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Abstract

The results of collisionless n-body simulations are presented. We discuss the forma-
tion of the velocity distribution in collisionless n-body 3-dimensional system using
GRAPE5. We caluculate two models, a spherical collapse and a cluster collision,
and observe stable non-gaussian velocity distributions which are well fitted by equall-
weight superposition of thermal distributions with various temperatures (DT). As for
the spherical model, the velocity distributions are DT distyributions in all cases pro-
vided that the initial virial ratio is less than 0.23. As for the cluster collision model,
the velocity distributions are in-isotropic and depnends on axis. These non-gaussian
velocity distributions are formed well before the thermallization of the systems and
stably persist for all the time within our numerical calculations. The appearance of
non-Gaussian velocity distributions strongly depends on the initial virial ratio but
have no connection with other parameters such as softening parameter, initial confi-
grations or velocity distributions.

1 Introduction

The galaxies are typical self-gravitating systems (SGS); the system of particles which interact via their
own gravity. To clarify the evolution of SGS is an important issue to understand our universe. Among
several kinds of galaxies, we concentrate on the ellipticall galaxies which are thought to be collision-less
systems. They reflect genuin properties of gravity without fluid dynamics nor heat transfer processes.

It is widely accepted till today that the luminosity profile of observed elliptical galaxies obeys the de
Vaucouleur law [4][5]{6]. This ovservational fact indicates that the elliptical galaxies presumably reach
the equilibrium state and as a result, their luminosity profile realized. Then, this observation gives rise
to a question how we can explain a mechanism which cause macroscopic properties like luminosity profile
in equilibrium state of SGS. It means whether we have statistical method which can apply to SGS or not.

It is natural to expect to apply the Boltzmann-Gibbs statistics to SGS, but this system doesn’t
come up to our expectation because of some characteristic propeties owing to long range force, for
examples, a divergence of macroscopic properties in thermodynamic limit or being unstable in thermal
equilibrium([2][3]. In addition, the statistical method of SGS- the prescription that reduces the huge
(6N-1) degrees of freedom to a few of them - has not been found till today. Then, even if we can see that
the elliptical galaxies stay in equilibrium state but we do not know how the universal form of luminosity
profile were established.

However, we can judge whether the elliptical galaxies are thermalized or not by calculating their
two-body relaxation time t,e1qz[3][13]. The tye1qz of elliptical galaxies is 10'*years. Then, the two-body
relaxation time of the elliptical galaxies is 10,000 times longer than the age of the Universe(10!%years)
and we see that elliptical galaxies are far from thermal equilibrium though they seem to be in equilibrium
state. Then we expect that there exist a quasi-equilibrium state before SGS are thermalized. The
relaxation process towards the quasi-equilibrium state is called ‘collisonless relaxation’ and themalized
system is called ’collisional system’[3].
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The mechanism which cause the collisionless relaxation is first studied by Lynden Bellf1]. He proposed
the concept violent relaxation - a relaxation process caused by the accumulation of a variance of the
energy by two body encounter between distant particles - providing a initial condition of SGS are far
from dynamical equilibrium (therefore, the violent relaxation is a characteristic nature of long range
force). The characteristic time scale of the violent relaxation is free fall time of the system which is much
shorter than two body relaxation time.

To clarify the details of the violent relaxation process, a number of n-body simulations have been
performed. As a result, the stable macroscopic properties realized after violent relaxation depends on a
initial conditions i.e. the violent relaxation incompletely occurs. Thus, we have to clarify what kind of
macroscopic properties are realized depending on initial conditions in collisionless system.

The density profile in open 3-D collisionless system has been studied by using n-body simulation start-
ing from a various initial conditions(7][8][9][10]. The propose of these studies are to explain the mechanism
which produced the observed luminocity profile which is the projected density profile providing that we
define the luminosity-mass raito. However, the velocity distribution, which is usually not observed, was
not an interesting object. Therefore it has hardly been studied numerically except the pair-wise velocity
distribution (this can be observed).

However by using a simple n-body model, the velocity distribution has studied from a viewpoint of
statistical nature of phase spase in SGS. The SGR model(self gravitating ring model) is the ring on which
the particles are constrained and they interatct via 3-D gravity. In this sysytem, the stable non-gaussian
distribution ehich is fitted by Lorenzian distribuiton was found[14]. As an other example, we introduced
HMF model which is the system of paritcles which interact with each other in a well of potential. The
non-gaussian distribution were observed in quasi-equilibrium state and after the system is thermalized
it changes into gaussian. But, since these are one-dimentional models and the force is not gravity, these
model are not realistic. ,

Then, we start our study from investigating what kind of velocity distribution of the collisionless open
3-D system realizes in quasi-equiribrium state by using n-body simulation interacting via gravity starting
from the various initial conditions.

2 Simulation code and choice of initial conditions

2.1 Simulation program and algorithm

In this paper, we use GRAPES , special-propose numerical hard device for gravitating n-body simulation.
‘We use the direct summation numerical code and employ the leap-flog integrator. The equation of motion
governing the gravitational n-body system is,

d’x; N T —x
1 i j
=-G) m; 2 , 1
dt? ; Tlas — x5]2 + €2)3 )

where m; and «; are the mass and the position of i-th particle respectively and ¢ is a softening parameter
which is introduced to prevent the divergent forces when a distance between two particles goes to 0.

2.2 Scaling
1

In our simulation , we employ the following units, G=1, M=5=1, R,y,s=1.0. Here , G is the gravitational
constant, M is the total mass of the system, N is the number of particles, R,,; is the characteristic scale
of the system. Then the dynamical time of the system tq,, becomes,

[R3ys
tayn = G]\yl = 1.0. (2)

We fix the softening parameter € to be 2~8(which is about 0.004).
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2.3 Initial Condition

We perform two kinds of experiment, spherical collapse and cluster collision(the number of cluster is
limited to be two) as simple models which cause the violent relaxation. Since we interested in what
kind of velocity distribution is formed depending on the initial conditions, we simulate these two models
changing them. We describe the details of initial conditions.

In the case of sphericall collapse, initially we set a radius to Rsys and distribute the particles uniformly.
The initial velocity distribution is gaussian. Added to these situation, we set the number of particles N
as 4096 or 16384. In each case of N, we set the virial ratio as 0.0, 0.1, 0.2, 0.3 or 0.5. We denote the
number of particles with 16384 by S and with 4096 by S(S means spherical collapse). We represent the
virial ratio by suffix, for example Sp ¢ indicates that N is 4096 and virial ratio is 0.0.

In the case of cluster collisions, a cluster means a sphere with radius R,ys in which half of the total
particles in the system distribute uniformly and its velocity distribution is gaussian. Initially we put each
cluster separately along x axis and the distance between the clusters is fixed to be 6 times R,y in all
runs. Furhter, we set the total number of particles in the system N as 4096 or 16384. In case N=4096,
we set the virial ratio of each cluster as 0.2, 0.6, 1.0 or 1.4. In added to these runs, we calculate another
one giving the finite angular momentum L, with virial ratio of each cluster 1.0. In case N=16384, we set
the virial ratio of each cluster as 1.0. We denote the number of particles with 16384 by C and with 4096
by C (C means cluster collision). We represent the virial ratio by suffix, for example Cp 5 indicates a run
that N=4096 with virial ratio 0.2. We denote the run with finite L, and virial ratio 1.0 by C; ¢.

3 Simulation and results

3.1 Time evolution of the simulated models

Figure 1: Snapshots in the (x, y, z) space for run Spo(spherical collapse of 4096 pariticles with initial
virial raito 0.0). Each points in these boxies show the positions of particles. The left box shows a snapshot
at t=0.0tq4yn. The right box shows a snapshot at t=10.0tayn

We report the time evolution of the system. Figure 1 are snapshots for run Sp. Each box shows
positions of particles. The left box is a snapshot at ¢ = 0.0¢4yn, and the right box is at t = 10t4yn.
At t = 0.0t4yn, the particles are distributed uniformly but at ¢ = 1.2¢4y, they collapse. Soon after the
collapse, some part of the particles are bounded gravitationally in the center of the system and the other
part of the particles scatter into the outer part of the system(we call such a structure core-halo structure).
This structure is stable during the calculation time 100¢4yy.

Figure 2 shows snapshots for run Cp 5. The left box shows a snapshot at £ = 0.0ty and the right box
at t = 40t4yn. The clusters are approaching with each other along the x axis and collide at t = 20tayn..
After the collision, we find the core-halo structure and it is stable during the calculation time.

The error of the total energy is smaller than one percent in all runs.
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Figure 2: Snapshots in the (x, y, z) space for run Cj 2{cluster collision with 4096 particles and the initial
virial raito of each cluster 0.2). Each points in these boxies show the positions of particles. The left box
shows a snapshot at t=0.0t4y,. The right box shows at t=40.0tgy,

3.2 Time evolution of virial raito and velocity dispersion

We describe the core-halo structure seems to have been stable during the calculation time. Then, we
investigate how the other properties evolve after core-halo structure is formed. We investigate the time
evolution of the virial ratio and the velocity dispersion of the system.

Figure 3 shows the time evolution of virial ratio and the velocity dispersion. The left two frames show
the time evolution of virial ratio and the right two frames show the time evolution of velocity dispersion.
Top two frames show the results for run Sp and bottom two frames for run C; . They seeme to be
stable after the formation of core-halo structure. '

3.3 The stable velocity distribution depending the initial conditions

Now we discusse the issue that what kind of velocity distribution is formed depending on the initial
conditions. We investigate the velocity distribution after stable core-halo structure is formed because
we interested in statitical properties in stable state - especially for quasi-equiribrium state caused by the
violent relaxation.

We apply the chi-square analysis for earching the best fitting function. We first employ the gaussian
and the exponential fitting functions. The reason why we choose the exponential fitting function is as
follows. When we apply f(v) = aexp(—blv|*) fitting, the observed velocity distribution by means of the
least square method, a is best fitted by 1.07 in the case of spherical collapse provided thst the virial ratio
is amall. Next we apply another fitting function which is composed as the equall weight superposition of
gaussian functions (DT=democratic temperature). The explicite form is given by

To 2 _ u§ ve
fe) =a [ esp(oad/2T)aT = aly) e — w1 - Brs( L2, ©
where suffix i is x, y or z and T' means temperature, a and Ty are fitting parameters. This form of function
is suggested by the fact that in our numerical calculations, the mean temperature (defined by averaging
the velocity dispersions at the mass fraction M(r) at radius r) shows linear dependence: T" o M(r).

In Figure 4, the upper frame shows the observed velocity distribution-for the run Sy g, the spherical
collapse model with initial virial ratio 0.0. The lower frame shows a velocity distribution for the run Ci o,
the cluster collision with initial virial ratio 0.2. These velocity distribution have been stable (it means
a deviation of fitting parameter from its mean value has stayed within a few percent of its mean value)
during calculation time after the core-halo structure are formed. This velocity distribution can not be
fitted by simple gaussian distribution on the whole part of f(v), especially v close to 0. On the other
hand, these velocity distributions seem to be well fitted with DT distribution or exponential function
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Figure 3: Time evolution of the virial raito and velocity dispersion for run Sp o and Cig (So.o is the
spherical collapse of 4096 particles with the initial virial ratio 0.0 and C1 ¢ is the collision of two clusters
whose size is 2048 and the initial virial raito 1.0). Two left frames show the virial ratio and two right
frames show velocity dispersion. Top two frames show the results for run Sp o and bottom two frames
for run Cp¢. In left frames, vertical axis represents the virial ratio and horizonal axis represents t/tgyn.
In right frames, vertical axis represents velocity dispersion < v2 >, < 'vg > and < v? > and horaizonal
axis time t/tgyn.

than gaussian. Such non-gaussian velocity distributions are also observed for the run Sp g, So.1, So.2,
So0.0, So.1 and Sg 2 (spherical collapse) and all cases of cluster collision.

Now, we quantitatively examine the above fittings by means of the chi-square test. In figure 5, the
upper frame shows the time evolution of the chi-square value for run Sy and the lower frame shows
for run Cy0. The black boxs, gray boxs and black triangles represent exponential, gaussian and DT
distributions respectively. We find that the velocity distributions are best fitted by DT distribution.

Figure 6 shows time evolution of the fitting parameter(velocity dispersion) for the run C; ¢. The black
boxs, gray boxs and black triangles represent exponential, gaussian and DT distributions respectively.
These parameters seem to have been stable during the calculation time.

Table 1 summarizes the best fitting functions. In the case of spherical collapse, for the initial virial
ratio 0.0, 0.1 or 0.2, the velocity distribution is non-gaussian and is best fitted by DT distribution,
however in the case for 0.3 and 0.5, the velocity distribution becomes gaussian regardless of the number
of particles. In the case of cluster collision, the velocity distribution is best fitted by DT distribution
in Cp.a, Cos, C1.0 and C; o but it depends on axis. For run C; 4, the velocity distribution is fitted by
the exponential function. For the run C,; o, f(v;) and f(vy) are gaussian and f(v.) is DT distributions.
It means that the velocity distribution on the direction of rotating plane is gaussian and that on the
direction of rotating axes is non-gaussian. The reason has not yet been clarified at present.

3.4 The relaxation time

We calculate the two-body relaxation time in order to check whether this system is thermallized or not
when the non-gaussian velocity distitbution are found. The two-body relaxation time is expressed by,

N

t =0.1——t4gyn,
relax LOg[N] dy

(4)
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Figure 4: Loglinear plot of the observed stable non-gauss velocity distribution for the run Sy o (spherical
collapse of 4096 particles with initial virial ratio 0.0) and C; g(cluster collision with the number of particles
and virial ratio of each cluster are 2048 and 0.0) at t=100tgy,. Vertical axis represents the logarism of
the velocity distribution function. Horizonal axis represents velocity. A solid line represents the best
fitting gaussian function. The chain line represents the best fitting exponential function. A broken line
represents the best fitting DT distribution.
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Figure 5: Time evolution of chi-square value for run Sy, C1.0(So.0 is spherical collapse of 4096 particles
with virial ratio 0.0 and Cy g is cluster collision with the number of particles and virial raito of each
cluster are 2048 and 1.0). Vertical axis shows the chi-square value and the horizontal axis shows time
t/tayn- The black boxs, gray boxs, and black triangles show the chi-square values for the exponential,
gaussian, and DT fittings respectively. The chi-square values for DT fitting are the order of 10~ for run
So.0 and the order of 103 for run Ci .
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Figure 6: Time evolution of velocity dispersion for run Cj ¢ (cluster collision with the number of particles
and virial ratio of each cluster 2046 and 1.0). Vertical axis shows the fitting velocity dispersion and
horaizonal axis shows t/t4yn. The black boxs, gray boxs and black triangles represents exponential,
gaussian and DT fittings respectively.

where N is the number of the particles.

In the case of spherical collapse, initially freiar is about 1304y, if N is 4096 and about 390tgy. if
N is 16384. After the collapse, however, the radius of the system contracts and becomes ten percent of
the initial value. Then, treiqas after the collapse is about 4.2¢4,, for N=4096 and is about 11.7tqy, for
N=16384. Therefore the system is collisionless before £ = 5.4tg,, for N=4096 and before t = 13.9t4yn
for N=16384 since the collapse occures at t = 1.2t4y,. From Figure 5 we can not know the details of
the chi-square value between Otq,n, and 10¢4yn, so we need to know the details. Figure 7 shows the time
evolution of the chi-square value from t = 1¢gyn to 10t4y, for run Sy o(top frame) and run Sg ¢(bottom
frame). We can find that the non-gaussian velocity distribution are found when the system is collisionless
and also found after it is thermallized. ;

We estimate the two-body relaxation in the case of cluster collision. After the collision at ¢ = 20t4yn,
the radius of the system does not change, so the t,cqr is about ¢ = 150¢gy, for N=4096. From Figure 5,
we find the non-gaussian velocity distribution are found before and after the system is thermallized.

3.5 Further calculation and initial conditions

In section 3, we presente the result of simulation of our models, spherical collapse and cluster collision,
and observed the stable non-gaussian velocity distribution fitted by DT distribution. In case of spherical
collapse, this non-gaussian distribution appears if the virial ratio is 0.0, 0.1 or 0.2. In case of cluster
collision, non-gaussian distribution is observed reagradless of the initial virial ratio.

In order to check the universality of the above results, we should further examine the following
points. First, we should examine that the softening parameter does not affect the simulational results.
The simulational results would not be correct if the considerable particles interact within a scale of the
softening parameter. Second, we should examine whether the non-gaussian velocity distribution depends
on the initial properties such as the particle distributions or velocity distributions or not. These initial
properties may lead to non-gaussian velocity distribution. Third, as for spherical collapse, we should
investigate where the ciritical virial ratio (under which the non-gaussian distribution is found) exits.
Forth, we are interested in how long the non-gaussian distribution stably persists.

To answer the first point, we investigate the number of the particles whose relative distance is less
than the softening parameter for run Sp ¢ and Cp . As for the second point, we change the softening
parameter from 279 to 27! for run Sg o and check whether the result depends on this change or not. We
denote these simulation Sg.o by ,for example, Sg.o(e = 27?). Furthermore, we change the initial velocity
or position distribution function for run Sp 1 and C; . We change the position distribution in sphere or a
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RUN | f(x.)  flvy)  f(v:)

So.0 DT DT DT
So.1 DT DT DT
So.2 DT DT DT

So.s | GAUSS GAUSS GAUSS
So.s | GAUSS GAUSS GAUSS

So.0 DT DT DT
So.1 DT DT DT
So.2 DT DT DT

Sos | GAUSS GAUSS GAUSS
Sos | GAUSS GAUSS GAUSS

Co.2 DT EXP EXP
Co6 DT DT DT
Cio DT DT DT
Cia EXP EXP EXP
Cio DT DT DT
Ci0 | GAUSS GAUSS DT

Table 1: Best fitted functions for all runs. f(vz), f(vy) and f(v.) represent the distribution function
of the velocity along the x, y and z axis. DT represents the DT distribution. GAUSS represents the
" gaussian function. EXP represents exponential function. The character S means spherical collapse and
the character C means cluster collision. Suffix represents the initial virial ratio of the system(S) or a
cluster(C). Cy.o represents the cluster collision giving z-component of angular momentum.

cluster from uniformal distribution to the density distribution which is proportional to 7=%° for run Sp 1
and C;¢. Next, we change the velocity distribution in a sphere or in a cluster from gaussian to uniform
distribution for run So.; and C . We denote the simulation S ; and C ¢ changing position distribution
by So.1(r~%®) and C;.o(r%5) respectively. We denote the simulation Sp ; and Cy ¢ changing the velocity
distribution by Sp1(uniform) and Cjo(uniform) respectively. As for the third point, we calculate the
run Sg.o changing the virial ratio from 0.17 to 0.29 with interval 0.02. In the subsection 3.3, we have
confirmed that the non-gaussian velocity distribution is observed if the initial virial ratio is 0.0, 0.1 and
0.2 and gaussian if regardless of the number of particles. Then we estimate the ciritical initial virial ratio,
below which the DT distribution appears, exists between 0.2 and 0.3. We denote these runs by same way
as in 2.2. As for the forth point, we calculate run C ¢ for 103tdyn. We denote this long simulation by

Cio (t = 103tdyn)-

3.6 Simulational result

We count the number of particles within a softening parameter during the calculation for run Sp ¢ and
Cy.2, virial ratio of Sgo and Cpg is the lowest in the spherical collapse or the cluster collision. We
have fixed the softening parameter 278, As a result, the number of particles interact within the scale of
softening parameter is almost 0 or 1 during the calculation time.

Table 2 summarizes the result of the velocity distribution for run Sgo(e = 279), Sp.0(e = 271°) and
So.0(e = 2711). We can not find out the connection between the appearence of non-gaussian velocity
distribution and the softening parameter.

Table 3 summarizes the result for run Sp1(r=%%), So.1(uniform), Cio(r=%°%) and Cy.o(uniform).
We can not find out the connection between the appearence of non-gaussian velocity distribution and the
initial density profiles.

Table 4 sumimarizes the run Sg.17, So.19, S0.21, So.23, S0.25, So.27 and Sp 2g. The non-gaussian velocity
distribution fitted with DT distribution are observed for run Sg 17, Sp.19.and Sg.21. It means the velocity
distribution is non-gaussian provided the virial ratio is 0.17, 0.19, 0.21 and 0.23. For the run Sp 29, the
best fitting function cannot be determind; both gaussian and DT distributions fit the data with almost
the same chi-square value during the calculation time. For the run Spag, the velocity distribution is
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Figure 7: The time evolution of the chi-square value before ¢ = 10tgy,. The top frame shows for run
So.0 from t = 1tgy, to 10tay, and the bottom frame shows for run S¢¢ from t = 1tgy, to 10tgyn( So.o is
spherical collapse of 4096 particles with virial ratio 0.0 and S is spherical collapse of 16384 particles
with viral ratio 0.0). The black boxs show the chi-square value for the exponential fitting. The gray boxs
show the chi-square values for the gaussian fitting. The black triangles show the chi-square values for
DT fitting. The chi-square value of DT model is the order of 1074 in both runs.

RUN flvz)  flvy)  fle:)
Seoe=2"79) | DT DT DT
Seo(e=2"%)1 DT DT DT
Seo(e=2"1)| DT DT DT

Table 2: Observed velocity distribution function changing the softening parameter. f(v.), f(vy) and
f(v;) represent the distribution function of the velocity along x, y and z axis respectively. DT represents
the DT distribution. Sy repsents spherical collapse of 16384 particles with virial ratio 0.0 and € in
brackets means softening parameter.

clearly gaussian. Therefore, we conclude that the critical virial ratio exists between 0.21 and 0.23.
Figure 8 shows the time evolution of the chi-square value for run Cpo(t = 103,,,). We find that the

non-gaussian velocity distribution is observed during this calculation time 103tdyn.

4 conclusion

In this paper, we have investigated the formation of a stable velocity distribution depending on the initial
conditions using GRAPES in order to clarify the statistical nature in collisionless open 3-D system.

We have calculated the spherical collapse and the cluster collison as simple models of collisionless
system. These systems form the core-halo structure soon after the collpse or the collision and it has been
stable during the calculation time. These systems reach collisionless relaxation and move to the next

RUN flva) flvy) f(v:)
So0.1(r~0.5) DT DT DT
So.1(uniform) DT DT DT
Cr.0(r™09) DT DT DT
Cr.o(uniform) DT DT DT

Table 3: Velocity distribution function changing initial properties, velocity and position distribution
function. f(v), f(vy) and f(v,) represent the distribution function of the velocity along x, y and z axis.
DT represent the DT model. Sp.; means spherical collapse of 4096 particles with virial ratio 0.0 and
C1.0 means cluster collision with the number of particles and virial ratio of each cluster are 2048 and 1.0.
r~05 and uniform in brackets represent the initial density profile.
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RUN|  F@) i 7e2)
So.17 DT DT DT
So.19 DT DT DT
So.21 DT DT DT
So.23 | DT or GAUSS DT or GAUSS DT or GAUSS
So.25 | DT or GAUSS DT or GAUSS DT or GAUSS
So.27 | DT or GAUSS DT or GAUSS DT or GAUSS
So.29 GAUSS GAUSS GAUSS

Table 4: Velocity distribution function changing the virial ratio from 0.17 to 0.29. f(vz), f(vy) and f(v.)
represent the distribution function of the velocity along x, y and z axis respectively. DT represents the
DT distribution. Gauss represents the gaussian function. Character S means spherical collapse of 4096
particles and suffix shows virial ratio.
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Figure 8: The time evolution of the chi-square value for run Cjo(t = 103yn)(01.0 is cluster collision with
the number of particles and virial ratio of each cluster are 2048 and 1.0. The t = 103, in brackets
shows calculation time). Vertical axis represents the chi-square value and horaizonal axis represents time
t/tdyn. The black boxs show the chi-square value for the exponential fitting. The gray boxs show the
chi-square value for the gaussian fitting. The black triangles show the chi-square value for DT fitting.

The chi-square value for DT fitting is the order of 1074

stage of the collisional relaxation.

In both models, we have observed the stable non-gaussian velocity distribution fitted with DT distri-
bution depending on initial conditions. As for the spherical model, we set the virial ratio 0.0, 0.1, 0.2,
0.3, 0.5 and as for each case, the number of particles was 4096 and 16384. In conclusion, the velocity
distributions are non-gaussian provided that the virial ratio is 0.0, 0.1 and 0.2 regardless of the number
of particles. As for the cluster collision, we set the virial ratio 0.2, 0.6, 1.0 and 1.4 fixing the number of
particles to 4096. We separate two clusters along with x axis and set null angular momentum. Besides,
we changed the number of particles to 16384 and give the z-component of the angular momentum. In
conclusion, the stable non-gaussian distribution are observed in all runs.

Next, we have checked four points. First, we have confirmed that the particles which interact within
the scale of the softening parameter are rare. ‘Therefore, the effect of the softening parameter can be
ignorable in our simulations. Second, we have checked whether the initial properties such as the softening
parameter or initial velocity and position affect the formation of the non-gaussian velocity distribution.
As a result, we have found no such effects on the appearance of non-gaussian distributions. Third, we
have tried to find out the critical value of the initial virial ratio. We have changed the initial virial ratio
from 0.17 to 0.29 with the interval 0.02. This choice is because we previously found that the velocity
distribution is non-gaussian in runs whose virial ratio is 0.0, 0.1 or 0.2 and gaussian in runs whose virial
ratio is 0.3 or 0.5. It was expected that the critical value exists between 0.2 and 0.3. As a result, the
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velocity distribution is non-gaussian providid that the virial ratio is between 0.16 and 0.21, however
from 0.23 to 0.27, we can not determine the best fitting function; both DT distribution and guassian
dsitribution give almost the same chi-square values. In case the virial ratio is 0.29, the distribution
function is clearly gaussian. So, we have concluded that in spherical collape, the critical virial ratio
exist between 0.21 and 0.23. Forth, we have calculated the cluster collision and have found that the
non-gaussian velocity distribution has been stable till 1000 dynamical time.

In this paper, we have found that stabe non-gaussian velocity distribution function exists in the
collisionless relaxation process depending on the initial conditions. This distibution is well fitted by DT
distribution or exponential functions. In case of spherical collapse the DT distribution is formed provided
that the virial ratio is less than 0.23. In case of cluster colision, this DT distribution is found in wide
range of initial conditions.
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