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Abstract

In this article, we examine a concrete example of maximal curve represented as a Miura Cs curve,
and implement an algebraic-geometric code using rational points of this curve. The implementation
is visualized through application to greyscale and color raster images.

§1. Introduction

Reed-Solomon code was introduced in 1960 and has been used practically. Its only deficiency is that
the code length is limited to the order of the finite field employed. To obtain longer codes over a fixed
field, algebraic-geometric codes of residue type were introduced by Goppa in 1981 and have been studied
both theoretically and algorithmically. But its practical implementation is still not popular.

In this report we choose one of the maximal curves found by M. Kawakita[KS] represented as the so
called Miura C} curve, study its properties and construct a Goppa code employing its rational points.

This curve has fairly good properties. For example, the minimum distance of the code subspaces
constructed from the natural monomial ordering agrees with the Goppa designed distance for all non-
trivial information lengths.

Our implementation is applied to each row of an ASCII pnm format 256 greyscale or RGB color raster
image files, prepares code space according to the width of the input image, adds the redundancy bits up
to the longest possible in choice, allows to give damage by the mouse operation, and decodes it, thus
visualizing how the image is encoded and the damaged image can be, or cannot be recovered, according
to the widths of the damaged parts. We have, of course, the Reed-Solomon version. This will serve
especially for educational purpose of the theory of error-correcting codes.

The implementation was done with use of g++ and X1ib, which may work on any unix system with
X11, and also on cygwin which emulates them on Microsoft Wondows.

§2. Algebraic-geometric codes

Let p be a prime, ¢ = p™ and let Fy be a finite field. Before introducing our concrete example, we
briefly review the theory of algebraic-geometric codes (AG codes for short) or Goppa codes, specializing
to the case of a plane algebraic curve V. Let

D=P +---+P, (1)
be the sum of all finite F,-rational points of V. Let G be another rational divisor of V' satisfying
supp D Nsupp G = 0. (2)
Let K be the rational function field of V and let
L(G) ={f € K| G+ (f) 2 0}u{0}

be the affine version of the linear system defined by the divisor G. Its dimension over Fy is denoted by
[(G). Let us define an Fy-linear mapping o by

a: LG) ——> F}
w w

flz) = (f(P1),-- f(Pn))

Then the subspace CL(D, G) := Imagea C Fy is said to be a function type AG code or L-construction
associated to D, G.
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Next define the space of rational 1-forms on an algebraic curve V by
QV]={df | f e F[V]}, 2(V)=Ka[V]
Set
2(G) ={we 2(V)| (v) > G}uU{0},
and «(G) := dimp, £2(G). Set
2(G-D)={weRG-D)|(w)>G- D}

Then a residue type AG code or §2-construction is defined as Cp(D, G) =Image C FJ', where j is the
following linear mapping;:

g: 2G-D) ————> F?
w w
w —  (res

Wy oo,TES w).

P P,

We have the duality Cp (D, G) = C(D,G)* C F7 induced by the pairing with the residue map
(f,w) = Zrespifw = Z S(Pi)respw.

Let g denote the genus of V. Employing the Riemann-Roch theorem and Clifford’s theorem, we obtain
Theorem (Goppa bound)

dCL(D,G) > da(C(D,G)) = n— deg(G), 3)
d(Ca(D,G)) > do(Ca(D,G)) = deg(G) 29 +2, ()
d(CL(D,G)) > dg:==n—k+1—g,

d(C’n(D, G)) > dg=k+1-—g.

dg is called Goppa’s designed distance.

The residue type AG codes are practically constructed as the dual of function type AG codes employing
the latter as the parity check matrices.

§3. Decoding algorithms

Three algorithms are now available: The first is Pellicaan’s theory of t-error correcting pair. The
second is Feng-Rao’s majority principle. The third is Sudan’s list decoding. In this report we present
implementation of the first one, Pellicaan’s theory.

We sketch the algorithm following [MII]. First we prepare some notation. For two vectors z =
(z1,-..,2n), ¥y = (¥1,...,yn) we define the product operation * by

T*xYy = (x1y1y~ . ':xnyn)~

Clearly from the definition, we have z xy = y*x 2, (z,y*z2) = (2 *y,z). Hence for three linear subspaces
A,B,C C F}, we have Ax B C C* if and only if A+ C C B*. Next for a linear subspace A C Fj and a
subset of indices I C {1,...,n} we set in general

Al :={z € A|zi=0for Vie I}.

supp & denotes the positions of indices corresponding to the non-zero components of the vector z. Z(z)
denotes its complement. B’ denotes the dual space of B. Given a pair of linear subspaces (4, B), let Ey,
be the linear mapping defined for each w € Fg' as follows:

E,: A — B’
W w
z - (w,zx).

We have
KerEy ={z € A| (w,z xy) = 0 for Vy € B}, A(supp (w)) C Ker E,,.



June 2003 Implementation of algebraic-geometric code by a Miura curve and its visualization

Now we have

Definition A pair of linear subspaces (A, B) is called a t-error-correcting-pair if it satisfies the following
conditions:

1) AxBC Ct.

2) d(Bt) > t.

3) dimA > t.

4) d(A) +d(C) > n.

From this definition we immediately obtain

Corollary 1) Ker By =KerE. ifz=y—ec C.
2) Ker E, = A(supp (e)) if wt (e) < t.
3) Asupp (€)) # {0} if wi () <.
4) #Z(z) < d(C) for 0 # Vz € A.

Given a t-error-correcting pair (A, B), the t-designed distance decoding, that is, the algorithm finding
the original vector # = y — e under the assumption that the error vector e contained in the received
word y has wt(e) < ¢, is as follows: By the above corollary A(suppe) = Ker E, = Ker E, # {0}
-is first determined from y. We can find a concrete element a therein by solving a system of linear
equations. Then supp (e) C Z(a), and we can estimate the location of erroneous coordinates. Further,
by 4) #Z(a) < d(C) — 1, hence the column vectors of the parity-check matrix H of C' corresponding to
the components of Z(a) are linearly independent, and the system of linear equations

He = Hy, suppe C Z(a)

is uniquely solvable. Thus we can specify e. The complexity of this algoritm is dominated by the solution
of linear equations and of O(n3).

When we apply this algorithm to function type AG codes, we choose
. [n—deg(G)—l—g+21(G—D)J
= 5 ,
hence n > 2t + 14 g >t + g. Now fix an F-rational positive divisor H such that

supp (H) Nsupp (D) =@, deg(H)=t+g. (5)

For one-point AG codes, H = (t + g)Ps will do. Then we have deg(H — D) < 0, hence I(H — D) = 0.
Thus the following is a t-error-correcting pair for the function type AG code C' = Cr(D, G):

A::CL(D,H), B = Cn(D,G+H).

Similarly, if we put

‘o [deg(G) +1-3g+ 2L(G)J
= 5 ,
then for H satisfying (5), the following is a t-error-correcting pair for the residue type AG code C' =

Cn(D,G):
A:=CL(D,H), B:=CL(D,G-H).
§4. Theory of Miura curve.

Let a, b be a pair of coprime natural numbers satisfying 2 < a < b. Miura[M] gave a way to implement
AG codes employing algebraic curves of the following concrete form with coefficients in F:

fX,Y):= > e;X'Y7 =0, where cpo#0, coq #0. (6)
0<aitbj<ab .

We call a curve of this form a C¢ curve or a Miura curve. (6) can be rewritten as follows:

Yi+ > apX'Y =X+ ) aX' (7)
0<ai+bj<ab,iz0 0<i<b
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a=2,b=31in (7) just corresponds to the Weierstrass normal form of the elliptic curve. a =2, =2g+1
corresponds to a hyperelliptic curve of genus g. We have in general

Proposition 1) Miura curve is absolutely irreducible over Fy, that is, any extension of coefficients does
not allow factorization.

2) C? has only one point Py, = (0: 1 : 0) at infinity. This is singular in general, but of degree 1, and
resolution of singularity does not cause new points.

3) Let Fylz,y] := Fy[X,Y]/(f(X,Y)) be the coordinate ring of C, K be its quotient field. Then we
have

(@)oo = @Poo, (Yoo = bPeo, Fylz,y] C L(0oPu) C K = Fy(z,y),

hence, Np_ := —vp_(L(00Px)) D —vp_(Fylz,y]) = aN + bN. Here N = {0,1,2,.. .}.
4) The genus g of C? satisfies

I YS!

Here the equality holds if and only if C? is non-singular as an affine curve, which is equivalent to.
Fylz,y] = L(coPy).

§5. Realization of algebraic-geometric codes by Miura curves.

Now we construct concrete AG codes employing Miura curves. The first task is to choose a plane
curve V over F, which has as many F,-rational points V' (F,) as possible. The known theoretical bound
due to Hasse-Weil-Serre is

#V(F) <q+1+g[2/4].

Actually this final form is due to Serre, and Hasse-Weil gave the estimate without |-|. Traditionally, we
call a curve maximal if the equality holds in the latter weaker estimate. (Hence necessarily ¢ should be
an even power of p.) We call a curve optimal if it attains the maximum number of rational points for a
given fixed genus g. Maximal curves are necessarily optimal, but optimal curves need not be maximal.
See van der Geer’s website ([vG]) for actual record.
The curve we are going to consider is one found by M. Kawakita [KS], which is a C§ curve over Fys
with the defining equation
Y34+ 09Y = X* +0?°X? + 018X + 1. (8)

Here a € Fys is a primitive element satisfying o® + a* 4+ o® 4+ o? 4+ 1. This is non-singular except for
the point at infinity, with the genus ¢ = 3. The number of rational points including one at infinity is
equal to 353. It was the first known concrete example of maximal curve for this genus. A part of the list
of finite rational points is given below. Here, the hexadecimal numbers correspond to the coefficients of
elements of Fys represented as polynomials of order 7 in & over Fy. For example, the first ce represents
a’"+af+a+a?+a.

Table Partial list of rational points of C3 curve (8).

(00,ce) (00,37) (00,£9) (01,f0) (0L,fd) (01,0d) (02,e5) (08,fc) (10,4e) (40,95)
(80,fe) (80,85) (80,7b) (1d,be) (ld,cc) (1d,72) (3a,87) (3a,d3) (3a,54) (74,05)

(e9584) (cf,:07) (1bj3b) (6(:,:08) (d8:,2f) (adi42) (47j98) (47;50) (47:,c8) (8e,:75)
(8e,d7) (Be,a2)

To construct a concrete function type AG code, we choose as the divisor D the sum of all the above
rational points. Hence, n = 352. We choose G = 300P., among the region where +(G) =0, [(G— D) =0
are satisfied. Then by the Riemann-Roch theorem k = deg(G) + ¢(G) — g+ 1 — (G — D) = 298. (In our
implementation the latter value is automatically determined from the input image width and the code
is designed after that. The value 298 corresponds to the concrete example considered below.) Then the
Goppa bound gives d(Cr(D, G)) > n —deg(G) + 2I(G — D) = 52. Together with the Singleton bound we
have 52 < d < 55. To determine codewords, we fix the basis of L(coPy) to

{X'Y7]0<j<2,i=0,1,2,...}.
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Now k = I(G) — (G — D) = I(G), hence those belonging to L(300Ps) therein has degree 3¢ 4 45 < 300,
and they are the following 298 monomials:
{1,X,Y,X%, XY, Y% X3, X2, XY? X*, X3Y, X?Y?,..., X% X%y, X°7y? X109, (9)

By the way, the value of —vp_ for these is {0,3,4,6,7,8,...,300}. Hence the gap values are {1,2,5},
in concordance with the general formula 5 = 2g — 1. The basis of the codeword subspace is given as
the numerical vectors obtained from the polynomials in (8) by substituting the coordinate values of 352
points in Table. The general codewords are obtained as linear combinations of these, hence there are
¢® = 28%298 words. Therefore to determine the minimum distance directly from the weights of these is
impracticable. Executing the fundamental deformation to the basis, however, we obtain an echelon form
matrix

—— 298 —— —— 54 —
NN "

1 1 0 0 0

0100 0 * general *
208 0 0 1 O 0 * comp. *
! .. :

00 0 0 --- 1 % ... =%

which contains a row with two zeros in the uncleaned “general” part to the right. Thus we obtain a
better estimate 52 < d < 53. Finally, a probe by computer readily gives a new codeword of weight 52,
the first row + the 234-th rowx f4. Thus we conclude that d = 52.

Note that for this curve a general algorithm finding the true minimum distance is not known?).
Computer experiments show that for each of the residue type code spaces in the range 4 < k < 347
(k # 345), we can find a vector with the Goppa designed distance just in the same way. As a matter of
fact, in most cases the basis already contains a vector of minimum weight. in a few exceptional cases the
linear combination of two basis vectors provides one as in the example above, and in a very rare exception
of the case k = 342 the linear combination of three does. For £ = 345 and the remaining marginal values
of k£ the true minimum distances are really bigger than the Goppa designed distances. But they are of
no importance for practical use. (In the case ¥ = 345 the true minimum distance is 6 = the Goppa
bound +1, which was determined by verifying that any 5 columns of the parity check matrix are linearly
independent.

Employing the deformed basis we can realize systematic encoding, and embed an image as it is. As
an example of application to images, we show below one with 256 grey scale, with 298 pixels in each row.
(The image is taken from the standard file “lena”. We contracted and cut it to 298x 307 pixels for our
experiment. Of course the standardness of the employed image has no significance for the purpose of this
article.) Decoding algorithm is Pellikaan’s one explained in §3. We have

_|n—degG—1—g| 352-300—-1-3
- [rtgoioy)_wowmoios

According to §3, we have, for H = (t + g)Po = 27Ps, A = Cr(D,H) = CL(D,27Ps). We can
assign the first 25 basis element of CL(D,G) to A. Hence dim A = 25. Further, B = Cp(D,G+ H) =
Cr(D,G + H)t. We apply the construction method for CL(D,G) to a larger one CL(D,327P,,), and
from the generating matrix with 325 rows we calculate its parity check matrix to obtain the basis of B.
This gives dim B = 352 — 325 = 27. The remaining parts are realized by simple matrix calculations.
For this example, the theoretical decoding bound |(dg — 1)/2]| = 25, which can be realized by a more
sophisticated algorithm of Feng-Rao, is not so big than our t. The damages are given by mouse operation
to replace the indicated rectangles by white. Those places where decoding failed has size of damage
exceeding the decoding bound 24 pixels. Notice that if we employ Reed-Solomon code on Fys allowing
the same correctability, the maniable image width will be at most 256-4941=208.

For the practical implementation, B+ = C (D, G+H) is bigger than the requred code space Cr(D, G),
and calculating its dual B is heavy though B itself is small. For this reason, it is more advantageous
to employ the residue type codes: We first construct C*+ = Cr (D, G) with small size by a procedure as
explained above, and then employing it as a parity check matrix, calculate the dual code C of the required

2)For maximal curves of Hermite type this fact is well known ([KY]). But we expect that our example does not reduce
to that class, though it is not yet checked.
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size. Tn the above example, G = 56 Poo, C+ = C1(D, G) has dimension deg(G)+t(G) —g+1-1(G—D) =
54, hence C has dimension k = n — dim Ck (D, G) = 352 — 54 = 298 as required. Given that the parity
check matrix is reduced to the echelon form, its dual C is also obtained as such and systematic encoding
1s instantaneous.

Our implementation equally works with color images, by means of direct sum codes of three copies
of the above, each applied to RGB component. Actually our program distinguishes whether the input
image is monochrome or color, and chooses the suitable code.
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Fig. 1: Origiﬁal Image Fig. 2 : Redundancy added
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