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Estimates of the a-Riesz potentials in metric spaces
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ABSTRACT. We define an a-Riesz potential operator on LP(X, i) in a quasi-metric space X
with a doubling measure yu, satisfying a certain lower estimate of the measure of a ball. For this
operator we give estimates of weak type.

1. Introduction

Let Q be a domain in R™. By means of distribution functions, sharper results than the Sobolev
inequality have been obtained by several mathmaticians, O’Neil [6], Peetre [7], Brézis and Wainger [1],
Hansson [3] and Maz’ya [5]. The following result is one of them, which follows from results of O’Neil [6]
and Peetre [7].

THEOREM A. Letl <p <n andu be a function in C§°(Q), with ||Vul||rr@) < 1. Then there exists
C > 0 such that -~
| e > apas (1)
0

where C' is a constant independent of u and |A| stands for the n-dimensional Lebesgue measure of a set
A.

As the limiting case of Theorem A the following resulf is also obtained by Brézis and Wainger [1],
Hansson [3] and Maz’ya [5].

THEOREM B. Let Q be a bounded domain in R™ and u be a function in C§°(Y), with ||Vul|p~@) < 1.
Then

[o.e] tn—l
C, 2
I e (12

where C' is a constant independent of u.

Inequalities (1.1) and (1.2) are regarded as estimates in the Sobolev space W1P(). On the other
hand it is well-known that, if m is a non-negative integer, then W™P(R") is identical with the Bessel
potential space L™P as a Banach space. Here

L™ = {Gm* f : feLP(R™)} (1.3)

for the Bessel function Gy, of order m and the norm ||Gy, * f||m,p is defined to be the LP-norm || f||,.
But even if m is not integer, G, is defined. So, for a non-negative o, L*? is regarded as a Sobolev space
with a fractional order in the case & = R™. We note that the Bessel function with order « is comparable
t0 the a-Riesz function |z|*™™ in a fixed ball.

In 2002 J. Maly and L. Pick [4] considered a quasi-metric space X with diamX = R/2 and a positive
Radon measure p on X with p(X) < oo (See §2). Here diamX stands for the diameter of X. Further
they assumed that u satisfies the following two conditions;

(11) The doubling condition: there exists a positive constant D such that for every z € X and r € (0, %]

u(B(z,2r)) < Du(B(z,r)).
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(p#2) The lower estimate for the measure of a ball: there exists a constant v > 0 and a real number 8 > 1
such that for every x € X and r € (0, R]

w(B(z,r)) > 7P,

In this X, they defined a general Riesz potential [ ¢ with order 1 in X by

R
(Ig9)(z) = /O (7{3 ( t)g(y) du(y)) dt, (1.4)

where the notation f is the integral average of g on a set E with 0 < u(E) < oo, i.e.,

][Egdu= ;(1E—)/Egdu-

THEOREM C. Let g be a non-negative p-integrable function. Put

Goe={ye X : (Lg)(y) >t}

(i) Let 1 < p < B. Then there is a constant C > 0 such that for every non-negative function g €
LP(X, p) with ||g||p < 1 we have

and proved the following theorem.

/ P (G )PP dt < C.
0

(ii) There ezists a constant C > 0 such that for every non-negative function g € LP(X, u) with ||gllg <1~

we have g
® 6 2#(X)) -
-1 (10 dt < C.
/o & 1(Gar)

In this paper we consider a quasi-metric space (X, p) and a positive Radon measure p on X such
that u(X) < oo and p satisfies (u1) and (p2). Further for a non-negative p-integrable function g on X
we define a generalized a-Riesz potential operator I, by

(Tg)(@) = | * e (7{3 .

If there exist a real number 8 > 1 and constants vy, 7' such that

9(y) du(y)) d  (0<a<p). (1.5)

1)

’

P < u(B(z,r)) < o',

then the generalized a-Riesz potential Ig is comparable to the function z — [ p(z, )* Pg(y)du(y)
(see, Lemma 2.1). To give the estimates of I,g corresponding to Theorem C, set

Gagt=Gr={y€X : (lag)(y) >t} (1.6)
for ¢ > 0. In §7 we shall prove the followng theorem which extends Theorem C

THEOREM 1. Letl <p< oo and o> 0.

(i) If ap < B, then there exists a constant C > 0, independent of g, such that for every non-negative
function g € LP(X, p) we have

o0
/ #14(Ge) =%/ dt < Clg].
0
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(ii) If ap = B, then there exists a constant C' > 0, independent of g, such that for every non-negative
function g € LP(X, u) we have

L ) s

We also consider the case where ap > 8 and we obtain the following consequence which will be
proved in §7.

THEOREM 2. Letl<p < oo, a>0 and ap > 3. Then there exists a constant C > 0, independent of
g, such that for every non-negative function g € LP(X, 1) we have

Haglloo < Cllgllp-

REMARK 1. We see that C depends only on p, 8, , v and d. Here 7 is the constant in (p2) and d is
the one in the definition of a quasi-metric space in §2.

The author wishes to express her gratitude to Professor Hisako Watanabe, Ochanomizu University,
for her helpful advice and guidance.

2. Preliminaries

Recall that (X, p) is a quasi-metric space if p is a non-negative function on X x X with the followmg
properties:

(i) p(z,y) =0if and only if z =y,
(i) p(z,y) = p(y,z) for all z and y € X,
(iii) there is a constant d > 1 such that p(z,y) < d{p(z,2) + p(z,y)} for all z, y and z € X.

We shall assume that X is bounded and diam X = R/2 for some R € (0,00). Denote by B(zo,)
the open ball centered at zg of radius r, i.e.,

B(zg,r)={z€X : p(o:,_:cg) <r}

We note that balls {B(z,7)}r~0 form a basis of neighborhoods of z for the topology induced by the
quasi-metric p. Further denote by ||g||, the LP-norm of a function g in LP(X, u) and put p’ =p/(p — 1)
for 1 < p < oo.

Now we define an operator I7, by

(Ia9)(z) = /0 ot (72( ) 9(v) du(u)) dt, r€(0,R], zeX.

Especially if 7 = R, then we write IZ = I,,. By the Fubini’s theorem we see

r at®— 1
(I59)(z) = /B - 9(y) ( /,, o u(13t( ) )du(y)

T ote—1
IN(z,y :] —dt,
( ) p(z,y) /J,(B(:B,t))

Therefore by putting

we can also write

(Ing)(x) = / I7 (2, 9)9(v) du().

3
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If r = R, then we write IX(z,y) = I,(z, ).

Furthermore, given an r € (0, R) and define an operator E, by

: R
(Ea9)(z) =/r at*! (ﬂ(w t)g(y)d,u(y)) dt.

Then I, = I, + E}, and by Fubini’s theorem we have

- _ R ate—1 3 .
(Eo9)(z) = /X 9(y) ( /m weiro(eyy AB@D) t))dt> du(y) = /X Eq(z,v)9(y)du(y),
where R ta_l.
. _ o
Ea(x,y) B [nax{r,p(m,y)} :U'(B(m’t)) at

We now consider a quasi-metric space nb assuming the upper estimate of the measures of a ball.
But, in case we assume the upper estimate of the measure of a ball, the following lemma shows that (1.5)
is comparable to a usual a-Riesz potential.

LemmA 2.1. If X is a quasi-metric space and a measure i also satisfies the upper and lower estimates
of the measure of a ball, that is, there exist constants v, v' > 0 and a real number 3> 0 such that for
every z € X and r € (0, R]

P < W(B(=,r)) < A'rP.

Furthermore, let 0 < a < 3. Then (1.5) is comparable to the function

z - fX p(z,y)* Pg(y)du(y).

Proor. Let z € X and ko be the smallest integer k satysfying X C B(z,2*). We have

ko
p(z,y)** < Z 2(Q—B)k(1B(w,2k+1)(y)_lB(m,2’°)(y))

k=—o0
ko-+1
S 2n—a Z 2(a_ﬁ)le($,2k)(y),
k=—o00
whence
ko+1
/ p(z,y)*Pa(y)duly) < 207> D 2Pk / 9(y)du(y)
X ke — oo (z,2%)
ko+1
< 28Ty 2’““][ 9(y)au(y)-
v k;@ - )
In the same way we have
ko+1
[ o Peant) = -2 3 2 gg)autw).
X ke — oo B(z,2F)

Hence

R R
/X p(z,y)*Pg(y)du(y) ~ /0 ]{B (m’t)g(y)du(y)dt“ = /0 at*™! ]{3 (w,t)g(y)du(y)dt-
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O

The following proposition will be crucial to prove Theorem 1. The proposition will be proved in §6.
Recall that a maximal function Mg is defined by

(Mg)(z) = sup]{B 9@l du(y), z€ X, 1)

for a p-integrable function g, where the supremum is taken over all balls B containing z.

ProrosIiTION. Let1 < p < 3. Then there exist a constant C > 0 and a positive number a, depending
only on D and d, such that, for every non-negative function g € LP(X, pn) and t > b,

R p—-l
?*<C qg%ﬁ_,_ (a/ s(@=B) (' ~1)+(a~1) ds> / (Mg)(y)? duy), (2.2)
_ qt Gt/a\Gat
where
| G\
b= ARu(X)"?|gl, and @ = < 5 ) , (2.3)
if we put
log D 5
= —e—— = 2-4
=2 A=D(d) (24)

and denote the interior of Gy by Gt.

3. Statements of elementary properties

In this section we state comparatively elementary properties without proofs but they are proved by
the same methods as in [4].

LemMmA 3.1. Letze X,p>1, and 0 <r < R. Then there is a constant C > 0 depending only on p,
B, a, and v such that

R
[ Brtew dut) < © [ aste 0D g,
X r

Moreover, if ap > 3, then

R
[ 1@ dut) <€ [ aste0 0+ g
X 0

REMARK 2. By the direct calculation we see that (I;1)(y) =7* foreachy € X and 0 <r < R. In

fact,
(I71)(y) = / ate=1 (][ ldu(z)) dt = / ate=1dt = re.
0 B(y,t) 0

The doubling condition leads to the following two lemmas. The first one is Lemma 4.1 in [4].
LEMMA D. Forallze€ X and 0 <t < s < R we have

W(B,s) _ o (s)¢
W(Bzt) =P ()
The second one is as follows.

LEMMA 3.2. There is an increasing function @ from [1,00) to [1,00) such that

R - 1
at*1 at® R
A / dt foreachye X andr < —,
/ i BGH) Y=Y | wBE Y 2

where ¢ depends only on D and c.
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LEMMA 3.3.  Let X be the number defined in (2.4). Then

1
XIa(x,y) < Ia(y,x) < )\Ia(m,y)
for every x and y.
Hereafter let g be a non-negative function in LP(X, u) and G be the set defined in (1.6).

LeMMA 3.4. Let a > 2)\%p(3d) and = be a point in G;. Then

/ | La(z,y)9(y) duly) < -;—

G:/a.
LemmMma 3.5. Letz, y, z € X. Asuume that p(y, z) < Ap(z,y) for some A> 1. Then
Ia(way) < )\2(,0(14)[@(2!,'!/)-

LeEMMA 3.6. Let x be a point in Gy. Suppose that B = B(z,r) C Gy for some z € X and v > 0.
Further let y,€ € B. Then
E%(z,y) < ¢(d +2d°)E% (,€),

where g is the number in (2.3).

4. Properties of the set G

We see by the following lemma that the complement G¢ of G; is nonempty for a sufficiently large .

LEmMmaA 4.1.  Suppose that t > 2b for b in (2.3). If g >0 on X. Then

B(Ge) < Sp(X).

Proor. By the definition of G; we have
we) s [ t@an© <7 [ [ 16 v)ow dut) )

whence, by Lemma 3.3, Remark 2 and (2.3),

e Lo (6)) duty)

3 [ owT1) ) dut)

w(Gt)

IN

A

Il

A A _1 1
2R [ @) duty) < TR0 < ().
’ X
O

LeMMA 4.2,  There exists a constant k > 1 depending only on p, o and p such that, if g is a non-
negative function in LP(X, ), then

klixr_ljnf(Iag)(z) > (Ing)(z) for u— almost everywhere x € X. (4.1)
Z—>T

Moreover, ift > 0, then Gy C Gi.
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ProOOF. Let g be a non-negative function in LP(X, u) and let y, z € X. Since p({z € X : (I.g)(z) =
00}) = 0 by [2, Theorem 2.1 on p.71], we may suppose that {I,g)(z) < co. By the monotone convergence

theorem
(Tag)(a) = lim [ Lo(2,9)9(0)du(y).
p(z,2)<p(z,y)
Note that
{ye X : p(z,2) < p(z,y)} C{y € X : p(y,2) < 2dp(z,y)}
and hence

Io(z,y) < Mp(2d)1a(2,y)
by Lemma 3.5. Therefore

(Tag)(z) < A*p(2d) lim inf Ia(2,9)g(y)dp(y) < Xp(2d) lim inf (Io,g)(2),

zoa /P(miz) <dp(z,y)

which is the first assertion with k = A\2¢(2d).
For the second assertion, let z € Ggt. Then kt < (I,g)(z) < kliminf, ,,(1ag)(2), so that Iog >t on
some neighborhood of z. Hence z € G¢. Thus Gy, C Gt. 0o

5. A covering of Whitney type and the maximal operator

In this section we fix a non-negative function g € L?(X, ) and ¢t > 2b for b in (2.3).

In general, the Whitney decomposition is known as the one of an open set into a suitable union of
cubes. But, in a quasi-metric space X we use its version of a covering by balls. Since (Iog)(z) is not
always lower semicontinuous, we can’t use the covering lemma for G;. Applying Theorem 1.3 on p.70 in
[2] to G, we have following lemma.

LeMMA E.  There ezists a countable system of balls {B;}jen, Bj = B(zj,r;) with the following prop-
erties; '

1 .
(ii) oL < dist(y, (Gy)¢) < Cirj for every y € By,

(ili) 3 en 18, < Ca.
Here two constants Cy, Cy > 1 depend only on 8 and d.

LeMMA 5.1.  There is a positive constant Cs, depending only on d, D and o, with the following prop-
erty : For every j € N there exists a point z; € (Gy)® such that

[ 1ale) du) < ConBo)Iazs,0) forall ye X. (5.)
B;
Proor. Since (G%)° is nonempty from Lemma 4.1, for each j = 1,2,---, there is a point z; in (G%)°

satisfying
p(mj, Zj) < Cl’f‘j.

Case 1. p(y,x;) > 2dr;. Then p(y,§) > r; for every & € B;. Therefore

DO =

ry < 288 < 2 (o(0,) + o6 29)) <

and hence
r; < p(y, ).
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Thus
p(zy) < d(p(zj,z5) + d(p(z;5,8) + p&v)))
<. d(Cyrj+drj+dp(€,y)) < Cp&y)

with C = d(Cy + 2d). Since
I,(&y) < A2W(C)Ia(zj’y)
by Lemma 3.5, we obtain (5.1).
Case 2. p(y,x;) < 2dr;. Then

p(z,y) < d(p(zj, 5) + plz;,9)) < Or; (5.2)

and, by Lemma 3.2 and Lemma 3.3,

R a—1 R ta—l
/ o< / it < 9(O)aly, 2) < A(C)la(2, ),

; MBy,t)  ~ Jeew p(B(y,t))
whence
S N 53
/Bj (/ u(B(y,t))dt> dp(§) < Ap(C)u(Bj)a(2),y)- (5.

Let r; <t < 2r;. Then '
B(y,t) C B(z;, (2d + 2d®)r;).
Hence, by the Lemma D and putting C’ = D(2d + 2d?)?, we have
#(B(y,1)) < u(B(j, (2d + 2d*)r;)) < C'u(B;).
The inequality (5.2) and Lemma 3.2 yield

R a—1 R a—1
at at
u(By) / O ——dt > u(By) /
P

#(Bj)1a(y: %) (w.2s) BB, D) ory W(B(y, 1))

Il

S BBy [Tt g > HBi) /2” at*!
= (@) Jry w(B,t) T T w(C) Jry w(B(yt))
) et @0 Drg
2(©) ), TuBY" = Cw(0)
Hence, by Remark 2,
) ] ata—l C,)\
—dt | du(&) = 7rF < e(CYu(B;)Io(z5,y)- (5.4)
/B(yn‘j) (/p(e,w w(B(y,1)) ) ) =17 < o7 P (OuB a2

By using Lemma 3.3 we have

/ L(&,9) du(6) < A j La(y, €) ds(€)
B; Bj

T ate~1 R Oéta_]‘
= (/B(y,?‘j) (/p(y,ﬁ) ;(_Bmdt) (&) + /BJ- (/rJ E(B(y—,t))dt> du({)) ’

ri

. Here we used that fp(’y,g) m"%m(%t))dt <0 for p(y,€) > r; and {£ € B; : p(y,€) <r;} C B(y,r;). By (5.4)
and (5.3) we have

N

[ ienan® < 3552l OuBLales,) + A OB alz)
Bj

’

Xp(C) (2ac_ 7+ 1) #(B;)a(25,9).

Putting C3 = max{)\2p(C), \>¢(C)(5% + 1)}, we have the conclusion. o
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LEMMA 5.2. Let Cs in Lemma E and suppose that a > 2C3k for C3 in (5.1) and k in (4.1). Then
(1) w(BjNGat) < @ for every j € N,
(i) w(G}) < 2Cu(Gi\Gat)-

ProorF. (i) From the definition of G4: and Fubini’s theorem it follows that

CLt}J,(Bj N Gat) < /

BJ' NGas

(Tag)(€) du(€) < / 9(v) (/ 1a(§,9) du(ﬁ)) du(y)
X B;
By Lemma 5.1 there is a point z; € (G%)® such that for all y € X

/ Lal&¥) du() < Cop(By)Ia(2,y),

7

whence C
N(Bj N Gat) < a?‘,‘li(Bj)(Iag)(Zj)'

- Since that (Iog)(2;) < kt by Lemma 4.2, we obtain (i).

(ii) By (i) we have, for each j =1,2,---,

(By) < B3 1 Gar) + 1(B;\Gar) < 54(By) + 1(B;\Ga)

whence
m(B;) < 2p(Bj\Gaz)-

By (i) and (iii) in Lemma E we have

WG <D w(By) <2 w(Bi\Gar) < 2Cop(Gi\Gar)-
JEN jEN

By the same method as in [4, Lemma 5.5] we can show the following lemma.

LemMA 5.3.  Let a > 2)2¢(3d) and z be a point in GE. Then

/  La(z,9)9(y) duly) < %

t/a

The following lemma is the last one as the preparation of the proof of Lemma 2.2.

LEMMA 5.4. Let a > 2max{Csk, A\2p(3d)} for C3 in (5.1) and k in (4.1) and = be a point in Gi.
Furthermore, let g, be the number defined by (2.4). Then there is a constant Cy > 0 such that

(2@ <3+Ch [ BE(@u)(Mo)(s) du(y).
Gira\Gat

Here Cy depends only on d; D and o.

Proor. Fix z € Gi. Then we have from Lemma 3.6 and (2.1) that

/ E%(z,9)9(y)du(y) < ¢(d+2d?)E%(z,¢) / | 9(y) du(y)
B; B;

< p(d+2d°)EZ (2, €)u(B;)(Mg)(€)-
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for every £ € B;. Integrating over B;\Gg: with respect to ¢ and using Lemma 5.2, (i), we have

[, P nawdn) < el 2ty B0 [ B 00O dute)

7

IA

20(d+2d%) [ E(2,€)(Mg)(€) dule),

BJ'\Gat

whence, by Lemma E,

IA

) / E2(2,4)9(s)du(y)

JjEN

2p(d+2d%) 3 / % (2, £)(Mg) (€) du(€)

jeN Y Bi\Gas

[ B2 i)a) dutw)

IN

IA

2p(d + 24%)C; / B2 (x,6)(Mg)(€) du(©)-

; Gat
Since, for y-a.e. z,
f owdut) = g@) as 70,

)

we see that g < Mg p-a.e. and

/ B3 (= y)9(y) du(y) < / Bl (z,y)(Mg)(y) du(y)-
Gi/a\Gy t/

a t

On the other hand we also have, by Lemma 5.3

Nlt‘l-

/ EZ(z,y)9(y) du(y) < / In(z,9)9(y) du(y) <
G’:/a ©

Gt/a

Consequently
(B29)(@) = [ F2(@u)at) du)
= / E%(z,y)9(y)du(y) + /

E% (2, 9)9(y)du(y) + / B2 (2, 1)g(4)duy)
Gira G1/a\Gy Gi

< _2_+ / E%(z,y)(Mg)(y)du(y) + 2p(d+2d?)Cs f . EE(z,y)(Mg)(y)u(y)
Gi/a\G Gi\Ga

t
< 30 [ BE@u(0Me) dut),
Gt/a\Gat

where Cy =1 + 2¢(d + 2d?)Cs. O

6. Proof of Proposition

In this section we give the proof of Proposition.

PRrooF oF PROPOSITION. Let g be a non-negative function in L?(X, u) and let a > 2 max{Csk, A%¢(3d)}.
Recall that for each r € (0, R)
(ag)(z) = (129)(x) + (E9)().

Let t > b. For z € Gt
t < (I&g)(z) + (EZ 9)(2),
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where ¢; is defined in (2.3). Since
qt 1 qt 1
@ = [ o=t (f ., S ) ) de < ()(z) [ ettt = gz ua9)a),
x,t

we have, by Lemma 5.4,

t < 2q% (Mg)(z) + 2Cs /G o, EE@UMY) duls) CEY
t/a\Gat

By Hoélder’s inequality and Lemma 3.1 we have

/ E%(z,y)(Mg)(y) du(y) 62
Gt/a\Gat
1/p , "
< (/Gt/u\Gat(Mg)(y)P du(y)) (/X B (z, )P du(y))
<

) 1/p R 1/p’'
c¥ / (Mg)(y)® du(y) ( / aste=mE'-+a-1) dS) :
Gt/a\Gat qt /

where Cj is the constant in Lemma 3.1. Therefore, by (6.1) and (6.2),

tP

IN

2P~ g (Mg)(z)? + CF ( /G

22P=1142P~P B (M g) (z)?

R p-1
voot [ argwrany ( | astemorensen ds) )
Gt/a\Gat as

t/a\Gat

EE(z,y)(Mg)(y) d#(y)) }

IA

Noting that qf =

u(’?t), we have, by Lemma 5.2, (ii),

R i AV ATE

~
R p—1
+CcE! / (Mg)(y)? du(y) ( f as(@=AE' =1+ d8> 3
t/a\Gat : qt
whence
R p—1
< C{g? "+ < / asle=AE'-+e-1) d8> } (Mg)(y)” du(y),
qt Gi/a\Gat
where C = 227~1(2y71C, 4+ C2CE™Y). , _ =

7. Proof of Theorem 1 and Theorem 2 _

In this section we prove Theorem 1 and Theorem 2.

ProoF oF THEOREM 1. Let b be in (2.3). Then we have, by the assumption (u2) for the measure,

b ap/B
b X [ RP AP
tp—l G 1—04P/ﬂdt < X l—ap/B7 — (_) P —ap/B P 7.1
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On the other hand Proposition yields

b g

P 4 ( qu as@=B) @' ~1)+(a=1) dg)p—1

1 a(lag)(¥) gt
c / " / (Mg)(y)P du(y)dt < C / (Mg)(y)? / — du(y)
b tJGi/a\Gar x (Tng)(w)/a

2Cloga /X (Mg)(y)? duly) < 20Cs(loga)]lg]E.

IA

Il

Case 1. ap < 8. Then

R
/ as@B)E -D+a-1) g5 < AP 1) (ap-0)/(p-1),
a B—oap

whence, by (2.3) and Lemma 4.2,

R p—1 . p—1 i\ ap/B—1
q;xp—ﬂ + (/ as(a—ﬁ)(p'_1)+(a—1)d8> < {1 i (a(p— 1)) } (/"’(Gt))
qt

B —ap ¥
_ a(p—n)’”‘l (u(Gm)”/""l
= ( o) 5 '
Therefore by (7.2),
oo p—1
/b .tp—lu(th)l—aP/ﬁ dt < 2CCs (1 + (gg(]i—;lpl) ) 'yl—"‘p/ﬁ(IOga)llgllg. (7.3)

Hence, by (7.1) and (7.3),

o p o -1 p—1
| @ < 2% 4200 (1—}—(%) )f-af’/ﬂloga}ng||g.
0

By change of variables we have the conclusion (i).
Case 2. ap = (. Then, noting that

2:“’(X) P 1-p
(s Gsy) < tos2"

for ¢ > b we have, by (2.3),

R ) p—1 R p—1
q;rp—ﬁ+ / asle=B) (' —1)+(a—1) 44 = 14aP? (log Z]I)
qt

—1
AW 2u(X)\?
= 1+a? 18P [log 2 < 14+aP7ipt-? <log .
f ( S u(G)

< {(log2)'? +ar 157} (log i;gg‘;) o

whence, by (7.2),

[e) l 1-
7o (108 228) e < (20Cu(og 27 + 067 gl (7.4
b wGH)
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We have, by (7.4) and Lemma 4.2,

o 2u(X) \'7? —p —p(AR*)?
tpl(log———-———) dt < (log2)'P— 4+ C P < ((log2)1~P 4 C7)|lgllZ,
/ ) (1og2)1 =7 + Cillgl; < ((og2)' S +Colgl
where C7 = 2CCg((log2)'~? + aP~1B1P)log a. This leads to the conclusion (ii). a

Proor oF THEOREM 2. Let z € X. Then

Tag(z)] < ( /X (2, ) du()) llglly-

Noting ap > § and using Lemma 3.1 we have

/ R : a(p—1)
/ IE(z, )P du(y) < C’/ ase=B) @ —1+(a—1) 7o C’—-————ﬁR("‘”‘ﬁ)/(”“l).
X 0 o

Hencé, for any z € X,

[ag(z)| < Csllgllp,

1/p'
where Cg = (CM) ? . Thus we have

ap—f

IHaglloo < Csllgllp-
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