ satisfies the following two conditions;

(μ 1) The doubling condition: there exists a positive constant D such that for every $x \in X$ and $r \in (0, \frac{R}{2}]$

$$\mu(B(x,2r)) \le D\mu(B(x,r)).$$

(μ 2) The lower estimate for the measure of a ball: there exists a constant $\gamma > 0$ and a real number $\beta > 1$ such that for every $x \in X$ and $r \in (0, R]$

$$\mu(B(x,r)) \ge \gamma r^{\beta}.$$

In this X, they defined a general Riesz potential I_1g with order 1 in X by

$$(I_1 g)(x) = \int_0^R \left(\int_{B(x,t)} g(y) \, d\mu(y) \right) \, dt, \tag{1.4}$$

where the notation f is the integral average of g on a set E with $0 < \mu(E) < \infty$, i.e.,

$$\int_E g d\mu = rac{1}{\mu(E)} \int_E g d\mu.$$

and proved the following theorem.

THEOREM C. Let g be a non-negative μ -integrable function. Put

$$G_{g,t} = \{ y \in X : (I_1 g)(y) > t \}.$$

(i) Let 1 . Then there is a constant <math>C > 0 such that for every non-negative function $g \in L^p(X,\mu)$ with $||g||_p \le 1$ we have

$$\int_0^\infty t^{p-1} \mu(G_{g,t})^{1-p/\beta} dt \le C.$$

(ii) There exists a constant C > 0 such that for every non-negative function $g \in L^{\beta}(X, \mu)$ with $||g||_{\beta} \leq 1$ we have

$$\int_0^\infty t^{\beta-1} \left(\log \frac{2\mu(X)}{\mu(G_{a,t})} \right)^{1-\beta} dt \le C.$$

In this paper we consider a quasi-metric space (X, ρ) and a positive Radon measure μ on X such that $\mu(X) < \infty$ and μ satisfies $(\mu 1)$ and $(\mu 2)$. Further for a non-negative μ -integrable function g on X we define a generalized α -Riesz potential operator I_{α} by

$$(I_{\alpha}g)(x) = \int_0^R \alpha t^{\alpha - 1} \left(\oint_{B(x,t)} g(y) \, d\mu(y) \right) dt \qquad (0 < \alpha < \beta).$$
 (1.5)

If there exist a real number $\beta > 1$ and constants γ , γ' such that

$$\gamma r^{\beta} \le \mu(B(x,r)) \le \gamma' r^{\beta},$$

then the generalized α -Riesz potential $I_{\alpha}g$ is comparable to the function $x \to \int_X \rho(x,y)^{\alpha-\beta}g(y)d\mu(y)$ (see, Lemma 2.1). To give the estimates of $I_{\alpha}g$ corresponding to Theorem C, set

$$G_{\alpha,a,t} = G_t = \{ y \in X : (I_{\alpha}g)(y) > t \}$$
 (1.6)

for t > 0. In §7 we shall prove the following theorem which extends Theorem C.

THEOREM 1. Let $1 and <math>\alpha > 0$.

(i) If $\alpha p < \beta$, then there exists a constant C > 0, independent of g, such that for every non-negative function $g \in L^p(X, \mu)$ we have

$$\int_0^\infty t^{p-1} \mu(G_t)^{1-\alpha p/\beta} dt \le C||g||_p^p.$$

(ii) If $\alpha p = \beta$, then there exists a constant C > 0, independent of g, such that for every non-negative function $g \in L^p(X, \mu)$ we have

$$\int_0^\infty t^{p-1} \left(\log \left(\frac{2\mu(X)}{\mu(G_t)} \right) \right)^{1-p} dt \le C||g||_p^p.$$

We also consider the case where $\alpha p > \beta$ and we obtain the following consequence which will be proved in §7.

THEOREM 2. Let $1 , <math>\alpha > 0$ and $\alpha p > \beta$. Then there exists a constant C > 0, independent of g, such that for every non-negative function $g \in L^p(X, \mu)$ we have

$$||I_{\alpha}g||_{\infty} \leq C||g||_{p}.$$

REMARK 1. We see that C depends only on p, β , α , γ and d. Here γ is the constant in $(\mu 2)$ and d is the one in the definition of a quasi-metric space in $\S 2$.

The author wishes to express her gratitude to Professor Hisako Watanabe, Ochanomizu University, for her helpful advice and guidance.

2. Preliminaries

Recall that (X, ρ) is a quasi-metric space if ρ is a non-negative function on $X \times X$ with the following properties:

- (i) $\rho(x,y) = 0$ if and only if x = y,
- (ii) $\rho(x,y) = \rho(y,x)$ for all x and $y \in X$,
- (iii) there is a constant $d \ge 1$ such that $\rho(x,y) \le d\{\rho(x,z) + \rho(z,y)\}$ for all x,y and $z \in X$.

We shall assume that X is bounded and diam X = R/2 for some $R \in (0, \infty)$. Denote by $B(x_0, r)$ the open ball centered at x_0 of radius r, i.e.,

$$B(x_0, r) = \{x \in X : \rho(x, x_0) < r\}.$$

We note that balls $\{B(x,r)\}_{r>0}$ form a basis of neighborhoods of x for the topology induced by the quasi-metric ρ . Further denote by $||g||_p$ the L^p -norm of a function g in $L^p(X,\mu)$ and put p'=p/(p-1) for 1 .

Now we define an operator I_{α}^{r} by

$$(I_{\alpha}^rg)(x) = \int_0^r \alpha t^{\alpha-1} \left(\int_{B(x,t)} g(y) \, d\mu(y) \right) dt, \quad r \in (0,R], \quad x \in X.$$

Especially if r = R, then we write $I_{\alpha}^{R} = I_{\alpha}$. By the Fubini's theorem we see

$$(I_{\alpha}^r g)(x) = \int_{B(x,r)} g(y) \left(\int_{\rho(x,y)}^r \frac{\alpha t^{\alpha-1}}{\mu(B(x,t))} dt \right) d\mu(y).$$

Therefore by putting

$$I_{\alpha}^{r}(x,y) = \int_{
ho(x,y)}^{r} rac{lpha t^{lpha-1}}{\mu(B(x,t))} dt,$$

we can also write

$$(I^r_\alpha g)(x) = \int_{B(x,r)} I^r_\alpha(x,y) g(y) \, d\mu(y).$$

If r = R, then we write $I_{\alpha}^{R}(x, y) = I_{\alpha}(x, y)$.

Furthermore, given an $r \in (0, R)$ and define an operator E^r_{α} by

$$(E_{\alpha}^{r}g)(x) = \int_{r}^{R} \alpha t^{\alpha-1} \left(\int_{B(x,t)} g(y) d\mu(y) \right) dt.$$

Then $I_{\alpha} = I_{\alpha}^{r} + E_{\alpha}^{r}$ and by Fubini's theorem we have

$$(E^r_{\alpha}g)(x) = \int_X g(y) \left(\int_{\max\{r,\rho(x,y)\}}^R \frac{\alpha t^{\alpha-1}}{\mu(B(x,t))} dt \right) d\mu(y) = \int_X E^r_{\alpha}(x,y) g(y) d\mu(y),$$

where

$$E_{\alpha}^{r}(x,y) = \int_{\max\{r,\rho(x,y)\}}^{R} \frac{\alpha t^{\alpha-1}}{\mu(B(x,t))} dt.$$

We now consider a quasi-metric space no assuming the upper estimate of the measures of a ball. But, in case we assume the upper estimate of the measure of a ball, the following lemma shows that (1.5) is comparable to a usual α -Riesz potential.

LEMMA 2.1. If X is a quasi-metric space and a measure μ also satisfies the upper and lower estimates of the measure of a ball, that is, there exist constants γ , $\gamma' > 0$ and a real number $\beta > 0$ such that for every $x \in X$ and $r \in (0, R]$

 $\gamma r^{\beta} \le \mu(B(x,r)) \le \gamma' r^{\beta}.$

Furthermore, let $0 < \alpha < \beta$. Then (1.5) is comparable to the function

$$x o \int_X
ho(x,y)^{lpha-eta} g(y) d\mu(y).$$

PROOF. Let $x \in X$ and k_0 be the smallest integer k satysfying $X \subset B(x, 2^k)$. We have

$$\rho(x,y)^{\alpha-\beta} \leq \sum_{k=-\infty}^{k_0} 2^{(\alpha-\beta)k} (1_{B(x,2^{k+1})}(y) - 1_{B(x,2^k)}(y))$$
$$\leq 2^{n-\alpha} \sum_{k=-\infty}^{k_0+1} 2^{(\alpha-\beta)k} 1_{B(x,2^k)}(y),$$

whence

$$\int_{X} \rho(x,y)^{\alpha-\beta} g(y) d\mu(y) \leq 2^{\beta-\alpha} \sum_{k=-\infty}^{k_{0}+1} 2^{(\alpha-\beta)k} \int_{B(x,2^{k})} g(y) d\mu(y) \\
\leq 2^{\beta-\alpha} \gamma' \sum_{k=-\infty}^{k_{0}+1} 2^{k\alpha} \int_{B(x,2^{k})} g(y) d\mu(y).$$

In the same way we have

$$\int_X \rho(x,y)^{\alpha-\beta} g(y) d\mu(y) \geq (1-2^{\alpha-\beta}) \gamma \sum_{k=-\infty}^{k_0+1} 2^{k\alpha} \int_{B(x,2^k)} g(y) d\mu(y).$$

Hence

$$\int_X \rho(x,y)^{\alpha-\beta} g(y) d\mu(y) \approx \int_0^R \int_{B(x,t)} g(y) d\mu(y) dt^\alpha = \int_0^R \alpha t^{\alpha-1} \int_{B(x,t)} g(y) d\mu(y) dt.$$

The following proposition will be crucial to prove Theorem 1. The proposition will be proved in $\S 6$. Recall that a maximal function Mg is defined by

$$(Mg)(x) = \sup \int_{B} |g(y)| d\mu(y), \quad x \in X,$$
 (2.1)

for a μ -integrable function g, where the supremum is taken over all balls B containing x.

PROPOSITION. Let 1 . Then there exist a constant <math>C > 0 and a positive number a, depending only on D and d, such that, for every non-negative function $g \in L^p(X, \mu)$ and t > b,

$$t^{p} \leq C \left\{ q_{t}^{\alpha p - \beta} + \left(\alpha \int_{q_{t}}^{R} s^{(\alpha - \beta)(p' - 1) + (\alpha - 1)} ds \right)^{p - 1} \right\} \int_{G_{t/a} \backslash G_{at}} (Mg)(y)^{p} d\mu(y), \tag{2.2}$$

where

$$b = \lambda R^{\alpha} \mu(X)^{-1/p} ||g||_p \quad and \quad q_t = \left(\frac{\mu(G_t^i)}{\gamma}\right)^{1/\beta}, \quad (2.3)$$

if we put

$$\delta = \frac{\log D}{\log 2}, \quad \lambda = D(2d)^{\delta} \tag{2.4}$$

and denote the interior of G_t by G_t^i .

3. Statements of elementary properties

In this section we state comparatively elementary properties without proofs but they are proved by the same methods as in [4].

LEMMA 3.1. Let $x \in X$, p > 1, and 0 < r < R. Then there is a constant C > 0 depending only on p, β , α , and γ such that

$$\int_X E_{\alpha}^r(x,y)^{p'} d\mu(y) \le C \int_r^R \alpha s^{(\alpha-\beta)(p'-1)+(\alpha-1)} ds.$$

Moreover, if $\alpha p > \beta$, then

$$\int_X I_\alpha^R(x,y)^{p'} d\mu(y) \le C \int_0^R \alpha s^{(\alpha-\beta)(p'-1)+(\alpha-1)} ds.$$

Remark 2. By the direct calculation we see that $(I_{\alpha}^{r}1)(y) = r^{\alpha}$ for each $y \in X$ and $0 < r \le R$. In fact,

$$(I_{\alpha}^{r}1)(y) = \int_{0}^{r} \alpha t^{\alpha-1} \left(\oint_{B(y,t)} 1 \, d\mu(z) \right) \, dt = \int_{0}^{r} \alpha t^{\alpha-1} \, dt = r^{\alpha}.$$

The doubling condition leads to the following two lemmas. The first one is Lemma 4.1 in [4].

Lemma D. For all $x \in X$ and $0 < t \le s \le R$ we have

$$\frac{\mu(B(x,s))}{\mu(B(x,t))} \le D\left(\frac{s}{t}\right)^{\delta}.$$

The second one is as follows.

Lemma 3.2. There is an increasing function φ from $[1,\infty)$ to $[1,\infty)$ such that

$$\int_{r/A}^R \frac{\alpha t^{\alpha-1}}{\mu(B(y,t))} \, dt \leq \varphi(A) \int_r^R \frac{\alpha t^{\alpha-1}}{\mu(B(y,t))} \, dt \quad \text{for each } y \in X \ \text{ and } r < \frac{R}{2},$$

where φ depends only on D and α .

Lemma 3.3. Let λ be the number defined in (2.4). Then

$$\frac{1}{\lambda}I_{\alpha}(x,y) \le I_{\alpha}(y,x) \le \lambda I_{\alpha}(x,y)$$

for every x and y.

Hereafter let g be a non-negative function in $L^p(X,\mu)$ and G_t be the set defined in (1.6).

Lemma 3.4. Let $a \ge 2\lambda^2 \varphi(3d)$ and x be a point in G_t . Then

$$\int_{G_{t/a}^c} I_{\alpha}(x, y) g(y) \, d\mu(y) \le \frac{t}{2}.$$

Lemma 3.5. Let $x, y, z \in X$. Assume that $\rho(y, z) \leq A\rho(x, y)$ for some $A \geq 1$. Then

$$I_{\alpha}(x,y) \leq \lambda^2 \varphi(A) I_{\alpha}(z,y).$$

LEMMA 3.6. Let x be a point in G_t . Suppose that $B = B(z,r) \subset G_t$ for some $z \in X$ and r > 0. Further let $y, \xi \in B$. Then

$$E_{\alpha}^{q_t}(x,y) \le \varphi(d+2d^2)E_{\alpha}^{q_t}(x,\xi),$$

where q_t is the number in (2.3).

4. Properties of the set G_t

We see by the following lemma that the complement G_t^c of G_t is nonempty for a sufficiently large t.

Lemma 4.1. Suppose that $t \geq 2b$ for b in (2.3). If $g \geq 0$ on X. Then

$$\mu(G_t) \le \frac{1}{2}\mu(X).$$

PROOF. By the definition of G_t we have

$$\mu(G_t) \le \frac{1}{t} \int_{G_t} (I_{\alpha}g)(\xi) \, d\mu(\xi) \le \frac{1}{t} \int_{G_t} \int_X I_{\alpha}(\xi, y) g(y) \, d\mu(y) \, d\mu(\xi)$$

whence, by Lemma 3.3, Remark 2 and (2.3),

$$\mu(G_t) \leq \frac{\lambda}{t} \int_X g(y) \left(\int_{G_t} I_{\alpha}(y,\xi) \, d\mu(\xi) \right) d\mu(y)$$

$$\leq \frac{\lambda}{t} \int_X g(y) (I_{\alpha}1)(y) \, d\mu(y)$$

$$= \frac{\lambda}{t} R^{\alpha} \int_X g(y) \, d\mu(y) \leq \frac{\lambda}{t} R^{\alpha} ||g||_p \mu(X)^{1-\frac{1}{p}} \leq \frac{1}{2} \mu(X).$$

Lemma 4.2. There exists a constant $k \geq 1$ depending only on μ , α and p such that, if g is a non-negative function in $L^p(X,\mu)$, then

$$k \liminf_{z \to x} (I_{\alpha}g)(z) \ge (I_{\alpha}g)(x) \quad \text{for } \mu - \text{almost everywhere } x \in X.$$
 (4.1)

Moreover, if t > 0, then $G_{kt} \subset G_t^i$.

PROOF. Let g be a non-negative function in $L^p(X,\mu)$ and let $y, z \in X$. Since $\mu(\{x \in X : (I_{\alpha}g)(x) = \infty\}) = 0$ by [2, Theorem 2.1 on p.71], we may suppose that $(I_{\alpha}g)(x) < \infty$. By the monotone convergence theorem

$$(I_{\alpha}g)(x) = \lim_{z \to x} \int_{\rho(x,z) \le \rho(x,y)} I_{\alpha}(x,y)g(y)d\mu(y).$$

Note that

$$\{y \in X \, : \, \rho(x,z) \leq \rho(x,y)\} \subset \{y \in X \, : \, \rho(y,z) \leq 2d\rho(x,y)\}$$

and hence

$$I_{\alpha}(x,y) \le \lambda^2 \varphi(2d) I_{\alpha}(z,y)$$

by Lemma 3.5. Therefore

$$(I_{\alpha}g)(x) \leq \lambda^{2}\varphi(2d) \liminf_{z \to x} \int_{\rho(x,z) \leq d\rho(x,y)} I_{\alpha}(z,y)g(y)d\mu(y) \leq \lambda^{2}\varphi(2d) \liminf_{z \to x} (I_{\alpha}g)(z),$$

which is the first assertion with $k = \lambda^2 \varphi(2d)$.

For the second assertion, let $x \in G_k$. Then $kt < (I_{\alpha}g)(x) \le k \liminf_{z \to x} (I_{\alpha}g)(z)$, so that $I_{\alpha}g > t$ on some neighborhood of x. Hence $x \in G_t^i$. Thus $G_{kt} \subset G_t^i$.

5. A covering of Whitney type and the maximal operator

In this section we fix a non-negative function $g \in L^p(X, \mu)$ and t > 2b for b in (2.3).

In general, the Whitney decomposition is known as the one of an open set into a suitable union of cubes. But, in a quasi-metric space X we use its version of a covering by balls. Since $(I_{\alpha}g)(x)$ is not always lower semicontinuous, we can't use the covering lemma for G_t . Applying Theorem 1.3 on p.70 in [2] to G_t^i , we have following lemma.

LEMMA E. There exists a countable system of balls $\{B_j\}_{j\in\mathbb{N}}$, $B_j = B(x_j, r_j)$ with the following properties;

- (i) $G_t^i = \bigcup_{j \in \mathbf{N}} B_j$,
- (ii) $\frac{1}{C_1}r_j < \operatorname{dist}(y, (G_t^i)^c) < C_1r_j \text{ for every } y \in B_j,$
- (iii) $\sum_{i \in \mathbb{N}} 1_{B_i} \leq C_2$.

Here two constants C_1 , $C_2 \geq 1$ depend only on β and d.

Lemma 5.1. There is a positive constant C_3 , depending only on d, D and α , with the following property: For every $j \in \mathbf{N}$ there exists a point $z_j \in (G_t^i)^c$ such that

$$\int_{B_j} I_{\alpha}(\xi, y) \, d\mu(\xi) \le C_3 \mu(B_j) I_{\alpha}(z_j, y) \quad \text{for all} \quad y \in X.$$
 (5.1)

PROOF. Since $(G_t^i)^c$ is nonempty from Lemma 4.1, for each $j = 1, 2, \dots$, there is a point z_j in $(G_t^i)^c$ satisfying

$$\rho(x_j, z_j) < C_1 r_j.$$

Case 1. $\rho(y,x_j) \ge 2dr_j$. Then $\rho(y,\xi) \ge r_j$ for every $\xi \in B_j$. Therefore

$$r_j \le \frac{\rho(y, x_j)}{2d} \le \frac{1}{2} \left(\rho(y, \xi) + \rho(\xi, x_j) \right) \le \frac{1}{2} \left(\rho(y, \xi) + r_j \right)$$

and hence

$$r_j \leq \rho(y,\xi).$$

Thus

$$\rho(z_j, y) \leq d\left(\rho(z_j, x_j) + d\left(\rho(x_j, \xi) + \rho(\xi, y)\right)\right)$$

$$< d\left(C_1 r_j + dr_j + d\rho(\xi, y)\right) \leq C\rho(\xi, y)$$

with $C = d(C_1 + 2d)$. Since

$$I_{\alpha}(\xi, y) \le \lambda^2 \varphi(C) I_{\alpha}(z_j, y)$$

by Lemma 3.5, we obtain (5.1).

Case 2. $\rho(y, x_j) < 2dr_j$. Then

$$\rho(z_j, y) \le d\left(\rho(z_j, x_j) + \rho(x_j, y)\right) \le Cr_j \tag{5.2}$$

and, by Lemma 3.2 and Lemma 3.3

$$\int_{r_j}^R \frac{\alpha t^{\alpha-1}}{\mu(B(y,t))} dt \leq \int_{\frac{\rho(z_j,y)}{C}}^R \frac{\alpha t^{\alpha-1}}{\mu(B(y,t))} dt \leq \varphi(C) I_{\alpha}(y,z_j) \leq \lambda \varphi(C) I_{\alpha}(z_j,y),$$

whence

$$\int_{B_j} \left(\int_{r_j}^R \frac{\alpha t^{\alpha - 1}}{\mu(B(y, t))} dt \right) d\mu(\xi) \le \lambda \varphi(C) \mu(B_j) I_{\alpha}(z_j, y). \tag{5.3}$$

Let $r_j < t < 2r_j$. Then

$$B(y,t) \subset B(x_j, (2d+2d^2)r_j).$$

Hence, by the Lemma D and putting $C' = D(2d + 2d^2)^{\delta}$, we have

$$\mu(B(y,t)) \le \mu(B(x_j, (2d+2d^2)r_j)) \le C'\mu(B_j).$$

The inequality (5.2) and Lemma 3.2 yield

$$\begin{split} \mu(B_j)I_{\alpha}(y,z_j) &= \mu(B_j)\int_{\rho(y,z_j)}^R \frac{\alpha t^{\alpha-1}}{\mu(B(y,t))}dt \ \geq \ \mu(B_j)\int_{Cr_j}^R \frac{\alpha t^{\alpha-1}}{\mu(B(y,t))}dt \\ &\geq \ \frac{\mu(B_j)}{\varphi(C)}\int_{r_j}^R \frac{\alpha t^{\alpha-1}}{\mu(B(y,t))}dt \ \geq \ \frac{\mu(B_j)}{\varphi(C)}\int_{r_j}^{2r_j} \frac{\alpha t^{\alpha-1}}{\mu(B(y,t))}dt \\ &\geq \ \frac{\mu(B_j)}{\varphi(C)}\int_{r_j}^{2r_j} \frac{\alpha t^{\alpha-1}}{C'\mu(B_j)}dt \ = \ \frac{(2^{\alpha}-1)r_j^{\alpha}}{C'\varphi(C)}. \end{split}$$

Hence, by Remark 2,

$$\int_{B(y,r_j)} \left(\int_{\rho(\xi,y)}^{r_j} \frac{\alpha t^{\alpha-1}}{\mu(B(y,t))} dt \right) d\mu(\xi) = r_j^{\alpha} \le \frac{C'\lambda}{2^{\alpha} - 1} \varphi(C)\mu(B_j) I_{\alpha}(z_j, y). \tag{5.4}$$

By using Lemma 3.3 we have

$$\begin{split} & \int_{B_j} I_{\alpha}(\xi,y) \, d\mu(\xi) \; \leq \; \lambda \int_{B_j} I_{\alpha}(y,\xi) \, d\mu(\xi) \\ & \leq \; \lambda \left(\int_{B(y,r_j)} \left(\int_{\rho(y,\xi)}^{r_j} \frac{\alpha t^{\alpha-1}}{\mu(B(y,t))} dt \right) d\mu(\xi) + \int_{B_j} \left(\int_{r_j}^R \frac{\alpha t^{\alpha-1}}{\mu(B(y,t))} dt \right) d\mu(\xi) \right). \end{split}$$

Here we used that $\int_{\rho(y,\xi)}^{r_j} \frac{\alpha t^{\alpha-1}}{\mu(B(y,t))} dt \leq 0$ for $\rho(y,\xi) \geq r_j$ and $\{\xi \in B_j : \rho(y,\xi) < r_j\} \subset B(y,r_j)$. By (5.4) and (5.3) we have

$$\int_{B_{j}} I_{\alpha}(\xi, y) d\mu(\xi) \leq \lambda \left(\frac{C'\lambda}{2^{\alpha} - 1} \varphi(C) \mu(B_{j}) I_{\alpha}(z_{j}, y) + \lambda \varphi(C) \mu(B_{j}) I_{\alpha}(z_{j}, y) \right)$$

$$= \lambda^{2} \varphi(C) \left(\frac{C'}{2^{\alpha} - 1} + 1 \right) \mu(B_{j}) I_{\alpha}(z_{j}, y).$$

Putting $C_3 = \max\{\lambda^2 \varphi(C), \lambda^2 \varphi(C)(\frac{C'}{2^{\alpha}-1}+1)\}$, we have the conclusion.

Lemma 5.2. Let C_2 in Lemma E and suppose that $a \geq 2C_3k$ for C_3 in (5.1) and k in (4.1). Then

(i)
$$\mu(B_j \cap G_{at}) \leq \frac{\mu(B_j)}{2}$$
 for every $j \in \mathbb{N}$,

(ii) $\mu(G_t^i) \leq 2C_2\mu(G_t^i \backslash G_{at}).$

PROOF. (i) From the definition of G_{at} and Fubini's theorem it follows that

$$at\mu(B_j \cap G_{at}) \leq \int_{B_j \cap G_{at}} (I_{\alpha}g)(\xi) \, d\mu(\xi) \leq \int_X g(y) \left(\int_{B_j} I_{\alpha}(\xi, y) \, d\mu(\xi) \right) d\mu(y)$$

By Lemma 5.1 there is a point $z_j \in (G_t^i)^c$ such that for all $y \in X$

$$\int_{B_j} I_{\alpha}(\xi, y) d\mu(\xi) \le C_3 \mu(B_j) I_{\alpha}(z_j, y),$$

whence

$$\mu(B_j \cap G_{at}) \le \frac{C_3}{at} \mu(B_j)(I_{\alpha}g)(z_j).$$

Since that $(I_{\alpha}g)(z_j) \leq kt$ by Lemma 4.2, we obtain (i).

(ii) By (i) we have, for each $j = 1, 2, \cdots$,

$$\mu(B_j) \le \mu(B_j \cap G_{at}) + \mu(B_j \backslash G_{at}) \le \frac{1}{2}\mu(B_j) + \mu(B_j \backslash G_{at}),$$

whence

$$\mu(B_j) \leq 2\mu(B_j \backslash G_{at}).$$

By (i) and (iii) in Lemma E we have

$$\mu(G_t^i) \le \sum_{j \in \mathbb{N}} \mu(B_j) \le 2 \sum_{j \in \mathbb{N}} \mu(B_j \backslash G_{at}) \le 2C_2 \mu(G_t^i \backslash G_{at}).$$

By the same method as in [4, Lemma 5.5] we can show the following lemma.

Lemma 5.3. Let $a \geq 2\lambda^2 \varphi(3d)$ and x be a point in G_t^i . Then

$$\int_{G_{t/a}^c} I_{\alpha}(x,y)g(y) \, d\mu(y) \le \frac{t}{2}.$$

The following lemma is the last one as the preparation of the proof of Lemma 2.2.

Lemma 5.4. Let $a \geq 2 \max\{C_3k, \lambda^2\varphi(3d)\}$ for C_3 in (5.1) and k in (4.1) and x be a point in G_t^i . Furthermore, let q_t be the number defined by (2.4). Then there is a constant $C_4 > 0$ such that

$$(E^{q_t}_lpha g)(x) \leq rac{t}{2} + C_4 \int_{G_{t/lpha} \setminus Gat} E^{q_t}_lpha(x,y)(Mg)(y) \, d\mu(y).$$

Here C_4 depends only on d, D and α .

PROOF. Fix $x \in G_t^i$. Then we have from Lemma 3.6 and (2.1) that

$$\int_{B_j} E_{\alpha}^{q_t}(x, y) g(y) d\mu(y) \leq \varphi(d + 2d^2) E_{\alpha}^{q_t}(x, \xi) \int_{B_j} g(y) d\mu(y)
\leq \varphi(d + 2d^2) E_{\alpha}^{q_t}(x, \xi) \mu(B_j) (Mg)(\xi).$$

for every $\xi \in B_j$. Integrating over $B_j \setminus G_{at}$ with respect to ξ and using Lemma 5.2, (i), we have

$$\begin{split} \int_{B_j} E_{\alpha}^{q_t}(x,y) g(y) \, d\mu(y) & \leq & \varphi(d+2d^2) \frac{\mu(B_j)}{\mu(B_j \backslash G_{at})} \int_{B_j \backslash G_{at}} E_{\alpha}^{q_t}(x,\xi) (Mg)(\xi) \, d\mu(\xi) \\ & \leq & 2\varphi(d+2d^2) \int_{B_j \backslash G_{at}} E_{\alpha}^{q_t}(x,\xi) (Mg)(\xi) \, d\mu(\xi), \end{split}$$

whence, by Lemma E,

$$\begin{split} \int_{G_t^i} E_{\alpha}^{q_t}(x,y) g(y) \, d\mu(y) & \leq & \sum_{j \in \mathbf{N}} \int_{B_j} E_{\alpha}^{q_t}(x,y) g(y) d\mu(y) \\ & \leq & 2\varphi(d+2d^2) \sum_{j \in \mathbf{N}} \int_{B_j \backslash G_{at}} E_{\alpha}^{q_t}(x,\xi) (Mg)(\xi) \, d\mu(\xi) \\ & \leq & 2\varphi(d+2d^2) C_2 \int_{G_i^i \backslash G_{at}} E_{\alpha}^{q_t}(x,\xi) (Mg)(\xi) \, d\mu(\xi). \end{split}$$

Since, for μ -a.e. x,

$$\int_{B(x,r)} g(y) d\mu(y) \to g(x) \quad \text{as} \quad r \to 0,$$

we see that $g \leq Mg$ μ -a.e. and

$$\int_{G_{t/\alpha}\setminus G_t^i} E_{\alpha}^{q_t}(x,y)g(y)\,d\mu(y) \le \int_{G_{t/\alpha}\setminus G_t^i} E_{\alpha}^{q_t}(x,y)(Mg)(y)\,d\mu(y).$$

On the other hand we also have, by Lemma 5.3

$$\int_{G_{t/a}^c} E_{\alpha}^{q_t}(x,y)g(y) d\mu(y) \le \int_{G_{t/a}^c} I_{\alpha}(x,y)g(y) d\mu(y) \le \frac{t}{2}.$$

Consequently

$$\begin{split} &(E_{\alpha}^{q_t}g)(x) = \int_X E_{\alpha}^{q_t}(x,y)g(y)\,d\mu(y) \\ &= \int_{G_{t/a}^c} E_{\alpha}^{q_t}(x,y)g(y)d\mu(y) + \int_{G_{t/a}\backslash G_t^i} E_{\alpha}^{q_t}(x,y)g(y)d\mu(y) + \int_{G_t^i} E_{\alpha}^{q_t}(x,y)g(y)d\mu(y) \\ &\leq \frac{t}{2} + \int_{G_{t/a}\backslash G_t^i} E_{\alpha}^{q_t}(x,y)(Mg)(y)d\mu(y) + 2\varphi(d+2d^2)C_2 \int_{G_t^i\backslash G_{at}} E_{\alpha}^{q_t}(x,y)(Mg)(y)\mu(y) \\ &\leq \frac{t}{2} + C_4 \int_{G_{t/a}\backslash G_{at}} E_{\alpha}^{q_t}(x,y)(Mg)(y)\,d\mu(y), \end{split}$$

where $C_4 = 1 + 2\varphi(d + 2d^2)C_2$.

6. Proof of Proposition

In this section we give the proof of Proposition.

PROOF OF PROPOSITION. Let g be a non-negative function in $L^p(X,\mu)$ and let $a \geq 2 \max\{C_3k, \lambda^2\varphi(3d)\}$. Recall that for each $r \in (0,R)$

$$(I_{\alpha}g)(x) = (I_{\alpha}^r g)(x) + (E_{\alpha}^r g)(x).$$

Let t > b. For $x \in G_t^i$

$$t < (I_{\alpha}^{q_t}g)(x) + (E_{\alpha}^{q_t}g)(x),$$

where q_t is defined in (2.3). Since

$$(I_{\alpha}^{q_t}g)(x) = \int_0^{q_t} \alpha t^{\alpha - 1} \left(\int_{B(x,t)} g(y) \, d\mu(y) \right) dt \le (Mg)(x) \int_0^{q_t} \alpha t^{\alpha - 1} \, dt = q_t^{\alpha}(Mg)(x),$$

we have, by Lemma 5.4,

$$t < 2q_t^{\alpha}(Mg)(x) + 2C_4 \int_{G_{t/\alpha} \backslash G_{at}} E_{\alpha}^{q_t}(x, y)(Mg)(y) \, d\mu(y). \tag{6.1}$$

By Hölder's inequality and Lemma 3.1 we have

$$\int_{G_{t/a}\backslash G_{at}} E_{\alpha}^{q_{t}}(x,y)(Mg)(y) d\mu(y)
\leq \left(\int_{G_{t/a}\backslash G_{at}} (Mg)(y)^{p} d\mu(y)\right)^{1/p} \left(\int_{X} E_{\alpha}^{q_{t}}(x,y)^{p'} d\mu(y)\right)^{1/p'}
\leq C_{5}^{\frac{1}{p'}} \left(\int_{G_{t/a}\backslash G_{at}} (Mg)(y)^{p} d\mu(y)\right)^{1/p} \left(\int_{q_{t}}^{R} \alpha s^{(\alpha-n)(p'-1)+(\alpha-1)} ds\right)^{1/p'},$$
(6.2)

where C_5 is the constant in Lemma 3.1. Therefore, by (6.1) and (6.2),

$$\begin{split} t^p & \leq & 2^{2p-1} \{ q_t^{\alpha p}(Mg)(x)^p + C_4^p \left(\int_{G_{t/a} \backslash G_{at}} E_{\alpha}^{q_t}(x,y)(Mg)(y) \, d\mu(y) \right)^p \} \\ & \leq & 2^{2p-1} \{ q_t^{\alpha p-\beta} q_t^{\beta}(Mg)(x)^p \\ & + C_4^p C_5^{p-1} \int_{G_{t/a} \backslash G_{at}} (Mg)(y)^p \, d\mu(y) \left(\int_{q_t}^R \alpha s^{(\alpha-\beta)(p'-1) + (\alpha-1)} \, ds \right)^{p-1} \}. \end{split}$$

Noting that $q_t^{\beta} = \frac{\mu(G_t^i)}{\gamma}$, we have, by Lemma 5.2, (ii),

$$\begin{split} t^p & \leq 2^{2p-1} \{ q_t^{\alpha p - \beta} \frac{2C_2 \mu(G_t^i \backslash G_{at})}{\gamma} (Mg)(x)^p \\ & + C_4^p C_5^{p-1} \int_{G_{t/a} \backslash G_{at}} (Mg)(y)^p \, d\mu(y) \left(\int_{q_t}^R \alpha s^{(\alpha - \beta)(p' - 1) + (\alpha - 1)} \, ds \right)^{p-1} \}, \end{split}$$

whence

$$t^{p} \leq C\{q_{t}^{\alpha p - \beta} + \left(\int_{q_{t}}^{R} \alpha s^{(\alpha - \beta)(p' - 1) + (\alpha - 1)} ds\right)^{p - 1}\} \int_{G_{t/a} \backslash G_{at}} (Mg)(y)^{p} d\mu(y),$$
where $C = 2^{2p - 1}(2\gamma^{-1}C_{2} + C_{4}^{p}C_{5}^{p - 1}).$

7. Proof of Theorem 1 and Theorem 2

In this section we prove Theorem 1 and Theorem 2.

PROOF OF THEOREM 1. Let b be in (2.3). Then we have, by the assumption (μ 2) for the measure,

$$\int_{0}^{b} t^{p-1} \mu(G_{t})^{1-\alpha p/\beta} dt \le \mu(X)^{1-\alpha p/\beta} \frac{b^{p}}{p} = \frac{\lambda^{p}}{p} \left(\frac{R^{\beta}}{\mu(X)} \right)^{\alpha p/\beta} ||g||_{p}^{p} \le \frac{\lambda^{p}}{p} \gamma^{-\alpha p/\beta} ||g||_{p}^{p}. \tag{7.1}$$

On the other hand Proposition yields

$$\int_{b}^{\infty} \frac{t^{p-1} dt}{q_{t}^{\alpha p-\beta} + \left(\int_{q_{t}}^{R} \alpha s^{(\alpha-\beta)(p'-1)+(\alpha-1)} ds\right)^{p-1}} \\
\leq C \int_{b}^{\infty} \frac{1}{t} \int_{G_{t/\alpha} \backslash G_{at}} (Mg)(y)^{p} d\mu(y) dt \leq C \int_{X} (Mg)(y)^{p} \int_{(I_{\alpha}g)(y)/a}^{a(I_{\alpha}g)(y)} \frac{dt}{t} d\mu(y) \\
= 2C \log a \int_{X} (Mg)(y)^{p} d\mu(y) \leq 2CC_{6}(\log a) ||g||_{p}^{p}.$$
(7.2)

Case 1. $\alpha p < \beta$. Then

$$\int_{q_t}^R \alpha s^{(\alpha-\beta)(p'-1)+(\alpha-1)} ds \le \frac{\alpha(p-1)}{\beta-\alpha p} q_t^{(\alpha p-\beta)/(p-1)},$$

whence, by (2.3) and Lemma 4.2,

$$q_t^{\alpha p - \beta} + \left(\int_{q_t}^R \alpha s^{(\alpha - \beta)(p' - 1) + (\alpha - 1)} ds \right)^{p - 1} \le \left\{ 1 + \left(\frac{\alpha(p - 1)}{\beta - \alpha p} \right)^{p - 1} \right\} \left(\frac{\mu(G_t^i)}{\gamma} \right)^{\alpha p / \beta - 1}$$

$$= \left\{ 1 + \left(\frac{\alpha(p - 1)}{\beta - \alpha p} \right)^{p - 1} \right\} \left(\frac{\mu(G_{kt})}{\gamma} \right)^{\alpha p / \beta - 1}.$$

Therefore by (7.2),

$$\int_{b}^{\infty} t^{p-1} \mu(G_{kt})^{1-\alpha p/\beta} dt \le 2CC_6 \left(1 + \left(\frac{\alpha(p-1)}{\beta - \alpha p} \right)^{p-1} \right) \gamma^{1-\alpha p/\beta} (\log a) ||g||_p^p.$$
 (7.3)

Hence, by (7.1) and (7.3),

$$\int_0^\infty t^{p-1} \mu(G_{kt})^{1-\alpha p/\beta} dt \le \left\{ \frac{\lambda^p}{p} \gamma^{-\frac{\alpha p}{\beta}} + 2CC_6 \left(1 + \left(\frac{\alpha(p-1)}{\beta - \alpha p} \right)^{p-1} \right) \gamma^{1-\alpha p/\beta} \log a \right\} ||g||_p^p.$$

By change of variables we have the conclusion (i).

Case 2. $\alpha p = \beta$. Then, noting that

$$\left(\log\frac{2\mu(X)}{\mu(G_t^i)}\right)^{1-p} \le (\log 2)^{1-p},$$

for t > b we have, by (2.3),

$$\begin{split} q_t^{\alpha p - \beta} + \left(\int_{q_t}^R \alpha s^{(\alpha - \beta)(p' - 1) + (\alpha - 1)} ds \right)^{p - 1} &= 1 + \alpha^{p - 1} \left(\log \frac{R}{q_t} \right)^{p - 1} \\ &= 1 + \alpha^{p - 1} \beta^{1 - p} \left(\log \frac{\gamma R^{\beta}}{\gamma q_t^{\beta}} \right)^{p - 1} \leq 1 + \alpha^{p - 1} \beta^{1 - p} \left(\log \frac{2\mu(X)}{\mu(G_t^i)} \right)^{p - 1} \\ &\leq \left\{ (\log 2)^{1 - p} + \alpha^{p - 1} \beta^{1 - p} \right\} \left(\log \frac{2\mu(X)}{\mu(G_t^i)} \right)^{p - 1}, \end{split}$$

whence, by (7.2),

$$\int_{1}^{\infty} t^{p-1} \left(\log \frac{2\mu(X)}{\mu(G^i)} \right)^{1-p} dt \le \left\{ 2CC_6((\log 2)^{1-p} + \alpha^{p-1}\beta^{1-p}) \log a \right\} ||g||_p^p. \tag{7.4}$$

We have, by (7.4) and Lemma 4.2,

$$\int_0^\infty t^{p-1} \left(\log \frac{2\mu(X)}{\mu(G_{kt})} \right)^{1-p} dt \le (\log 2)^{1-p} \frac{b^p}{p} + C_7 ||g||_p^p \le ((\log 2)^{1-p} \frac{(\lambda R^\alpha)^p}{p\mu(X)} + C_7) ||g||_p^p,$$

where $C_7 = 2CC_6((\log 2)^{1-p} + \alpha^{p-1}\beta^{1-p})\log a$. This leads to the conclusion (ii).

PROOF OF THEOREM 2. Let $x \in X$. Then

$$|I_{\alpha}g(x)| \le (\int_X I_{\alpha}^R(x,y)^{p'} d\mu(y))^{1/p'} ||g||_p.$$

Noting $\alpha p > \beta$ and using Lemma 3.1 we have

$$\int_X I_\alpha^R(x,y)^{p'} d\mu(y) \le C \int_0^R \alpha s^{(\alpha-\beta)(p'-1)+(\alpha-1)} ds = C \frac{\alpha(p-1)}{\alpha p-\beta} R^{(\alpha p-\beta)/(p-1)}.$$

Hence, for any $x \in X$,

$$|I_{\alpha}g(x)| \le C_8||g||_p,$$

where $C_8 = \left(C \frac{\alpha(p-1)}{\alpha p - \beta}\right)^{1/p'}$. Thus we have

$$||I_{\alpha}g||_{\infty} \leq C_8||g||_p$$
.

References

- [1] H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Diff. Eq. 5 (1980), 773-789.
- [2] R. R. Coifman and G. Weiss, Analyse harnomique non-commutative sur certain espaces homogenés, Lecture Notes in Math. 242, Springer, 1971.
- [3] K. Hansson, Imbedding theorem of Sobolev type in potential theory, Math. Scand. 45 (1979), 77-102.
- [4] J. Malý and L. Pick, The sharp Riesz potential estimetes in metric spaces, Indiana Univ. Math. J. 51 (2002), 251-268
- [5] V. G. Maz'ya, Sobolev Spaces, Springer, Berlin, 1975.
- [6] R. O'Neil, Convolution operators and L(p,q) spaces, Duke Math. J. 30 (1963), 129-142.
- [7] J. Peetre, Espaces d'interpolation et théorème de Soboleff, Ann. Inst. Fourier 16 (1966), 279-317.

Akane Iwamura
Graduate School of Humanities and Sciences
Ochanomizu University
Otsuka 2-1-1, Bunkyo-ku,
Tokyo, 112-8610
Japan

E-mail: iwa-village@syd.odn.ne.jp