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ABSTRACT

We consider the elliptic differential operator in divergence form associated
with Dirichlet boundary condition in a Lipschitz domain Q in R™. The aim
of this paper is to show that the operator is the generator of an analytic
semigroup of bounded linear operators in LP(2). We start from the con-
crete differential operator with Dirichlet boundary condition in weak sense.
Then we show that the smallest closed extension of it is the generator of Co-
semigroup, and that the semigroup satisfies the estimate to be an analytic

semigroup.

1 Introduction

This paper is concerned with the elliptic differential operator B of the form:

Bu = Z \/_ o [\/a(a:)a,,(m ,y a(z) = detfa;;(z)] ™! (1.1)

i,j=1
considered in a Lipschitz domain € in R™ with Dirichlet boundary condition; the
coefficients a;;(z)’s are assumed to be bounded and of class C* in the interior of {2
but not necessarily continuous up to the boundary d2. Furthermore we assume that
the partial derivatives of second order of a;;(z) are uniformly Lipschitz continuous
in Q.

Since the Dirichlet boundary condition is considered, it is natural to start from

the restriction B of the differential operator B to
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D= {u | ue C3Q)N LP(Q) N H} (), Bu € LP(Q)}.

We shall show, for any pre-assigned p(1 < p < c0), the smallest closed extension A
of the operator B in LP(Q) is the generator of an analytic semigroup of bounded
linear operators Ty(t > 0) in LP(Q2) (Theorem 2 in §4).

One of the most general results for the problem of the same direction is the result of
El-Maati Ouhabaz[8], where it is proved that, for any strongly continuous semigroup
{T; : t > 0} which admits a Gaussian estimate, the semigroup {e~%“*T;} (w being a
suitable real number) is bounded analytic on the right half-plain, and that the result
is applicable to the generator of the semigroup associated with the symmetric elliptic
differential operator of the same form as B in (1.1) in the case where {2 possesses
the extension property. However, in the present paper, we investigate the problem
in entirely different point of view. We start from the concrete differential operator B
with the domain D as mentioned above, and construct the smallest closed extension
of B which is the generator of a Cy-semigroup. Then we prove, by means of Moser’s
mean value theorem [7] and a parabolic version of Caccioppoli’s inequality, that the
semigroup satisfies the condition to be an analytic semigroup.

The author is deeply grateful to Professor Fabes for his ya_luable advice and guid—

ance.

2 Preliminaries

Let Q be a bounded Lipschitz domain in R™; the definition of Lipschitz domains is
stated as follows [1].

DEFINITION 2.1 A bounded domain Q@ C R™ is called a Lipschitz domain if Q2
is covered by finitely many open right circular cylinders Ly, Lo, ..., Iy whose bases
have positive distance from 9 and, corresponding to each cylinder Ly, there exist
a coordinate system (:Z'l,:im) = (Z1,..., Em—-1,%m) with the Z,,-axis parallel to the
~ axis of Ly, a function f (&) and a constant K such that |fx(Z) — fi(# )| < K|& —
i |(Lipschitz condition) and that Ly N & is represented by &, = fk(a"c').

We consider the parabolic differential equa.tlon = Bu with Dirichlet boundary

condition on 9%2; the dlfferentxal operator B is expressed in the form:
ou
Bu = a(z)a;i(z)— ), a(z) = detla;; (z)] ")
- Z; Taan (V@@ ), (o) = dee(e) )
where [a;;] satisfies the strong ellipticity, i.e. a;j(x) = aji(z) and there exists a
positive number 6, independent of z and £ such that }, ; a;;(z)&:é; > 8ol€|? for
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any x € 2 and any £ € R™. It is well known that the volume element d,z =
\/ﬁdxl ... dZy, is invariant under the transformation of a local coordinate system.
Hereafter we always consider the function spaces LP(Q), H!() etc. with respect to
the volume element d,x; however, by virture of the strong. ellipticity of B, the space
LP(Q2) e.g. is identical with the usual LP-space with respect to the Lebesgue measure

dzy ...dTx,. The inner product and the norm in L?(Q2) are respectively given by

(u,v)r2 = (u,v)q E/Qu(x)'u(x)da:c

and
lu |2a=] u 2= /n fu(2) Pdac.

We define for any u,v € H(Q)
(Vula) - Vol = i) Zped 50

i’j

where ag(z denotes the generalized derivative, and

(Vau, Vo)o = /Q (Vu(z) - Vo(z))adaz;

in particular if u = v, we use the notations

VU@ = o) et G and | Vu = [ [Vue)des.

i)J |

Then the norm || - || 1 in the Sobolev space H(f) is given by
lu =l i+l Va |z

Let C§° be the totality of infinitely differentiable functions with compact support
in Q and denote by H} (£2) the completion of C§° with respect to the norm in Sobolev
space H1(Q). ’

Let (T, T:) be any given interval and define H(Q x (T3, T3)) and H} (2 x (T1,T3))
in the similar way as mentioned above. For the sake of brevity, these function spaces
will be denoted by H! and H} respectively if no confusion occurs. For u = u(z,t) €

H?', the notation u; = g“;' is used in the generalized (distributional) sense.

DEFINITION 2.2 A function u € HY(Q x (T}, T3)) is called a weak solution of the

parabolic differential equation

ou
if it satisfies
{ugp + (Vu - Vop)o}dezdt =0  for any ¢ € C5°; (2.2)

Qx (Tl 5T2)
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if furthermore the solution u belongs to H}({2) as a function of z for any fixed ¢, it

is called a weak solution of (2.1) with Dirichlet boundary condition.

In §4, we have to consider the solution of the pérabolic equation in a parabolic ball
whose radius is independent of the center of any adopted coordinate neighborhood;
so we have to extend the differential operator B and the solution of the equation
to some part of the exterior of the domain Q . For this purpose, we consider the
coordinate transformation (such as mentioned in the following paragraphs) in every
cylinder stated in Definition 2.1.

Let Ly,...,L; be the cylinders stated in Definition 2.1. As for the coordinate
systex-n (Z1,.-.,%m—1,%m) in each cylinder Ly, we may assume that the intersection
of the axis of Ly with 99 is denoted by (0,...,0,0). Using the coordinate system in
Ly, we define

Li(@) = {(&1,- .- »Em-1,%m) | |Fj| <a A1 <j<m)}. (2.3)

We may assume without loss of generality that

1
L) C Ik (k=1,...,) and |J Lk(%) > 69. (2.4)
k=1

Hereafter we treat an arbitrarily fixed cylinder Ly; the Lipschitz function f; (men-
tioned in Definition 2.1) will be denoted simply by f.

We define a new coordinate system in a suitable subdomain of L; where |Z,,]| is
sufficiently small by the following formulas (2.5); here we denote the new coordinate
system also by (z1,...,Zm) to simplify the notations. Let p(A\) be a monotone

decreasing C function on 0 < X\ < oo satisfying the following conditions:

1
< < < = < > —
0<p(A) <1 on0< A< oo, p(A) c forA_4K p(A)=0 for X 3K

(K being the Lipschitz constant of f and c¢ a suitable positive constant)

and

/ . p(|7'|?)dz' =1 where d#’' =d3z|...d%,_,

m

and define the coordinate transformation by the following formulas (2.5).

Ty = I

(2.5)
ZTm-1 = ZTm-1
Em = IT;m+ flz'lsi}z p(lzIIZ)f(xl + x?nz,)dz,

the last expression is equivalent to

tnmomt [ oy i e 25)
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as may be shown by a suitable substitution of the variable of integration.

We put W = {(z1,..,Zm-1,Zm) | |7;] <1 (1 <j<m—1), |zm|<i},WH=
W\ Qand W~ = WNQ. Then, by using (2.6) and by simple calculations, we
may prove that the transformation (%;) < (z;) is one-to-one and bicontinuous, that
Zm > 0,2, = 0,2, < 0 correspond to W+, W N8R, W™ respectively, and that the
partial derivetives g%} (4,7=1,...,m) are’continuous and the Jacobian of the trans-
formation (2.5) does not vanish except on 2. Hence the transformation is a local
C!-diffeomorphism in W \ Q. We may also prove that the transformation is a local

C*°-diffeomorphism in W \ d€2. Hence we may consider the partial differentiations

-3—‘2; in the inside and outside of 2, individually.
By using this coordinate system (z;), we extend the differential operator B and
the weak solution u of the differential equation %'ti = Bu with Dirichlet boundary

condition considered in (W N Q) x (T1,T3) to the differential operator and the weak
solution in W x (Ty,T%). The process of such extension is mentioned in the author’s
previous papers [2],[3] in detail. In the statement above, the weak solution in W x

(T, T3) is understood in the similar way as mentioned in Definition 2.2.

3 Construction of a Cy-semigroup

We shall consider LP(Q) where 1 < p < co. Let D be {u | u € C2(Q) N LP(Q) N
HA(Q) and Bu € LP(Q)}. D is dense in LP(Q) since C3(Q) D. Let B denote the
restriction of B to D. In this section, we show that the smallest closed extension A
of B generates a Co-semigroup in LP(f2). Hereafter we shall denote by Co(Q) the

completion of Cy(2) with respect to the supremum-norm.

LEMMA 3.1 Let A be an arbitrarily fized positive number. For any f € L2(R), there
exists v € H}(Q) such that

Av,B)a + (Vv,V@)a = (f,¢)a for any ¢ € CG(Q) (3.1)

and it holds that
1 1
vllZe < llvlie + Xllvvlliz < ﬁllfll%m (3:2)
The function v € H3(Q) satisfying (3.1) is uniquely determined by f. In particular,
if f € Co(R), then v is bounded and continuous in Q and it holds that
1
@) < $lfllLe  for any z € (3.3)
and that
f >0 implies v > 0; (3.4)

if further f € C}(R), then v is of class C? and Bv is bounded in Q.
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Proor The first assertion of this lemma is proved by means of the Lax-Milgram
theorem [6]; the estimate (3.2) is readily derived from (3.1). If f € C}(), then v
is regarded as a function of class C? satisfying Av — Bv = f by Weyl’s lemma, and

accordingly Bv is bounded in 2. The properties (3.3) and (3.4) may be proved by

NSR. O., Vol. 53

means of the maximum principle. If f € Cy(£2), the boundedness and the continuity

of v, (3.3) and (3.4) still hold since C}(f?) is dense in'm— with respect to the
sup-norm || - [leo- ///

We denote by G the operator which maps f € m to the function v uniquely
determined in the sense of Lemma 3.1. Then G, is a bounded linear operator of
Co(Q) into L*®(R) satisfying that |Gy f]|ze < L fllze for any f € Co(Q) and
that f > 0 implies G5 f > 0. Since (G f)(z) is continuous in 2, the value of the
function (G f)(z) is determined for every z € Q. Hence, for any fixed z, (Gxf)(z)
is a positive linear functional of f € Cy(Q). Therefore, by the Riesz representation

theorem, there exists a measure Gx(z;-) in Q such that Ga(z;Q) < } and that

G (@) = /Q Ga(z;dy)f(y) forany f € To@). (3.5)

By means of this formula G, is extended to a bounded linear opera.tor in L*(Q)
satisfying ||Gi|| < +. : .

We denote by Jy the operator which maps f € L?(Q) to the function v uniquely
determined in the sense of Lemma 3.1. Then J is a bounded linear operator of
L%(Q) into H}(Y) and it holds that ||Jxf|[zz < 1||f|lL2 for any f € L?(R).

It is clear from the definition of Jy that (Jxf)(z) = (Gaf)(z) in Q for any f €
Co(Q). Since L*®(Q) c L2(S) from the boundedness of 2, we have the following

LEMMA 3.2

(I f)(z) = (Grf(z) a.e. for any f € L™(Q).

ProOOF Suppose f, converges to some f monotonousty where f,, and f are bounded
~ and Borel measura.blé. Then, by means of the bounded convergence theorem, we
obtain that limy, o (Gafrn)(z) = (Gaf)(z) for any z € Q and that im, e [|frn —
flizz = 0, accordingly lim, IIJA fn — Iafllz = 0. Hence the set of all bounded
Borel measurable fux-lctions f satisfying (Jx f)(z) = (Gaf)(z) a.e. is a monotone class
containing Co(€2). Therefore it contains all bounded Borel measurable functions. ///

The following two lemmas may be proved by means of Lemmas 3.1 and 3.2.

LEMMA 3.3 For any f € L*>°(Q), the function u = G\ f satisfies

(u,A\p = B)a = (f,$)a  for any ¢ € C3(S2).

LEMMA 3.4 For any f and g € L%(2), we have (Jxf,9)a = (f,Irg)a; in particular

sz and g € LOO(Q)) then (GAf’ g)a = (f) GAg)a,-
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LEMMA 3.5 (Resolvent equation)
Jr = Jp = (= AN)IaJyu. In particular Gy — G = (1 — A)GAG, in L(Q).

PROOF Put u = J,f for any f € C3(Q). We get u € C%(2) and (u — B)u = f by
Lemma 3.1. Put g = (A — B)u. Then the function v = Jig satisfies

AW, 9)a + (Vv,V$)a = (9,9)a for any ¢ € C5(R). (3.6)
On the other hand it holds that
AMu, $)a + (Vu, V§)o = (Au — Bu,¢)a = (9,¢)a forany ¢ € Ci(Q).  (3.7)

By (3.6), (3.7) and by the uniqueness of the function v stated in Lemma 3.1, we get
u=v=Jyg= Jr(A — B)u. Hence

Juf=uv = JIH(A—p+p—Bu
= DLDA=wduf+I(p—B)Juf
= A=p)LJuf+ IS

Since C} (Q) is dense in L2(2), the proof is complete. ///
LEMMA 3.6 For any fized A > 0 and any f € L*(R2), we have
lim ||[uGLGAf — GafllLe = 0.
p—00
PRrROOF By the resolvent equation for {G,}, we have
BGLGAf — Grf = AGAG.f — G,f for any f € L®(Q).
Since G satisfies |G| < %, we obtain

tGuGrf — GafllLe < |AGAGLfllLe + IGufllLe

1 1

= =|IAGApGufllLe + = IuGufllLeo
p u
1

= ;{||)\G,\|H|#Gn”l|f||L°° + |eGplill fllLe}
2

< E"f”Lw

Hence ||pGLGrf — Gaf||L~ tends to 0 as u — oo0. ///

Now we have the following lemma.
LEMMA 3.7 (Gaf)(z) is continuous in Q for any f € L®(R) and any A > 0.

ProoOF We fix an integer n such that 2n+41 > 7 where m denotes the dimension of

the space domain 2, and let {\, A1, Az,...,An} be a monotone increasing sequence.
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First of all we consider the equation (A—B)u = f in Q for f € L>*°(Q) (c L3(2)).By
using Lemma 3.1 we may see that the solution of this equation belongs to H}(f2),
that is, Jxf € H} (). Next we consider the equation (A\; — B)u = Jyf. By means of
the theorem of regularity of weak solutions of elliptic partial differntial equations([4]
Theorem 8.10), we get u = Ji, Jaf € HE .(Q)NL?*(Q). Repeating the same argument,

we may prove successively that

Indnf € Hipo()NL2(Q), Irdndnf € Hpo(@) N LAQ), ...,
Iy -+ - Iy I f € HEVFH(Q) N LE(Q).

loc

Since 2n+1 > %, we have HZ(Q) ¢ C°(R2) by virture of Sobolev’s lemma. Since
operators Jy, J,, Jx,; - - -, Ji,, are mutually commutable and Jy f = G\ f a.e. for any
A > 0and any f € L>(Q) (Lemma 3.2), we may see that A\;G; \2G»; ... AnGx, GA S
is continuous in 2. On the other hand, {uG,Gxf} converges uniformly to Gif as
p — oo by Lemma 3.6, and ||A,G» || < 1for 1 < v < n—1 (here || - || denotes
the operator norm in L*°(Q2)). Hence, if we rewrite A, by p and let p — oo,
then MGy, ... An—1Gx,,_ kGG f converges to A{Ga, ... A\n—1G»,._; G f uniformly;
accordingly A1G, ... Ap—1Gx,,_,GAf is continuous in 2. Repeating this process we

may finally conclude that G f is continuous in Q. ///

LEMMA 3.8 For any A > 0 and any x € Q,the measure Gx(z, E) is absolutely con-

tinuous, and the density G (z,y) is nonnegative for a.a.y € Q and satisfies

1
/ GA(x’y)day < X
Q
(Hereafter we use the expression "a.a.” as the abbreviation of ”almost all”.)

PROOF For any Borel set E, the indicator xg € L®(Q) C L?(2). So Gi(z, E) =

(GaxEe)(z). Hence Gy (z, E) is continuous in z as mentioned above and it holds that

1 1
/ Ga(z, E)?dyz < —ZHXE”%,Z = |E| where |E|= / d.z.
Q A A v E

Therefore |E| = 0 implies Gx(z, F) = 0 for a.a.z and, by the continuity of G (z, E)
in z, we get G(z, E) = 0 for all . Hence G,(z, E) is absolutely continuous. ///
The following lemma may be proved by means of the standard measure-theoretical

argument.

LEMMA 3.9 Assume that F(z,y) is a function on Q X §2 satisfying the following two

conditions:

i) for any firedz € Q, F(z,y) is measurable iny and satisfies that [, |F(z,y)|day

M where M is a constant independent of x;

i) [ql|F(z,y) [.¢(y)dqy is continuous in x for any ¢ € Co(R).

NSR. O., Vol. 53
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Then there exists a function F(z,y) measurable on Q x Q satifying that F(z, y) =
F(z,y) for a.a.y € Q for every z € Q.

For any A > 0, the density function G (z,y) in Lemma 3.8 satisfies the assumption
for F(z,y) in Lemma 3.9. Hence this lemma assures the existence of a measurable
function G (z,y) on Q x Q such that Gx(z,y) = Ga(z,y) for a.a.y € Q for every = €
2. Therefore we can replace the function G (z,y) in Lemma 3.8 by the measurable
function G (z,y) on Q x Q. We hereafter consider that the function Gy (x,y) itself
is mesurable on 2 x €. )

By virture of the measurability, we may apply Fubini’s theorem to the function
G (z,y); for instance, we may show that Lemma 3.4 implies the following Lemma
3.10.

LEmMA 3.10
Ga(z,y) = Ga(y,z)  for a.a.(z,y) € 2 x Q.

COROLLARY

/ Gi(z,y)daz < 1 for a.a.y.
Q A

From now on, throughout this section, let p (1 < p < 0o0) be arbitrarily fixed.
For any A > 0, the function u(z) defined by

u(z) = /Q Gz, 1) f(@)day, f € L)

satisfies ||ullz» < %||f|lz» as may be seen from the Hélder-Riesz inequality. Hence

we can define the operator Jy in LP(Q) by

(AN@) = [ Ex@)fG)day o any | € 27(9). (338)
Jx is a bounded linear operator in LP(Q) satisfying [[Ja|| < 1. In case p = 2,
the definition of Jx mentioned above consists with the definition of J) in L?(Q)
mentioned before.

The following lemma is derived from Lemma 3.5 since L>®°(€2) is dense in LP(2)

with respect to LP-norm.
LEMMA 3.11 (Resolvent equation)

I=Juy=(pu—-NNJ, nLP(Q) forany X and p.
CoROLLARY The range R(Jx) of Jx is independent of A.

LEMMA 3.12 R(J,) is dense in LP(2).
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PRrRooF For any u € C3(Q), f = (A — B)u is in Cp(Q) C LP(R). The function
v = J)f is also written as v = G5f. Hence v is the function uniquely determined
by f in the sense mentioned in Lemma 3.1. Thus we obtain v = v € R(Jy). Since
C2(Q) is dense in LP(2), R(J) is also dense in LP(Q). ///

LEMMA 8.13 The operator Jy is one-to-one in LP(Q), the inverse operator J5 1 with

the domain D(J5 ') = R(J») is a closed operator.

ProoF For any f € LP(Q), we put u = Jaf. If f € C3(Q) C L?(Q), then the
function Jyf defined in LP(Q) is identical with that defined in L?(Q2). Hence, by

Lemma 3.3, we have

(u, \p — B@)o = (f, #)a for any ¢ € C2(Q). - (3.9)

We use the notation (u,v)e = [, u(z)v(z)dsz whenever the right-hand side makes
sense. Any f € LP(Q) is the limit of a sequence {f,} C C’&(Q) in LP(R2), whence
Un, = Jxfn converges to u = Jyf in LP(Q)) by the definition (3.8) of Jy. Therefore
(3.9) holds for any f € LP(2). Hence u = 0 implies f = 0. Thus we see that the
operator Jy is one-to-one. Since Jj is bounded and accordingly closed, the inverse

operator J5 ! is also closed. ///

LEMMA 3.14 The operator A defined by A= A\l —J; 1 is a closed operator indepen-
dent of A\. The domain D(A) of A is dense in LP(Q).

Proor By Corollary to Lemma 3.11, D(A) = R(J)) is independent of A, and D(A)
is dense in LP(£2) by Lemma 3.12. It holds that AJrJpf — Juf = udaJuf — I f for
any f € LP(Q2) by the resolvent equation (Lemma 3.11). For any u € D(A), we apply
the above equation to f = J,‘;lu. Then we get AJyu —u = pJru — JAJ,jlu, which
implies Au — Jy 'u = pu — Jy lu. Thus we obtain that A = A\ — J; ! is independent
of A. Hence A is a closed operator by virture of Lemma 3.13. ///

LEMMA 3.15 The operator A is the smallest closed extension of B.

ProOOF It may easily be proved that A is a closed extensioh of B. We shall show
that it is the smallest one. Let A; be an arbitrary closed extension of B. For
any u € D(A) there exists f € LP(Q) such that v = Jyf. We take a sequence
{fa} C C3(Q) such that f, — f in LP(Q). Then u,, = Jxf, converges to u in LP().
Since u,, is also denoted by G fn, U, is the function uniquly determined by f,, as
mentioned in Lemma 3.1. Accordingly u,, € D and Bu,, = Bu, by Lemma 3.1. Since
A; is an extension of B, we get u, € D(A;) and Ayu, = Bu, = Au, — f,, converges
to Au— f in LP(Q2). Since A; is closed, we obtain u € D(4;) and Aju = du— f = Au.
Lemma 3.15 is thus proved. ///

NSR. O., Vol. 53
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We can summarize the discussion mentioned above as follows. The operator A =
Al — J;1 is a natural closed extension of B. The domain D(A) is dense in LP((2),
and ||(A— A)~1|| = ||J5]| < } for any A > 0. Therefore, by the Hille-Yosida theorem,

we obtain the following

THEOREM 1 The operator A generates a contraction Co-semigroup {T;} in LP(2),

namely —%Tt = AT; where % denotes the strong derivative in LP(Q).

4 Analyticity of the Cy-semigroup

We mentioned the main purpose of this paper in §1. In this section we first state

our result as the following theoem.

THEOREM 2 The operator A in §3 is the generator of an analytic semigroup of
bounded linear operators {T;}i>0 in LP(R2) (1 < p < o0).

In order to prove Theorem 2, it is sufficient to show the following two propositions
i)and ii):
i) The operator A is the infinitesimal generator of a Cy-semigroup {T;}:+>0 in
Lr(Q2).

ii) For any fixed M > 0, there exists a constant Cps > 0 such that u = ety

satisfies ||%|]Lp < EM|juy||L» for any ug € LP(Q) and any t € (0, M).

We already proved i) in §3. We shall prove ii) in this section.
We define the "ball” B = Bgr(z®) in R™ with center z° and radius R and the

parabolic ball Qr = Qr(z°,t°) with center (z°,t°) and radius R as follows:
e Br(z°) = {z | |z - z°| < R} (Jz| = max; [;])

¢ Qr(z°,t°) = {(z,t) | [t —2°| <R, 0 <t° —t < R?}

(z°,2°)

R2

Hereafter we always assume 0 < R < 1.

11
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Let L,,..., L; be the cylinders stated in §2. In each L, we consider the coordinate
system (z1,...,Tm—1,Tm) defined in §2 and the differential operator B extended to
W}, defined by '

. 1
Wi ={(x1,...,Tm-1,%m) | l2j] <1 1<j<m—-1), |en|< 5}

with respect to the coordinate system in Ly (see the last two paragraphs of §2). We
put
1 ) 1
Wi ={(@1,- ., Om-1,8m) | ojl <5 A <j<m—1), |om| < T}

Then we may readily see from (2.3),(2.4) and (2.5) that

LIJ W, D 0. (4.1)
k=1
Hence § = dist(092, 2\ Ufc:lW,:) is positive, where dist(-,-) denotes the Euclidean
distance with respect to the orthogonal coordinate system originally defined in R™.
We put

D = {z € Q| dist(z, 8Q) > g} and D' = {z € Q| dist(z,89) > g}
Then
Qcwjuwsu...Uuw,uD. (4.2)

For any point z° € W| (1 < k < l), we consider the "ball” Bgr(z°) and the
parabolic ball Qr(z°,°) with respect to the cbordinate system in Wy; for any point
z° € D', we consider Bg(z°) and Qgr(z°,t°) with respect to the original coordinate
system in R™, where we may assume without loss of generality that D’ contains the
origin 0 = (0, ...,0). We fix a positive number M < g. Then, if 0 < R < min{%, %
and (2R)? < t° < M, we have

Byr(z°) C Wy and Qr(z°,t°) C Wy x (0, M) (4.3)

or
Bop(z°) € D and Qqgr(z°,t°) C D x (0,M) (4.4)

according as z° € W, or z° € D'.

LEMMA 4.1 If u is o weak solution of %’f = Bu in a domain containing the closure

of Qr(z°,t°), then there exists a constant c; such that

1
2

1 2 o 40
wet <o | Gy [[ uwoldads | forany (.0 € Qg1

Qr(z°,t°)
(4.5)

where |Qr(z°,t°)| denotes the Lebesque measure of Qr(x°,t°); the constant c; is

independent of R and u.
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This lemma is essentially due to Theorem 3 in [7; p.113]. Under the assumption
of our lemma, the theorem says: the supremum of the left-hand side of (4.5) over
Qr(z°,1°) is estimated by the right-hand side where the constant ¢; depends on R’
and R. However, we may see from the proof of the theorem stated in [7] that c;
depends only on the ratio of R’ to R. Hence we obtain Lemma 4.1.

Let {T;} be the contraction Co-semigroup generated by A(= A\l — J;') in §3.

Then, from the argument in §3, it may readily be seen that
(—Av, ), = (Vv,Vep), for any v € D(A) and any 9 € C3°(Q). (4.6)

Since C§°(Q?) is dense in HE () with respect to H!-norm, the above relation (4.6)
holds for any ¢ € H}(Q).

We consider the solution u = u(z, t) defined by u(-,t) = Tyuo = e*4ug for any given
ug € LP(R2); see the proposition ii) stated below Theorem 2. Since D(A?) is dense in

LP(R), it is sufficient to prove the proposition ii) under the assumption: ug € D(A2?).

Then, for any s > 0, we have u(-,s) € D(A) and a—ués’—sz = AT ug = TsAup. Since
Aug € D(A), we have 8“(,(98’ ) € D(A). Since D(A) = R(Jx) C H(Q) as in §3, it

follows from (4.6) that

(1609, 260) (v 0,92ED) toame

Now we investigate u(z,t) in (W;NQ)x (0, M) and in Dx (0, M) (see (4.2),(4.3) and
(4.4)); we may use the fact that the solution u(z,t) considered in (W N ) x (0, M)
is extended to the solution in Wy x (0, M) stated in §2. It may readily be seen from

the process of the extension that

the extended solution u is a weak solution of the parabolic equation

% = Bu in W x (0, M). (4.8)

Since the operator A is an extension of B, it follows from (4.7) and (4.8) that

<—Bu(., s), (‘3u€(9; 5) (-, s)>a = (Vu(., 5,V <8ués, s) o 3)>>a (4.9)

for any function ¢(y, s) € C§°(Q x (0,00)). Using this fact, we prove the following

lemma, which is a parabolic version of Caccioppoli’s inequality.

. t
LEMMA 4.2 Let u = u(y,s) be as mentioned above, and assume that —= < R? <

42
t

Z < M. Then

o 2
// \%(ya 3) dayds S i—; // Iu(y, 3)l2dayds;

QRr(=,t) Q2r(z,t)

where ¢co is a constant independent of z,t, R and m.

13



14 Mariko Giga NSR. O., Vol.

Proor Throughout the proof of this lemma, Qgr(x,t) will be briefly denoted by

Qr.
Let ¢o(y) and ¢;(s) be functions of class C*® in  and in (0,00) respectively
satisfying that
. 1 if ye Bg(z .
0<wo(y) <1inQ, wo(y) = . (@) [Veo(y)la < S in Bag,
0 if y¢ Bar(z),
if OSt"“SSRz la(pl(s)

cz .
< +% in (0,00
if t—s>(2R)?, | % 17 F (0,00)

0 < p1(s) < 1in (0,00), @1(s) =

for a suitable constant Cp, and define p(y, s) = wo(y)pi(s). Then

ou 2 ou 2
puhad < huthed
//las(y,S) dayds_//\as(y,S)

Qr Q2r

ou
/ Bu(ya s)%(y, S)‘P(y’ 3)4dayds-
Q2r

©(y, 8)*dayds

y (4.9), the above integral equals

- / / (vutw) -9 (Stmaret, 1)) dovds
- / f (cp(y,s)‘*w 5,5)- V( , ))) dayds

/,/ ( ¥, 5)Vu(y, 8) - V ((y, 9)* ))a dayds

Q2r
= _% j:/ % (V’u,(y, S) ’ vu(y’ S))a (p(y’ 3)4dayd8
Q2r ' ‘
- / / %(y, s) (Vu(y, s) - 40(y, 5)°Vip(y, 5)) , dayds. (4.10)

Q2r

In order to estimate each term of the above expression (4.10), we prepare the follow-

ing inequalities.

// (‘P(ya S)2Vu(y, s) - Vu(y, s))a doyds

Q2r
B —// (v (w(y,S)z)'VU(y,S))au(y,S)dayds_f/ ¢(y,5)* (Bu(y, s)) u(y, )dayds
Oon Q2r
< | [[ @otw o) Vely, ) Vutw, ), uty, davds| + | [ [ o(0,5 5 0, 5)ulw, )dayds
Q2r Q@2n
< / / 280 14y, )|IVu(y, 9)lalo ;s 8)ldayds + / / ¢y, 5)° g—Z(y,S) |u(y, 5)|dayds ;

Q2r Q2r
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accordingly

2072
%0 / oy, 9?1 Vu(y, ) 2dayds

Q2r
2C4 12C?
o252 [[ 1w 9P days + 1228 [[ 190w, 0)2lp(0, o) e
Q2r Q2r

©(y, s)*dayds

ct 1 ) 2
+ﬁR—ﬁ //IU(y,S)IZda,yalsvL /—5//'5%(3/,8)
Q2R Q2r

where o and (3 are constants > 1 determined later. Hence

2C3 1 2 2
22 (1-3) [[ et 9Pty o)Edavds

Q2r

< (2a+ﬂ) / lu(y, s) Izdayds+ (y, (y, 5)*dayds.

Qz2r

1
Taking a constant k such that k(1 — E) > 1, we get

202
/ le(y, s) 21 Vu(y, s)[2dayds
Q2r

Ch k ([0, .|?
< k2ot T [[ lnPaas+ £ [[ |
Q2r Q2r

Using the inequality (4.11), we may achieve the following estimates.
The first term of (4.10):

o(y, 5)*dayds(4.11)

_% / / % (Vu(y, s) - Vu(y, 5))ap(y, 8)*dayds

Q2r
= —%/Bm |Vu(y, t)|s <p(y,t)4day+ //( Vu(y, s) - Vu(y,s))adayds
< Z | 4<p<y,s)3—(y, 5) (Vu(y, s) - Vu(y, ), dayds
< %% o [ e 5PVt o) Bdayds
Q2r
< ©(y, s)*dayds. (4.12)

Cé k o 2
o+ 055 [[ 1utwoPduss+ % [[ |50
Q2r Q2r

The second term of (4.10):

B // g_z(ya 3) (Vu(ya 3) ) 4-()0(y’ s)sv‘p(y? S))a, doyds
Q2R
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< 27R2 //w(y,s) |Vu(y, s)|adayds + = //' ?/:3) oy, 8)*dayds
< kv(2a+ﬂ) / |u(y, s)|°d (y’s) ‘P(y’s)4d“yd5
+§Z/ ‘%(’9,8) ¢(y, 5)*dayds (4.13)

where v is a constant > 1 determined later.
It follows from (4.10),(4.12) and (4.13) that

[l
"5 //| wo
2 [zl

w(y, s)*dayds < k(2a +ﬁ) / [u(y, 5)[dayds

©(y, 8)*dayds + k(20 + ﬁ) / lu(y, s)|?dayds

(5,5 dayds + 2 / f ' (5,5)

w(y, s)*d,yds,

accordingly

R 2}//\—<y,s>

Here we choose a, 3,7 and k in such a way that 1—

(1) dayds < K(147)(200+6) 0 / lu(y, 5) Pdayds.
Q2r

k(1+9) 2

B
Co=k(1+7)2a+p8) /{1~ k—(l[;i) - %} > 0; for instance, we may put a = 2,8 =

21,7 =4 and k = 2. Then we get

ou 2 ou 2
//l%(y,s’) daydssf/lg(y&)
Qr Q2R

Since t < 4v/2R?2, we obtain the following inequlity where c; = 32C)C} :
ou 2
/ / \5.; (y’ 3)
Qr

Now we carry out the estimate of H 3—”(.%5*—)”[1 in the proposition ii) stated below
P

— > 0 and consequently

C4
o(y, 8)*dayds < CGR% / / lu(y, s)12dayds.
Q2r

C
doyds < % [ 1u(v, ) Pdayds./
. Q2r

Theorem 2. Since D(A?) is dense in LP(f2), it suffices to prove the estimate under
the assumption: ug € D(A?). This assumption implies that the strong derivative & S

in LP(Q) satisfies % (‘fi—‘t‘) =A ( dt) Hence we may see that

s .. ou .
the distributional derivative u; = — of the above solution

ot

. . . .0
u is a weak solution of the parabolic equation % = Bu, (4.14)

with Dirichlet boundary condition stated in Definition 2.2.
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The original solution u(z,t) in (2 N Wy) x (0, M) is extended to the solution in
Wi x (0, M) as stated in §2. By virtue of the property (4.14) of the original solution,

the extended solution u(z,t) satisfies that

N o ou .
the distributional derivative u; = — is a weak solution

ot

of the parabolic equation %—?— = Bu, in Wy, x (0, M). (4.15)

We take an arbitrary point (z,t) € W{ x (0, M) and a positive number R < }
such that % < (2R)? < t. Then, by means of (4.3) we have

Bor(z) C Wi and  Q2r(z,t) C Wi x (0, M).
Hence, because of (4.15), we may apply Lemma 4.1 to u; = g—’t‘ and we have

3

/ lus(y, )|°dayds | . (4.16)

QR (z,%)

0

u(ﬂf ) <a

IQ

By Lemma 4.2, the right-hand side of the above inequality is less than or equal to

2

tz |QR 1Qr(z,t)| // |u(y, )[*dayds

C1
Q2r(z,t)
1
2
= & // lu(y, 8)|%d,yds (c3 = 2%+1c1c2%)
t |Q2R(ﬂf 1)
Q2r(z,t

C3 t 1 %‘
= {/ TR Jopi S>"°day} (p22). (417)

The last inequality, which is evident for p = 2, may be seen for p > 2 from the

following relation; by Holder’s inequality, we have

1A
[Q2r(z,0)] // [u(y, )" dayds

Q2r(w,t)

// ey, ) dayds // (leR(m t)|> dayds (;%*%

QZR E t) Q2R(Z t)

= / | / _
= ds lu(y, ) I”day)
leR(x,t)l% ( t—4R2 BQR(:D)

The Lebesgue measure |Bag(z)| of Bor(z) with respect to the coordinate system

IA

(z1,-..,Zm) in Wy is (4R)™ (independent of z), so we denote it simply by |Bzg|, and
define ¢or(z) = ]BLQR[XBZR(O) (z). Then we have

1
dor(z —Yy) = |—B°i‘a><3m(0) (z—y)= [—B;;‘XBMQ(E) (v) (4.18)

17
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and

_/ $2r(z — y)daz < o (4.19)
Wi

where ¢ is a constant determined by the density 4/a(z) of the measure d,z; we may

assume that co > 1.

It follows from (4.16), (4.17) and (4.18) that

p t
Sen <(2) [ gt [ eme-vuwariy. @

Integrating both sides of (4.20) over W}, with respect to z, changing the order of

integrations and using (4.19), we obtain

t
) , )
( ¢ ) /t 4R2 4R? ds/ Wi lu(y, s)|Pday /W,'c dor(z — y)doz

t
c3\P 1
< — Pdyy. .
= (t) COA AR2 4R2d8/ k lu’(y’s)l day (4 21)

Since u(y,s) considered in Wy is the extension of the solution u(y,s) originally

IN

defined in Wi N Q as mentioned in §2, we have
[ sl <2 [ Juty,o)lPday < 2lu5) oy < 2ol
Wi WirNQ

(the factor 2 comes from the process of the extension mentioned in [2]). Hence (4.21)

implies that
C3

p [t 1
< = = p S 4. 2
/ {c dox < ( ; ) co/‘s - 4R22|lu0||Lp(Q)ds 2( ) col|uoll7»(0y(4-22)

The above argument is applicable to the solution u(z,t) considered in D x (0, M)

Ou(z,t) |*
ot

without the process of extending B and u to the outside of 2, and we get

i
C p c3\P
/’ dax S ( _:) Co/t. 4R? 4R2 ”uollLP(Q)dS = ( t ) COI]U’O”zp(Q)-(423)

Since a finite number of Wy’s and D are concerned, we may choose the same
constant cg in (4.22) for Wi,..., W and in (4.23) for D. Hence, taking (4.2) into

account, we obtain

[ e 52| e

namely .
6”’('a t)

em
Il 5 ”L”(Q)STHUOHLP(Q) (4.24)

Ou(z,t) |?
ot

c3\P
doz < (21 4+1) (73) CO”“O“EP(Q)’

ot ot

where cpr = c3co(20 + 1)(> ez{co(2l + 1)}# for any p > 1);the constant cpr may
depend on M. Thus we have proved the desired estimate for p > 2.

NSR. O., Vol. 53



June 2002 The analyticity of the semigroup

We shall prove the estimate (4.24) in the case 1 < p < 2. We first remark that the
constant cps in (4.24) is independent of p (> 2).

We shall denote the operators considered in LP(f2) by the symbols with superscript
(p); namely, the operators T}, A in LP(Q) will be denoted by Tt(p ), A®) respectively,
and the strong derivative in LP(Q2) by D§" ).

Take an arbitrary function f € CZ. Then, from the argument in §3, we may see
that (Tt(p ) f)(z) as a function of z in Q is independent of p for every ¢ > 0, and
accordingly (Dép )Tt(p ) f)(z) also is independent of p. In fact, Yosida’s semigroup
theory shows that

o0
® s _ 1 IO :
" f = )‘ll’n;o ,;)e = ()\JA ) f (strong convergence in L?(f2)),

while J ip ) f is given by (3.8) for any p. Since A is the smallest closed extension of
B with domain D, we have C3(Q) ¢ D c D(A®). Therefore the following relation
holds for any f and ¢ € C3(Q2) and any p > 1:

(DPTP f,¢)0 = (DOTP £, 8)0 = (APTP £,4)a

= (f, TP A@ ), = (f, DOT ). (4.25)

For any M > 0, cps denotes the constant which appears in (4.24).

LEMMA 4.3 For any ¢ € C3 and any t € (0, M), it holds that
CMm
ess.sup (D TV 9) ()] < = e (4.26)
ProoF Let a be an arbitrary positive number less than

€ss.5up |(D§,Z)Tt(2)¢) @I,
zEN

and denote the set {z € Q | |(D§2)Tt(2)¢)(x)| > a} by Qq¢. Then we have Qy =
{z € Q| |(DPTP $)(z)| > a} for any p > 1. Hence

IDPTP ¢|l1s > Qa5

1
M||Blie < 4t||ollL=|Q|F for p > 2 by

E%H‘ﬁ”Lwim% Let p — o0, and we get

On the other hand, |DPT® |1
means of (4.24). Therefore amatﬁ
a < €M ||@||peo. Since a can be chosen arbitrarily near to ess.sup,cq |(D§2)Tt(2)¢) (@)1,
we obtain (4.26). ///

<
<

PROPOSITION 4.1 Forany f € LP(Q) (1<p<2), any M >0 and any t € (0, M),
it holds that | DPTP fl|» < | fllzs.

19



20

Mariko Giga

ProoF It suffices to prove this proposition for f € C4(Q2). In the case 1 < p < 2,
denote by ¢ the conjugate exponent of p: % + % = 1. For any f and ¢ € C3(Q)(C
Li(Q2)), we obtain by (4.24) and (4.25) that

(DPTP f, ¢)al = (£, DOTOB)al = (£, DTV )l
I£ 1z 1D TV gllze < SN lls 16ze-

IN

This estimate implies the desired result for p > 1.
In the case p = 1, we get the following estimate for any f € C2(Q2) and any
¢ € C2(Q) (C L*°()) by means of (4.25) and Lemma 4.3:

(DPTO 1,6)al = 1(£, DOTL9)al < 1 laIDP TP Bllzee < LN flza ] zoos

this implies the desired result for p=1. ///
We may conclude from (4.24) proved for p > 2 and Proposition 4.1 that {Tt(p) }is
an analytic semigroup in LP(Q2) for any p (1 < p < c0).
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