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Abstract

Let D be a bounded domain in R% such that 8D is a B-set (d — 1 < 8 < d). We consider
a cylindrical domain Qr = D x (0,T). Using a decomposition into closed parabolic cubes of
(R*\8D) x R of Whitney type, we construct an extension operator £ which extends in functions
on the lateral boundary Sp of Q7 to all of R*T!. We also estimate two "norms” of £(f) by the
Besov norm of f on Sp.

1. Introduction

Let D be a bounded domain in R? such that D is a B-set (d — 1 < 8 < d), i.e., there is a

positive Radon measure p satisfying

(1.1) bir® < u(B(z,7) NOD) < byrP

for all 7 < 7q for some 7 and all z € 8D. Here B(z, ) is a ball of radius r, centered at z.

A. Jonsson and H.Wallin introduced an extension operator which extends functions on OD
to R? and is bounded from a Besov space on 9D to a ssuitable Besov space on R¢ by using the
Whitney decomposition ([JW1}, [JW2]).

We consider a cylinderical domain Qp = D x (0,T') for the above domain D and denote by Sp
the lateral boundary 8D x [0,T] of Qp.

In this paper we shall extend functions on Sp to R4+, This extension is useful for solving the
parabolic boundary value problems.

To do so, we consider the parabolic metric

p(X,Y) =]z —y]2 + [t — s

for X = (x,t), Y = (y,s) and z, y € R%, t, s € R.
Instead of balls we consider parabolic cylinders. Recall that the parabolic cylinder of radius 7,
centered at X = (z,t) is defined by

CX,r)y={YV =(y,8); lz—yl <r, [t—s <r?}.
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We may suppose that 8D C B(0, R/2) for some R > 1 and rp = 3R in (1.1). Fix a S-measure
w1 on OD and denote by ur the product measure of the S-measure and the 1-dimensional Lebesgue
measure restricted to [0, T7.

Let p > 1 and o > 0. We denote by LP(ur) the set of all LP-functions defined on Sp with
respect to ur and by A2 (Sp) the space of all functions in LP(ur) such that

/ IF(X) - fFY)P
p(X,Y)B+2+pa

For f € AR(Sp) the Besov norm of f is defined by

£l = (17000 Par ) + ([ L dun () aur (07) .

dp,T(X)d,u,T(Y) < 0.

Using a decomposition into closed parabolic cubes of (R%\8D) x R of Whitney type, we construct an
extension operator £ which extends in functions on Sp to R%*! in §2 and investigate its properties.

We shall see by Lemma 2.2 that if f is p-continuous on Sp, then £(f) is also p-continuous in
R? x [0,T).

We shall show in Lemma 2.3 that £ is bounded from LP(ur) to LP(R+1).

Let Y = (y,s) € R? x [0,T]. We denote by 6(Y) (resp. 6(y)) the distance of Y from Sp with
respect to p (resp. the Euclidean distance of y from D). We easily see that 6(Y) = d(y) for
Y = (y,s) € R? x [0,T.

For a C'-function f in (R¢\ D) x (0,T) we write

VW) = (gL ), 2L w)).

Using a maximal function of A in L!(ur x ur) on (R?\ 8D) x [0,T], we shall prove the following
theorem in §3.

THEOREM 1. Letp>1, f € A2(Sp) andp—pa—d+ 3 >0. Then

J VEDD P8y -re-tPay
(R4\&D)x[0,T]

o
—E(N) (V) Po(Y)2P—Pe=d+Bay < ol f|IP .,
/<Rd\aD>xm,T]'as (F(X)IP8(Y) <cllflz,

where ¢ is a constant independent of f.

We next introduce another maximal function of g € L!(ur) on B(0, R) x [0,T) and prove the
following theorem in §4.

THEOREM 2. Letp>1 and f € A2(Sp). Then

/ X E()(X) — EHT)P?
Dx[0,T] (R\D)x[0,T] p(X7Y)d+2+Pa+d—ﬁ

where ¢ is a constant independent of f.

ay < c||fII%

a,p?

2. Decomposition of an open set into parabolic cubes
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In this chapter we decompose an open set in R4t! into parabolic cubes and extend functions
defined on Sp to R4+I,
By a parabolic cube we mean a closed set in R%*! of the form

Q = [a1,a1 + 7] X [az,a2 + 7] X -+ X [ag,aq + 7] X [agt1,aq+1 + 72
Especially, a k-parabolic cube is a parabolic cube of the form
Q = [n127%, (ny + 1)27%] x -+ X [na27%, (na + 1)27%] X [ng4127%, (nag1 + 1)27%,

where ny, no,---,nq4, Ngy1 are integers.

Let F be a non-empty closed set in R%! and F # R%"!. Consider the lattice of k-parabolic
cubes in R4! and omit all those that touch F' or that touch a k-parabolic cube which touches F.
Discarding any parabolic cubes that are contained in larger ones, we take the union over k. The
final collection W,(R%*! \ F) of parabolic cubes is called the Whitney parabolic decomposition of
Rd+1 \ F.

For each k-parabolic cube Q, I(Q) (resp. diam,Q) stands for 27 (resp.

SUPxeq,veq (X, Y) = 2-k\/d + 1). We denote by dist,(4, B) the distance of A and B with respect
to p for two sets A, B C RA+1,

We easily see that it has the following properties (cf. [HN]).

LEMMA 2.1. Let F be a non-empty closed set in R3*! such that F # R+, The Whitney
parabolic decomposition Wp(R+1 \ F) = {Q;} has the following properties.

(i) UjQ; = R\ F.

(ii) The interiors of any two parabolic cubes of W,(R3*1\ F) are disjoint.

(i) vd+127% < dist,(Q, F) < 4/d+127* for each k-parabolic cube Q.

(iv) If Q € W, (R4 \ F) and Q is a k-parabolic cube, then each k-parabolic cube touching Q is
contained in R4\ F.

Using this Whitney parabolic decomposition of (R%\0D) x R, we shall extend a function defined
on the fractal lateral boundary Sp of Qp to all of R4+!. Fix 7 satisfying 0 < n < 1/8 and let Q
denote the closed cube in R® of unit length centered at the origin. Fix a C*°-function ¢ in R¢ such
that

OS¢S11 ¢:1OHQO, SUPP¢C(1+77)Q0,

where supp ¢ stands for the support of ¢ and

1 1 1 1 .
Further let ¥ be a C'°°-function on R such that
11 1 1 1 1
<y < = —=, = ———op =+ =7
0<9¢<1, ¢=1lon[-5,5], suppdC[-5—35m5+37

Let Q; € Wo((R*\ 8D) x R) and set, for X = (z,1),

— 2@ — ¢@
800 = 6=y,
J J
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where X () = (2() ¢\9)) is the center of Q; and I; = I(Q;). We note that ¢;(X) =0 for X € Q; if
Q; does not touch Q;. We also note that

|6il‘1,¢3(x)l S cdiam Qj

fori=1,.--,d and
0

0T g1

¢j(z)] < c(diam Q;)?,
where c¢ is a constant inependent of j. We now define

where ®&(X) = 3. ¢;(X).
It is obvious that
> " #3(X)=1o0n (R*\8D) x R.
J
For each parabolic cube @Q; we fix a point A; = A(Q;) € Sp such that

lnf{p(X,Y), X € Qj) Ye SD} zp(Xj7Aj)a

for some X; € Q; and A; € Sp.
Using these functions and points, we extend a function defined on Sp to R%*1. Let 0 < g < %,
f € L'(ur) and we define, for X = (z,t),

F(X) if X € 8D x [0, T},

e (Ax) = d 0 it X € 8D x (R\ [0, 7)),
o(£)(X) Jotnsmsy TTX) o
o, eangnse " gr(X) if X € (R?\ D) x [0,T].

We remark that
&(1)=1 onR%x[0,T).

Choose a C°°-function 7 in R%*+! such that
HX)=1 onBO.R) x [-1,T+1]

and
0<7<1, suppT C B(0,2R) x (—2,T + 2),

and define, for f € L!'(ur) and X € R4+,

E(F)X) = 7(X)&(F)(X).

We note that

£(f)=1 on B(0,R) x [0,7).

LEMMA 2.2. If f is p-continuous on Sp, then E(f) is also p-continuous in R? x [0, T).
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PROOF. We may show that &(f) is p-continuous at X € Sp = 9D x[0,T]. Let Y € Q, [ = 1(Q)
and A = A(Q). Note that that £ (1) =1 and ¢%(Y") = 0 if Q does not touch Q;. We claim that

1
(2.1) B ~ 8N S ey [ D) = FOldur (D)

where b is a constant independent of [. In fact

£6(NY) ~ Eo(HX] = [&0( ~ FENX)]
S SO G AT AT Joca s, D)~ £l (2)

J

Suppose that Q; touches Q and Z € C(A;,7l;). We choose X’ € Q; N Q. Then

p(Z, A)

IN

p(Z,A;) + p(A;, X') + p(X', A)
Venl; +5vVd + 1l; + 5vd + 11
< (2vV2n+15vVd + 1)1 = bl.

IA

Hence we see that the claim is true.
If Z € C(A,bl), then

p(Z,X) < p(Z,A)+p(AY)+pY, X)
< bl +2p(Y, X) < (b+2)p(Y, X).

Since f is p-continuous on Sp, we have, for any € > 0, there is § > 0 such that
p(U, X) < 6 implies |f(U) — f(X)] <e.
If p(Y, X) < 525, then, by (2.1),
|E(FH)(Y) — Eo(f)(X)] < coe.

This shows that &y(f) is p-continuous at X € Sp and hence £(f) is p-continuous at X € Sp.
Q.E.D.

Let 0 < A < 1and X € R x [0,T]. By the similar method as in [S, p.174] we see that, if f is
A-Hoélder continuous on Sp with respect to p, then

(2.2) o)X < edisty (X, Sp)*

for i = 1,---,d. Using (2.2), we also see that, if f is A-Ho6lder on Sp with respect to p, then & (f)
is A-Holder continuous in R? x [0, 7] with respect to p (cf. [S, Theorem 3, p.174]). Hence £(f) is
also A-Hélder continuous in R? x [0, 7] with respect to p.

LEMMA 2.3. Letp>1 and f € LP(ur). Then

[iewrar <c [ iraur,

25
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where ¢ is a constant independent of f.

PROOF. Denote by P the set of all parabolic k-cubes @ in W,((R?\ 8D) x R) = {Q;} such
that QN ((R?\ 0D) x (—2,T +2)) # 0. For each Y € Q € Py we deduce from the definition of the

extension &

IA

BO) < XG0 Em [ @)

w@h [ 1F(2) d(2),

C(Ab2-F)NSp

IA

where A = A(Q) and b is a constant independent of ). Hence

Eo(HP < 5 (27%) /C F(2)Pdur(2)

(A(Q),b2-%)NSp
for every Y € Q € Py. Consider {C(A(Q),b27%)}gep,. Using a covering lemma of Vitali type (cf.

[W2, Lemma 2.1]), we can find a subcovering Py o such that Py o are mutually disjoint and

> CAQ),27%) c Y CAQ),3027%).

QEPx QEPk,0

Each point X in }"gcp, C(A(Q), b27%) is contained in at most N-many parabolic cubes of
{C(A(Q),3b27%)}gep, o» Where N is a constant depending only on the dimension d + 1. Hence

_k\d—8
> [lanwra@y)™ [ 1#@)pdn).
QEPr Q Sp
Consequently we have

> T [leOmr<a [ 11@Pdur @)

k=ko QEP: 7 9 Sp
Here ky is the least integer k such that a point of B(0,2R) x (—2,T +2) is contained in a k-parabolic
cube. Since 0 < 7(X) <1 and supp 7 C B(0,2R) x (—2,T + 2), we have the conclusion. ~Q.E.D.

For f € L'(ur) we define the parabolic maximal function of f by

fC(X,r)nsD |f(2)|dpr(2)
pr(C(X,r) N Sp)

Mz pf(X) = sup{ ; 0<r<2R}.

Then we see that M, ,f is lower semicontinuous on Sp and satisfies
[ Mo piidir < [ 177dur
for f € LP(ur).
PROPOSITION 2.4. Letp >1 and f € LP(ur). Forc > 1 and X € Sp we set

Le(X) ={Y = (1, 8)p(X,Y) < inf p(Y,Z) =c5(Y)}.
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IfT.(X) is non-empty for each X € Sp, then

(2.3) / L ENFY < / \FPdpr
and
(2.4) im  E(f)X) = F(X)

Y —X,Y€lc(X)
for pr-a.e. X € Sp.

PROOF. Let X € Sp and Y € To(X). If Y € Q € W,((R%\ 8D) x R) and A = A(Q), then

1
E(f)Y)| < c —/ fld
EolP) = etz C(A,bl)ﬂSDl (dur

as in the proof of Lemma 2.2, where b is a constant independent of I. Noting that ¥ € I.(X), we
have, for each Z’ € C(A,bl),

p(Z',.X) < p(Z',A)+p(A,Y) + p(Y, X)
V2bl +5vVd+ 1L+ c6(Y) < bl

A

where b’ is a constant independent of I. Hence

1
swp 16N < e [ F(2)ldur(2)
Yere(X) _ C(X,b')NSp
< My pf(X)

This implies »
/ < sup !So(f)I(Y)> dur(X) < a [ 1£(2)Pdur(2)
YeTe(X)
Since 0 < 7(Y) < 1, we have (2.3).
Using (2.3) and Lemma 2.2, we can also see (2.4) that by the similar method as in the proof of
[S, Theorem 1, p.5]. Q.E.D.

3. Estimate of the extension operator

In this section we estimate the norm of [VE(f)| by the Besov norm on the fractal lateral boundary
Sp.

Let f € L'(ur x pr). We introduce a maximal function M(ur x pr)(f) of f € LY (ur X pr)
on (B(0,R) \ 8D) x [0, T] defined by

M(pz x pr)(£)(X)
1

d Y) Z,Y)|d Z);
Sup{,u’.r(c(xﬂ”)ﬁSD)2 /C(x,r)nsp ur¥) C(X,'r-)nSD|f( Ndpr (Z)
bd6(X) <r < R}
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for each X € (B(0,R) \ D) x [0, T]. Here b is a fixed real number satisfying b > 1.
We next define a meaure vy on R+! by

w(E) = / §(Y)2P+2-dgy
, (B(0,3R)\8D)x[0,T|NE

for a Borel measurable set E C R4+1.
The measure vy is dominated by pr x pr for parabolic cubes in the following sense.

LEMMA 3.1. Fizb> 1. Let X = (z,t) € (B(0,R)\ D) x [0,T] and b6(X) < r < 3R. Then
(3.1) vo(C(X,r)) < e17?P+* < cour(C(X,7) N Sp)2.

PROOF. Let X = (z,t) € (R®\ 8D) x [0,7] and 2z’ be a point in 8D satisfying 6(z) = |z — 2'|.
Putting X’ = (', t), we see that C(X,r) C C(X’,2r). Then

t+(2r)?

vo(C(X", 2r)) < / 5(y)28+2~ gy,

ds/
t—(2r)2 (R4\6D)NB(z’,27)
By Lemma 2.2 in [W1], we have

v (C(X',2r)) < c1(2r)2P72(2r)? < cor?PHe,

Hence the first inequality holds.
Since C(X',(1—-1/b)r) C C(X,r) and 8D is a 3-set, we also have the second inequality of (3.1).
Q.ED.

Using this, we have the following estimate of the maximal function of f in L(ur X pr) on
(B(0,R) \ D) x [0,T].

LEMMA 3.2. (i) Let A > 0 and f be a (ur x pr)-integrable function. Put
Ex = {X € (B(0,R) \ 8D) x [0, T} M(ur x pr)(£)(X) > A}.
Then |
(3.2) w(B) < 5 [ [ 10V ldur COdun(v),

where ¢ is a constant independent of f and A.
(i) If p> 1 and f € LP(ur X pr), then

(3.3) / Mur x ur)(F)(Y Pdvo(Y) < / / F(X, V) Pdur (X)dur(Y).

PROOF. Let f € L (ur x pr) and A > 0. Then we see that E is open as usual. Let K be a
compact subset of E. For each X € K we can find a real number rx > 0 such that

(34)  wCCtrNSp)? [

/ |£(Y, 2)|dpr (Y )dur (Z) > X
C(X,rx)NSp JC(X,rx)NSp
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and 6(X) < rx < R. Then the covering lemma of Vitali type (cf. [W2, Theorem 2.1]) asserts
that there is a subfamily {(C(Xj,rx,)} of finitely many elements of {C(X,rx)}xek such that
{C(X;,rx;)} are mutually disjoint and

K C UjC(Xj,3’I’Xj).
Then, by Lemma 3.1,

w(K) < > w(C(X;,3rx,)) <y (3rx,)P
J J

= ¢ ZT§(€+4 < cs Z#T(C(Xj, T‘Xj) N SD)z.
3 J
The inequality (3.4) implies

mmggzg/

/ (Y. 2)ldpr(V)dpr(2).
C(Xj,’r‘xj)ﬁSD C(Xj,'r'xj)ﬂSD

Since {C(X},7x,)}; are mutually disjoint, we have

vo(K) < / /su | fldurdur.

Since vo(E)) = sup{K; K is compact, K C E\}, we have (3.2).
The inequality (3.3) is deduced from (3.2) by the usual method (e.g.[S, p.7]). Q.E.D.

We now are ready to prove Theorem 1.

Proof of Theorem 1. We write Y = (y,s). Let {Q;} be the Whitney parabolic decomposition
of (R¢\ 8D) x R.. For a parabolic cube Q; € {Q,} we set I; = [(Q;) and 4; = A(Q;).

Let Y € Q € {Q;} and Y € (R®\ 8D) x [0, T). Further let | =1(Q) and A = A(Q). Put

1
b= pr(C(A,nl) N Sp) /C(A,nz)nsD f(Z2)dur(Z).

Noting that & is a linear operator and &y(1) = 1, we have

[VE(HY)] = [VE(f - b)(Y)]

¢;(Y)
dur(Z 7Y — .
B 1Zjlm"%l‘f’“ C(A;jnl;)NSp wr )/C(A,nz)nsD 1$(2) = FW)ldur(U)
We set ) — £
MZW:NZUW“WM‘
Then

) VE(F)(Y))| [T e dur(2) WZ,U)dur(U)
3.5 v Y)|<e / ’ ’
( of 2T Joiawnnse T Jotamynss -

b is a constant independent of Y.

29
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We first suppose that Y € (B(0, R) \ D) x [0,T]. Since p(Y, A) < 5v/d + 1l and |V&(f)(Y)| =
IVE(f)(Y)| for Y € (B(0, R) \ D) x [0,T], we have, by (3.5),

IVE(F)(Y)|6(Y) mo-B+2/p

1
C3m—r s d Z/ h{(Z,U)dur(U
S 1B+2B+2 /C'(Y,b”l)ﬁSD wr(Z) (C(Y,p")NSp ( Jaur(U)

< caM(pr x pr)(h)(Y),

(AN

where b” is a constant independent of Y.
Using Lemma 3.2, we have

/ ds/ [VE(S)( Y)]Pa(y)p(l o (B+2)/p) §(y)20+2~d gy

IA

e / ds / Mz x pr) (B)(Y)P6(y)?0+2~2dy
0 B(0,R)

IN

. / h(Z, UYPdur(2)dur(U),

whence
T

(3.6) /ds / VE(F) (V) PS(Y)PP*—4+Pdy < cs / W2, U)Pdur(2)dur(U).
0 B(0,R)

Noting that |%¢;‘f| < cgl™?, we also have
1(B+2)/pta
|_g(f)(y)| = TR /C(A,b'l)nSD aid /C(A,m)msD W& O)dur (U),
whence

!%ﬂf) (6>~ E+D/P < cg M(ur x pr) (R)(Y).

Using Lemma 3.2, we have

2p—pa—d+3
/ s [ o 2 ey w)Pa(y) dy
Cg // h(Z, U)”duT(Z)de(U).

We next suppose that Y € (R¢\ B(0,R)) x [0,T] and Y € Q. We note that

b, 0
L)) = e Gl )V))
- (ENW)] + IEN V=7V )

and

supp 8?;-8(f) C B(0,2R) x (—2,T + 2).

Since D C B(0, R/2), we have 6(y) > R/2. Noting that 4¢/d + 11 > §(y) > R/2, we also have, by
(3.5),

VE(Y)] < exo / / W2, U)dpr (Z)dpr (U),
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whence

T
/ dS/ | o Eo(f)(V)[PS(Y)PPa—d+B gy
0 B(0,2R\B(0,R) OUi
< 611/ h(Z,U)Pdur(Z)dur(U).

On the other hand we note that

ENX) < a3 AT lw / £(2)lduzr(2)

j C(A;j.ml5)

A

IN

eis / F(D)\dur(2),

whence

)|p5(y)p—pa—d+ﬂdy

T
8
/o as -/B(O,2R)\B(O,R) NP 0y;
cia [ 17(2)Pdur(2).

From this we deduce

T
/ ds / VE() (V) PE(Y )PP~y < ey / F(2)Pdyr(Z).
0 B(0,2R)\B(0,R)

Similarly we also have

6
/ ds/B(o 2R)\B(0,R) 83 EHY)Po(y)*rres d+ﬂdy<016/|f Z)|Pdur(Z).

Thus we have the conclusion. Q.E.D.

4. Another property of the extension operator
In this secion we consider a maximal function of f in L!(ur) on (B(0,R)\ 8D) x [0,T)]. Let us

begin with the following lemma.

LEMMA 4.1. Letb>1 and X € B(0,2R) x [0,T]. Further let Yo = (y0, s0) € (B(0,R) \ 8D) x
[0,T] and bé(yo) < r < 3R. Then

(4.1) 5dY < errf*? < cz/ dur(2),

/C(Yg,r)r‘u{(B(O,R)\aD)x[O,T]} p(Y, X)4= C(Yo,r)NSD

where ¢1 and cy are constants independent of r, Yy and X.

PROOF. Put
B(Z,e) ={Y e R p(2,Y) < €}

for Z e R%t! and € > 0.
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We first assume that p(X,Ys) < 2r. Then
C(Yo,r) C B(Yo, v2r) C B(X, (2 + V2)r).

By the property of p in [W2, Lemma 2.5], we have
/ 1
C(Yo,r)n{(BO,RN6D)x[0,7]} P(Y5 X)4—B

1
—————dY < ¢;((2 4+ V2)r)H2-B8 = B2,
/I;(X,(2+\/§)r) (Y, X )35 1(( )r) )

We next assume that p(X,Yy) > 2r. Then

dYy

<

/ vy
C(Yo,r)n{(BO,RN8D)x [0,77} P(Y; X)4—P

/ ! dy
(p(¥,X)>(2—VB)r}nC(Yo,r) P(Y; X)4—P

1
/ dY < c;;r_"l"'ﬁrd’*'2 = C4'f’ﬂ+2.
C(Yo,’l‘)

= @ Vanes

Thus we obtain the first inequality of (4.1).
Noting that 8D is a B-set, we also have the second inequality of (4.1). Q.E.D.

IA

Fix b > 1 and define, for f € L*(ur) and Y € (B(0, R) \ 8D) x [0, T},

fC(Y,r)nsD |f(Z2)|dur(Z)
/J,T(C(Y, ’I') N SD)

M(pr)(f)(Y) = sup{ :b6(Y) < r < 3R}.

Using Lemma 4.1, we can prove the following lemma by the same method as in the proof of
Lemma 3.1.

LEMMA 4.2. Let X € B(0,2R) x [0,T].
(i) Set, for A >0,

Fy = {Y € (B(0,R) \ 8D) x [0, T}; M(ur)(H)(¥) > A}

If f € L'(ur), then

/F ;;Tf)l?)(TﬂdY = jc\'/|f(Z)|d,“T(Z).

(ii) If 1 <p < o0 and f € LP(ur), then

%d}’ e / |#(2)Pdur(2).

Here c is a constant independent of f, A and X.

We now prove Theorem 2.
Proof of Theorem 2. Let X € D x [0,T) and Y € (B(0,R) \ D) x [0,T]. Further,let Y € Q €
W,(R%\ D) x R) = {Q;} and set

1=U0Q), 1j=UQj), A=AQ), and 4; = A(Q;)-
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Since £(1) = 1, we have

I = jE(NHY) - ( X)) =& (f — E(HX)NT)]
< X H0pm e, ) =B X (2),
whence
1f(Z2) — E(H)(X)] pra
(4.2) I<ec 27573 /C(A s P, X)@+o/sra’ p(Z, X)&+D/prag, (7).

Here b is a constant independent of I with b > 5v/d + 1.
We consider two cases.
If p(X, A) < 3bl, then, for Z € C(A,bl) N Sp,

p(Z,X) < p(Z,A) + p(4, X) < (V24 3)bl

and I < |z —y| < p(X,Y). From (4.2) we deduce

I< C3l(d+2)/p+a_ﬂ_2/ |f(Z) — E(f)(X)Id T(Z)a

cpynsp P(Z, X)d+2)/pte

whence

I 1£(2) - €N

. < Z).
(4:3) P(X, V)@ rra < 573 /o(y,blz)nsp o2, Xy@jpre Wr(Z)

If p(X, A) > 3bl, then, for Z € C(A4,bl) N Sp,

p(X,2) < p(X,A) + p(A, Z) < p(X, A) + V2bl < (3+f)p(x A)

and

p(X,Y) > p(X, A) = p(¥, 4) > 2p(X, ).

Hence

p(x,2) < 2% v2

p(X,Y).
From (4.2) we deduce (4.3).
In each case we have (4.3) and hence

I 1£() = EF)X)

p(X,Y)d+2)/pte B C4M(“T)(p(.,X)(d+2)/p+a )(Y).

Using Lemma 4.2, we obtain

IP

X,Y)d+2+op+d—B ¥

/<B(0,R)\5)x[o,ﬂ A

F() = )X , 1
mr)( L(F,)X)(dig/(wlj )¥) H(X.Y)4P ay

IA

Cs /
(B(0,R)\D)x[0,T]

z)-¢& X)\|p
e /SD ‘f,()(;,X)ggiag P ur(2),

IA
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whence

| EWNY) — EDX)IP
dX
/Dxlo,Tl (BO,R\D)x[o,r] P(X,Y)3H2treptd=h ay
17(2) - E(NHX)IP
= ce /Dx[O,T]dX sp P(Z,X)d+2+ep dur(Z)-

Similarly we also have

€ (X) - F(2)P
Sp dur(Z /Dx[o,T] p(X, Z)d+2+er .

¢ o[ [ LOIDE 0,

whence,
ENE) = EDX)P
/Dx[o,T] = (B(0,R)\D) x[0,T] p(X,Y)dt+2+ap+d—B ay
Since
EAT) = EDXP v

dX
'/DX (0,7 (R4\B(0,R))x[0,T] p(X,Y)d+2+ap+d—p

E(F)(Y)PY + co / E(F)(X)PdX,

Dx[0,T)

< ¢ /
(R4\B(0,R))x[0,T]

we have, by Lemma 2.3,

IEHT) = EANX)IP
aX dYy
/D x(0,T] RaD)xp,r] AX,Y)d+2+or+d=p

< oo [ duren) [ FESIE dir )+ [ 1500P ()

Sp

Thus we have the conclusion. Q.E.D.
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