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Abstract
We calculate the spectrum radius of a convex sum of a free family of projections using the
technique of Gerl and Woess for harmonic analysis of nonisotropic random walks on free
groups. We use Voiculescu’s R-transform for the additive free convolution to obtain the
implicit relation on the resolvent function.

1. Introduction

Voiculescu began studying in [Vol] the operator algebra free products from the probabilis-
tic point of view. His idea is to look at free products as an analogue of tensor products and
to develop a corresponding highly noncommutative probabilistic framework, where freeness
is given as the notion of independence (see the monograph [VDN]).

The spectral theory of the infinite graphs such as the homogenous tree or the harmonic
analysis on the free groups have been treated in many literatures. The free probability theory
can be regarded as an abstract frame work for harmonic analysis on the free groups in the
terms of non-commutative probability, which is called, nowadays, the free harmonic analysis.

In this paper, we shall show a kind of free harmonic analysis on a free family of projections,
which is closely related to the harmonic analysis of nonisotropic random walk on free groups
by Gerl and Woess in [GW]. We treat linear combinations, essentially convex sums, of a free
family of projections and calculate their spectrum radii and, hence, their norms are obtained.
The computation of the norms of convolution operators in C*-algebra of the free groups in
[AO] and the classical results of Kesten in [Ke] are derived as our special cases. The nice
technique about computation of spectra of sums of self-adjoint free operators can be found
in [Le], which is originally due to Haagerup. We shall, however, adopt the argument of Gerl
and Woess in [GW], which is essentially the same as in [Le] but more graphical and direct
way to compute a spectrum radius of self-adjoint operator from the resolvent function.

The paper is organized as follows: In Section 2, we review the terminologies of the free
probability theory, which are used in the paper. In Section 3, we compute the spectrum
radius of a free sum of positive scalar multiplicated projections. At the end of the paper,
we present important examples of our computation related to the transition operator for the
random walk on the free group and Plancherel measure for the free product of cyclic groups.

2. Preliminaries of the free probability theory

Recall that a usual probability space is a triple (Q, 2, v), where 2 is a base space, ¥ is a
o-algebra and v is a probability measure that is positive and satisfies #(Q2) = 1. A random
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variable is a measurable function f : Q@ — C, and if f is integrable then its expectation E(f)
is given by

E(f) = / v,

We can consider a noncommutative probability space in a purely algebraic frame as an ana-
logue of the above usual probability space.

Definition 2.1. A noncommutative probability space is (A, ¢), where A is a unital algebra
and ¢ : A — C is a linear functional with ¢(1) = 1. We say that (A, ¢) is a C*-probability
space when, in addition, A is a C*-algebra and ¢ is a state. :

One can define independence in a noncommutative probability space as generalization of
the usual definition, which is based on the tensor product of algebras. Instead of the tensor
product we use the reduced free product. Then we can introduce a much more noncommu-
tative independence called free, which is due to Voiculescu and explained below.

Definition 2.2. Let (A, ¢) be a noncommutative probability space and .A; be subalgebra
of A containing the identity element of A, 1 € A; C A, for i € I. We say that the family
(Ad)ies is free if
¢(z1z2- - Tn) =0
whenever z; € A;; and 41 # i2 # -+ # i, and @(x;) = 0 for all j.
A family of subsets X; C A (resp. elements z; € A) will be called free if the family of
subalgebras A; generated by {1} U X; (resp. {1, z;}) is free. ’

Example 2.3. For a discrete group G, consider the left regular representation of G on £2(G),
given by g — Ag(g), where (Ag(9)¢)(h) = £(g7h) for g,h € G and ¢ € £2(G). The reduced
group C*-algebra of G is

Cr(G) =spanll{x(9) : g€ G },

the operator norm closed *-algebra generated by {Ag(g) : ¢ € G}. It has the canonical
faithful tracial state 7g(-) = (- de|de) where b, is the characteristic function of the identity e
of G.

If G is the free product of a family {G; };-“:1 of discrete groups and
A; =span!l l{Xa(9) : 9 € G5 }
then (\A;) is free in the C*-probability space (C;(G), 7).
Definition 2.4. Let (A4, ¢) be a noncommutative probability spéce. A random wvariable is

an element x € A. The distribution of z is the linear functional v, on C[X] (the algebra of
complex polynomials in the variable X), defined by

v(P(X)) = ¢(P(z)), forall Pe C[X].

Note that the distribution of a random variable z € 4 is nothing more than a way of
describing the simple moments of the random variable.

Remark 2.5. In a C*-probability space (A4, @), if z is a self-adjoint element of A then the
distribution of z, v,, extends to a compactly supported measure on R, namely there exists a
unique probability measure dv, on R such that

ft _ P0dus(t) = 6P (o).
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Thus, for a self-adjoint element x, we simply call v, the probability measure of z in this
paper.

Definition 2.6. If z; and z, are free random variables with distributions v, and v, then
the distribution:vy, 5, (which depends only on v,, and v,) is called the (additive) free
convolution of v, and v,,, and denoted by v, B vy,.

As a tool for computing the additive free convolution, Voiculescu introduced the R-
transform in [Vo2], which makes the free convolution linearlize, and its definition goes in terms
of a certain family of formal Toeplitz operators. Here we should note that the machinery of
the R-transform was found independently and about the same time by Woess in [Wo2] and
by Cartwright and Soardi in [CS1], [CS2], and [So] from the studies of the random walks on
free product groups to obtain the walk generating function or the Plancherel measures.

Definition 2.7. For a distribution v, we consider the formal power series in ¢t
Gu(Q) = ¢+ D _w(XF)C,
k=1 '

which is called the G-series of v. Furthermore, we put the formal power series M, (z) by
[e o]
M,,(Z) = ZV(Xk)zks
" k=0
and call it the moments series of v. Of course, the moments series is related to the G-series

by the formula,

M,(2) = %Gy(l).

z

Remark 2.8. If v, is the distribution of an element, z € A, of a C’*-probability space (A, @),

then for || > ||z||,

G () =0 (1 —2)7Y).
If, in addition, x is a self-adjoint element, then v, is a probability measure compactly sup-
ported on o(z) C R, the spectrum of z, and thus

_ dv,(t)
Gu0)= [ 7

is precisely the Cauchy transform of the probability measure v, of z, which is defined in a
neighbourhood of infinity and analytic for ¢ > ||z||sp.

Definition 2.9. The R-transform R,(z) of the distribution v is defined by the functional
equation,
1

G =z — R,(G,(2)).

The most important property of the R-transform is that, for free random variables z;
and x5, we have '

Ry, @u,,(2) = Ry, (2) + Ry, (2),
hence, the R-transform can be regarded as a free cumulants series. For a dilation and a shift
of a random variable, the R-transform behaves as follows:

RVoz:z (Z) = aRVa: (aZ),
RV:c+m1 (Z) = RV:: (Z) +m.
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In the rest of the paper, for a random variable z, we shall simply denote G,,, M,,, and
R, by G, M,, and R,, respectively, where v, means the distribution of z.

3. Free convex sums of projections
Let p be a projections in a C*-probability space (A, ¢) with ¢(p) = 7(0 < 7 < 1). Then the
G-series of the projection p can be given by
1-71 T (+7-1
G = + = .
A e ()

After some small calculation, we obtain that

Rp(z) = % {(z — 1) ++/(z - 1)2 +4Tz}

where the analytic square root is chosen as lil’% Ry(z) =T.
: Z—

Let {p;}_, be a free family of projections in a C*-probability space (A4, ¢) with ¢(p;) = 7,
where 0 < 7; < 1. We consider the sum of positive scalar multiplicated projections of the

form
n
L= z a;Di,
i=1

where a; > 0, hence if we normalize, L can be regarded as a convex sum of {p;}? ;. Using
the properties of the R-transform in the previous section, we can find that the R-transform
of the element L is given by

Rp(2) = Z —2-1; {(a,-z -1+ ﬂaiz —-1)2 4+ 4'riaiz} .
i=1

By the definition of the R-transform, we have an implicit relation on the Cauchy transform
G (2) of the probability measure of the random variable L that

GL].(Z) =z — z 2GI];(Z) {(OLiGL(Z) — 1) + \/(CYiGL(Z) — 1)2 + 4TiaiGL(Z)} ]
=1

Remark 3.1. If we could solve the above equation in G (z), explicitly, then the spectral
measure of L would be obtained with the helps of the Stieltjes inversion formula. It is imme-
diately seen that G (z) is an algebraic function, but it can not be solved in radicals, generally.
We can solve in radicals only in the special cases and, in such cases, the corresponding spectral
measures are determined (see [AY]). |

As we mentioned before, there is the relation between the Cauchy transform G and the
moment series My, that

1 1
My(z) = —Gi(=),
z z
we can obtain the following implicit relation on My :

Proposition 3.2. We denote the function

P(t)=1+ %2”: (et — 1+ yfot2 +202m — Dast +1).
=1
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Then the moment series M[(z) satisfies the relation,
ML(Z) = P(ZML(Z)).

Now we shall give the spectrum radius of the element L by calculating the radius of
convergence r of the series M, (z) by using the argument of Gerl and Woess in {GW] for the
harmonic analysis of the nonisotropic random walks on the free groups.

At the first, we shall see the shape of the curve y = P(t).

Lemma 3.3. Fort > 0, the curve y = P(t) is strictly increasing and convez.
Proof. The first derivative of P(t) becomes

1 — 2¢ 2 — Doy
p’(t)=.2.2<ai+ ot ¥ 2r - Do )
i=1 \/a?ﬁ +2(21 —1Dat+1

=_1_ia.<1+ Oé,;t+(2’7’,;—1) )
2 (]

i1 Vo3t +2(2m — Dot +1

and we have the inequality,

|Oéit + (27; — 1)| < \/Otz?t2 +2(21; — Dyt + 1,

because —1 < 27; — 1 < 1. Hence, P'(t) > 0 and the function P(t) is strictly increasing.
The second derivative of P(t) is given by

U - a2(1 - Ti)Ti
pro 23—
i—1 (OA?t2 +2(21 — Doyt + 1) .
Since 0 < 1; < 1, we have P"(t) > 0 which means the function P(t) is convex. O

Remark 3.4. We can see a little more about the shape of the curve y = P(t) that
n
P(0)=1 and P'(0) = Y  au;,
i=1

and the curve y = P(t) approaches the asymptote

= ($w)es (1-30-)

i=1

which passes below the origin if and only if
n
z'r s <n—1.
i=1

Proposition 3.5. The radius of convergence v of ML(2) is given by the formula,

%:inf{@‘t>0}.

Proof. This can be proved by the same argument as for the proof of Proposition 3 in [GW]
(see also Corollary 1 in [Wol]).
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The series M[,(2) has positive coefficients because they are given by the moments of a
positive random variable L. Thus what we are looking for is the smallest positive singularity
of Mp,(z), which will give the radius of convergence r. By Proposition 3.2, it follows that,
for positive real z < r, t = zML(z) is also positive and ML (z) can be illustrated as the

1
y-coordinate of the point of intersection of the line y = < t with y = P(t) in the (¢, y)-plane.

Here we divide the proof into the two cases depending on whether the asymptote of the
curve y = P(t) passes below the origin or not.

Case 1 : >0 7 <n—1

In this case the asymptote passes below the origin. For positive z < (> i, ai)_l, there
is exactly one point of intersection. For larger z, there are two points of intersection (by
continuity of Mp(z), we should take the one closer to the origin) until we reach the line
through the origin that is tangent to the curve y = P(t). We note that this tangent line
is uniquely determined by the shape of the curve and the tangent point (8, P(6)) is given
by unique positive solution @ of the equation tP’(t) = P(t). For z still larger, the equation

—t = P(t) does not have a real solution any longer.

If we write the function
F(z,w) = P(z w)

then we have F(z, M1(z)) = 0. For positive z < ——— 7 ( 5 .it follows that

Fulz, M(2)) = 2P'(zML(2)) — 1 # 0,
as otherwise z M (z)P'(2M(z)) = ML (z) = P(2M(z)) which means that 2M,(z) = # and

contradicts with z < —— o) By applying the theorem on implicit function to F, we can find
1 1
the analytic functlon Mp(z) for z < —— ) On the other hand, for z = m we have

Fuw(z,ML(2)) =0,

which yields our desired singularity. Hence we have

%:P'(0)=¥=min{@|t>0}.

Case 2 : 3 1, >n—1
In this case the asymptote intercepts the y-axis on the interval [0, 1) and, for each positive

z < (Z?=1 ai) _1, we can find exactly one solution. Applying the theorem on implicit function
again to F, the solution M (z) is analytic at 2. For larger z, there is no real solution at all,

hence, we have
1 < . Pt . .1 P@®
?—;ai——}g&—t —mf{ —~ ;t>0}.
O

Remark 3.6. Replace t by s™! in the expression of the infimum in the previous proposition,
the result can be written as

~11__=r§12i(1)1{s+ 22( —s+\[2+2(2rz—1)azs+a)}




December 2003 The spectrum radii of free convex sums of projections

where the infimum as ¢ — oo in the previous proposition is, of course, attained at s = Q.

Since the moment series M7, is related to the G-series by

G1¢) = 7 Mi(),

if the series My, (z) has the radius of convergence r then the function GL(¢) is analytic in

1 .
|¢] > —. As we have noted in Remark 2.8, the G-series should be analytic in resolvent of L.

The spectrum of L lies only on the non-negative real line, because L is positive, hence, z = r
is the only sigularity on the circle of convergence for the moment series My, (z).

Consequently, we obtain the following theorem on the spectrum radius of the operator L:

Theorem 3.7. Let {p;}7, be a free family of projections in a C*-probability space (A, ¢)
with ¢(p;) = 7;. Let L be the sum of positive scalar multiplicated projections of the form

n
L= Z o;p;
i=1

where a; > 0. Then the spectrum radius, hence the norm, of the operator L can be given by
the formula

LI = ||L]lsp = %( ai) +I§1>i(r)1{s+ -;-zn: (\/32 +2(27 — V)aus + a2 — s) }
3 T i=1

=1

Remark 3.8. A complete description of the atoms of the free convolution p H v of two
probability measures y and v on R has been investigated by Bercovici and Voiculescu in
[BV]. Namely, the free convolution y B v has atoms only under the following circumstances:

(pBv)({c}) =7 > 0if and only if there are a,b € R,
so that a + b= c and u({a}) + v({d}) =1+ 7.

In our situation, it is obvious that the probability measure v, of the random variable L is
nothing else than the free convolutions of the dilated Bernoulli measures,
n

vy = 1E=EI ((1 — Ti)(so -+ Tiéai)-

Applying the above criterion repeatedly, we can claim that if Sr 17 > (n—1) then the
probability measure v7 has an atom that

vp ({E?:l ai}) = (Z?:l Ti) = (n—1),

which yields ||L||sp = > i ; @; (see the second case in the proof of Proposition 3.5).

Example 3.9. Let F,, be the free group on n generators gi1,92,...,9n. We denote the left
regular representation of Fy, on £2(F,,) by AF,,.- Akermann and Ostrand gave the exact formula
of the norm of the convolution operator

n
To =Y Bi(Ar. (%) + Ara (90)")
i=1
in [AO] (see also [Wol]). This operator Ty can be regarded as the transition operator for
the symmetric random walk on the free group F, (see [GW] and [Wol]) and, hence, on the
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infinite graph of the 2n homogenous tree. From this point of view, the operator T can be
interpreted as follows: Let G be the free product of 2n copies of Z,,

G:Z2*Z2*"'*Z2,
2n

and let u; (i = 1,2, ...,2n) be the unitary generator of order 2 corresponding to each cyclic
group Zs in C¥(G). Then the operator Tj can be identified with the operator

n
T = Zﬂi(uzi—l + ug;)
=1
on £?(G) as the transition operator for the random walk on the infinite graph of the 2n
homogeneous tree. As we mentioned in Example 2.3, the unitaries {u;}??, are free. Namely,
if we put p; = (u; +1)/2 then {p;}?", becomes a free family of projections with 7¢(p;) = 1/2
in the C*-probability space (C}(G), 7). Since the operator T can be rewritten as
n n
T = Z 2Bi(p2i—1 + p2i) — 2 ( Z ai) 1,
i=1 i=1
by putting
n
L= z 26;(p2i—1 + p2i),

=1
our formula is applicable with a; = Bj;_1)/2j+1 and 7; = 1/2 for i = 1,2,...,2n. Finally, we

obtain .
[|T1]| =I§1>i(1)1{s+2(\/52+4,6§ —s) }
= i=1

Example 3.10. Let us show another important example of our computation. Let G be the
free product group of the cyclic groups,

G=2Zm, *liny %+ * Ly,

where m; > 2. The (word) length for the elements of G can be naturally defined (see, for
instance, [CS1]). We denote the characteristic function on the elements of length 1 by x;.
Let T,, denote the convolution operator f — X1 * f on £2(G). We can regard the operator
norm closed x-algebra A* generated by the operator T, and the identity as a convolution
algebra of functions in ¢2(G). Since Ty, is self-adjoint, A* is an abelian C*-algebra and we
may consider the Gelfand isomorphism

T A — C(X),

where X C R is the spectrum of the operator Ty, and C(X) is the algebra of all the continuous
functions on X. Then the Plancherel measure p that is the unique Borel probability measure
on R with support X, can be defined by the formula

f(e) = /tex Ft)du(t)

for all f € A*, where e stands for the unit of G.
Here we call the quantity

lIullpr = sup { M| A € supp(u) }

the Plancherel radius, which will be covered by our computation.
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Indeed, the Plancherel radius coincides with the spectrum radius of the operator T, and
it can be rewritten as follows: Let w; (i = 1,2,...,n) be the unitary generator of the cyclic
group Z,,; in the reduced C*-algebra C;(G). Then it can be seen that the operator T}, is in

the form
n m;—1

Ty, = Z ( Z uf)
=1 = k=1
On the other hand, it follows that the sum of {uf}7*! can be given as

m;—1

k
> ub =mp -1,
k=1

where p; is a projection of 7¢(p;) = 1/m; because the unitary u; is of order m;. Hence we

obtain that n
L= (Zmipi) —nl
i=1

and {p;}?, is, of course, a free family of projections. Now our result of computation is
applicable with a; = m; and 7, = 1/m;,.
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