The Analyticity of the Semigroup Generated by the Elliptic Differential Operator in a Lipschitz Domain

Mariko GIGA

Department of Mathematics, Nippon Medical School 2-297-2, Kosugi-cho, Nakahara-ku, Kawasaki, 211-0063, Japan (Received March 15, 2002)

ABSTRACT

We consider the elliptic differential operator in divergence form associated with Dirichlet boundary condition in a Lipschitz domain Ω in \mathbb{R}^m . The aim of this paper is to show that the operator is the generator of an analytic semigroup of bounded linear operators in $L^p(\Omega)$. We start from the concrete differential operator with Dirichlet boundary condition in weak sense. Then we show that the smallest closed extension of it is the generator of C_0 -semigroup, and that the semigroup satisfies the estimate to be an analytic semigroup.

1 Introduction

This paper is concerned with the elliptic differential operator B of the form:

$$Bu = \sum_{i,j=1}^{m} \frac{1}{\sqrt{a(x)}} \frac{\partial}{\partial x_i} \left[\sqrt{a(x)} a_{ij}(x) \frac{\partial u}{\partial x_j} \right], \quad a(x) = \det[a_{ij}(x)]^{-1}$$
 (1.1)

considered in a Lipschitz domain Ω in \mathbf{R}^m with Dirichlet boundary condition; the coefficients $a_{ij}(x)$'s are assumed to be bounded and of class C^{∞} in the interior of Ω but not necessarily continuous up to the boundary $\partial\Omega$. Furthermore we assume that the partial derivatives of second order of $a_{ij}(x)$ are uniformly Lipschitz continuous in Ω .

Since the Dirichlet boundary condition is considered, it is natural to start from the restriction \tilde{B} of the differential operator B to

$$\tilde{\mathcal{D}} = \{ u \mid u \in C^2(\Omega) \cap L^p(\Omega) \cap H_0^1(\Omega), Bu \in L^p(\Omega) \}.$$

We shall show, for any pre-assigned $p(1 \le p < \infty)$, the smallest closed extension A of the operator \tilde{B} in $L^p(\Omega)$ is the generator of an analytic semigroup of bounded linear operators $T_t(t \ge 0)$ in $L^p(\Omega)$ (Theorem 2 in §4).

One of the most general results for the problem of the same direction is the result of El-Maati Ouhabaz[8], where it is proved that, for any strongly continuous semigroup $\{T_t: t \geq 0\}$ which admits a Gaussian estimate, the semigroup $\{e^{-wt}T_t\}$ (w being a suitable real number) is bounded analytic on the right half-plain, and that the result is applicable to the generator of the semigroup associated with the symmetric elliptic differential operator of the same form as B in (1.1) in the case where Ω possesses the extension property. However, in the present paper, we investigate the problem in entirely different point of view. We start from the concrete differential operator \tilde{B} with the domain \tilde{D} as mentioned above, and construct the smallest closed extension of \tilde{B} which is the generator of a C_0 -semigroup. Then we prove, by means of Moser's mean value theorem [7] and a parabolic version of Caccioppoli's inequality, that the semigroup satisfies the condition to be an analytic semigroup.

The author is deeply grateful to Professor Fabes for his valuable advice and guidance.

2 Preliminaries

Let Ω be a bounded Lipschitz domain in \mathbb{R}^m ; the definition of Lipschitz domains is stated as follows [1].

DEFINITION 2.1 A bounded domain $\Omega \subset \mathbf{R}^m$ is called a Lipschitz domain if $\partial\Omega$ is covered by finitely many open right circular cylinders L_1, L_2, \ldots, L_l whose bases have positive distance from $\partial\Omega$ and, corresponding to each cylinder L_k , there exist a coordinate system $(\tilde{x}', \tilde{x}_m) = (\tilde{x}_1, \ldots, \tilde{x}_{m-1}, \tilde{x}_m)$ with the \tilde{x}_m -axis parallel to the axis of L_k , a function $f_k(\tilde{x}')$ and a constant K such that $|f_k(\tilde{x}') - f_k(\tilde{y}')| \leq K|\tilde{x}' - \tilde{y}'|$ (Lipschitz condition) and that $L_k \cap \partial\Omega$ is represented by $\tilde{x}_m = f_k(\tilde{x}')$.

We consider the parabolic differential equation $\frac{\partial u}{\partial t} = Bu$ with Dirichlet boundary condition on $\partial\Omega$; the differential operator B is expressed in the form:

$$Bu = \sum_{i,j=1}^{m} \frac{1}{\sqrt{a(x)}} \frac{\partial}{\partial x_i} \left(\sqrt{a(x)} a_{ij}(x) \frac{\partial u}{\partial x_j} \right), \qquad \left(a(x) = \det[a_{ij}(x)]^{-1} \right)$$

where $[a_{ij}]$ satisfies the strong ellipticity, i.e. $a_{ij}(x) = a_{ji}(x)$ and there exists a positive number δ_0 independent of x and ξ such that $\sum_{i,j} a_{ij}(x) \xi_i \xi_j \geq \delta_0 |\xi|^2$ for

any $x \in \Omega$ and any $\xi \in \mathbf{R}^m$. It is well known that the volume element $d_a x = \sqrt{a(x)} dx_1 \dots dx_m$ is invariant under the transformation of a local coordinate system. Hereafter we always consider the function spaces $L^p(\Omega)$, $H^1(\Omega)$ etc. with respect to the volume element $d_a x$; however, by virture of the strong ellipticity of B, the space $L^p(\Omega)$ e.g. is identical with the usual L^p -space with respect to the Lebesgue measure $dx_1 \dots dx_m$. The inner product and the norm in $L^2(\Omega)$ are respectively given by

$$(u,v)_{L^2}=(u,v)_a\equiv\int_\Omega u(x)v(x)d_ax$$

and

$$||u||_{L^{2}}^{2} = ||u||_{a}^{2} \equiv \int_{\Omega} |u(x)|^{2} d_{a}x.$$

We define for any $u, v \in H^1(\Omega)$

$$(\nabla u(x) \cdot \nabla v(x))_a = \sum_{i,j} a_{ij}(x) \frac{\partial u(x)}{\partial x_i} \frac{\partial v(x)}{\partial x_j}$$

where $\frac{\partial u(x)}{\partial x_i}$ denotes the generalized derivative, and

$$(\nabla u, \nabla v)_a = \int_{\Omega} (\nabla u(x) \cdot \nabla v(x))_a d_a x;$$

in particular if u = v, we use the notations

$$|\nabla u(x)|_a^2 = \sum_{i,j} a_{ij}(x) \frac{\partial u(x)}{\partial x_i} \frac{\partial u(x)}{\partial x_j} \quad \text{and} \quad || \nabla u ||_a^2 = \int_{\Omega} |\nabla u(x)|_a^2 d_a x.$$

Then the norm $\|\cdot\|_{H^1}$ in the Sobolev space $H^1(\Omega)$ is given by

$$||u||_{H^1}^2 = ||u||_a^2 + ||\nabla u||_a^2$$
.

Let C_0^{∞} be the totality of infinitely differentiable functions with compact support in Ω and denote by $H_0^1(\Omega)$ the completion of C_0^{∞} with respect to the norm in Sobolev space $H^1(\Omega)$.

Let (T_1, T_2) be any given interval and define $H^1(\Omega \times (T_1, T_2))$ and $H^1_0(\Omega \times (T_1, T_2))$ in the similar way as mentioned above. For the sake of brevity, these function spaces will be denoted by H^1 and H^1_0 respectively if no confusion occurs. For $u = u(x, t) \in H^1$, the notation $u_t = \frac{\partial u}{\partial t}$ is used in the generalized (distributional) sense.

DEFINITION 2.2 A function $u \in H^1(\Omega \times (T_1, T_2))$ is called a weak solution of the parabolic differential equation

$$\frac{\partial u}{\partial t} = Bu \tag{2.1}$$

if it satisfies

$$\iint_{\Omega \times (T_1, T_2)} \{ u_t \psi + (\nabla u \cdot \nabla \psi)_a \} d_a x dt = 0 \quad \text{for any } \psi \in C_0^{\infty};$$
 (2.2)

if furthermore the solution u belongs to $H_0^1(\Omega)$ as a function of x for any fixed t, it is called a weak solution of (2.1) with Dirichlet boundary condition.

In §4, we have to consider the solution of the parabolic equation in a parabolic ball whose radius is independent of the center of any adopted coordinate neighborhood; so we have to extend the differential operator B and the solution of the equation to some part of the exterior of the domain Ω . For this purpose, we consider the coordinate transformation (such as mentioned in the following paragraphs) in every cylinder stated in Definition 2.1.

Let L_1, \ldots, L_l be the cylinders stated in Definition 2.1. As for the coordinate system $(\tilde{x}_1,\ldots,\tilde{x}_{m-1},\tilde{x}_m)$ in each cylinder L_k , we may assume that the intersection of the axis of L_k with $\partial\Omega$ is denoted by $(0,\ldots,0,0)$. Using the coordinate system in L_k , we define

$$L_k(\alpha) = \{ (\tilde{x}_1, \dots, \tilde{x}_{m-1}, \tilde{x}_m) \mid |\tilde{x}_j| < \alpha \ (1 \le j \le m) \}.$$
 (2.3)

We may assume without loss of generality that

$$L_k(1) \subset L_k \ (k=1,\ldots,l) \ \text{and} \ \bigcup_{k=1}^l L_k(\frac{1}{2}) \supset \partial \Omega.$$
 (2.4)

Hereafter we treat an arbitrarily fixed cylinder L_k ; the Lipschitz function f_k (mentioned in Definition 2.1) will be denoted simply by f.

We define a new coordinate system in a suitable subdomain of L_k where $|\tilde{x}_m|$ is sufficiently small by the following formulas (2.5); here we denote the new coordinate system also by (x_1, \ldots, x_m) to simplify the notations. Let $\rho(\lambda)$ be a monotone decreasing C^{∞} function on $0 \le \lambda < \infty$ satisfying the following conditions:

$$0 \le \rho(\lambda) \le 1$$
 on $0 \le \lambda < \infty$, $\rho(\lambda) = c$ for $\lambda \le \frac{1}{4K}$, $\rho(\lambda) = 0$ for $\lambda \ge \frac{1}{2K}$ (K being the Lipschitz constant of f and c a suitable positive constant)

and

$$\int_{\mathbf{R}_{m-1}} \rho(|\tilde{z}'|^2) d\tilde{z}' = 1 \quad \text{where} \quad d\tilde{z}' = d\tilde{z}'_1 \dots d\tilde{z}'_{m-1},$$

and define the coordinate transformation by the following formulas (2.5).

$$\begin{cases} \tilde{x}_1 &= x_1 \\ \vdots \\ \tilde{x}_{m-1} &= x_{m-1} \\ \tilde{x}_m &= x_m + \int_{|z'| \le \frac{1}{2K}} \rho(|z'|^2) f(x' + x_m^2 z') dz' ; \end{cases}$$
ression is equivalent to

the last expression is equivalent to

$$\tilde{x}_m = x_m + \int_{\mathbf{R}^{m-1}} \frac{1}{x_m^{2(m-1)}} \rho(\frac{|x' - z'|^2}{x_m^4}) f(z') dz'$$
 (2.6)

as may be shown by a suitable substitution of the variable of integration.

We put $W = \{(x_1, \ldots, x_{m-1}, x_m) \mid |x_j| < 1 \ (1 \leq j \leq m-1), \ |x_m| < \frac{1}{2}\}, W^+ = W \setminus \overline{\Omega} \text{ and } W^- = W \cap \Omega.$ Then, by using (2.6) and by simple calculations, we may prove that the transformation $(\tilde{x}_i) \leftrightarrow (x_i)$ is one-to-one and bicontinuous, that $x_m > 0, x_m = 0, x_m < 0$ correspond to $W^+, W \cap \partial\Omega, W^-$ respectively, and that the partial derivetives $\frac{\partial \tilde{x}_i}{\partial \tilde{x}_j}$ $(i, j = 1, \ldots, m)$ are continuous and the Jacobian of the transformation (2.5) does not vanish except on $\partial\Omega$. Hence the transformation is a local C^1 -diffeomorphism in $W \setminus \partial\Omega$. We may also prove that the transformation is a local C^∞ -diffeomorphism in $W \setminus \partial\Omega$. Hence we may consider the partial differentiations $\frac{\partial}{\partial x_i}$ in the inside and outside of Ω , individually.

By using this coordinate system (x_j) , we extend the differential operator B and the weak solution u of the differential equation $\frac{\partial u}{\partial t} = Bu$ with Dirichlet boundary condition considered in $(W \cap \Omega) \times (T_1, T_2)$ to the differential operator and the weak solution in $W \times (T_1, T_2)$. The process of such extension is mentioned in the author's previous papers [2],[3] in detail. In the statement above, the weak solution in $W \times (T_1, T_2)$ is understood in the similar way as mentioned in Definition 2.2.

3 Construction of a C₀-semigroup

We shall consider $L^p(\Omega)$ where $1 \leq p < \infty$. Let $\tilde{\mathcal{D}}$ be $\{u \mid u \in C^2(\Omega) \cap L^p(\Omega) \cap H^1_0(\Omega) \text{ and } Bu \in L^p(\Omega)\}$. $\tilde{\mathcal{D}}$ is dense in $L^p(\Omega)$ since $C^2_0(\Omega) \subset \tilde{\mathcal{D}}$. Let \tilde{B} denote the restriction of B to $\tilde{\mathcal{D}}$. In this section, we show that the smallest closed extension A of \tilde{B} generates a C_0 -semigroup in $L^p(\Omega)$. Hereafter we shall denote by $\overline{C_0(\Omega)}$ the completion of $C_0(\Omega)$ with respect to the supremum-norm.

LEMMA 3.1 Let λ be an arbitrarily fixed positive number. For any $f \in L^2(\Omega)$, there exists $v \in H_0^1(\Omega)$ such that

$$\lambda(v,\phi)_a + (\nabla v, \nabla \phi)_a = (f,\phi)_a \quad \text{for any } \phi \in C_0^1(\Omega)$$
 (3.1)

and it holds that

$$||v||_{L^{2}}^{2} \leq ||v||_{L^{2}}^{2} + \frac{1}{\lambda} ||\nabla v||_{L^{2}}^{2} \leq \frac{1}{\lambda^{2}} ||f||_{L^{2}}^{2}.$$
(3.2)

The function $v \in H_0^1(\Omega)$ satisfying (3.1) is uniquely determined by f. In particular, if $f \in \overline{C_0(\Omega)}$, then v is bounded and continuous in Ω and it holds that

$$|v(x)| \le \frac{1}{\lambda} ||f||_{L^{\infty}} \quad \text{for any } x \in \Omega$$
 (3.3)

and that

$$f \ge 0 \text{ implies } v \ge 0;$$
 (3.4)

if further $f \in C_0^1(\Omega)$, then v is of class C^2 and Bv is bounded in Ω .

PROOF The first assertion of this lemma is proved by means of the Lax-Milgram theorem [6]; the estimate (3.2) is readily derived from (3.1). If $f \in C_0^1(\Omega)$, then v is regarded as a function of class C^2 satisfying $\lambda v - Bv = f$ by Weyl's lemma, and accordingly Bv is bounded in Ω . The properties (3.3) and (3.4) may be proved by means of the maximum principle. If $f \in \overline{C_0(\Omega)}$, the boundedness and the continuity of v, (3.3) and (3.4) still hold since $C_0^1(\Omega)$ is dense in $\overline{C_0(\Omega)}$ with respect to the sup-norm $\|\cdot\|_{\infty}$. ///

We denote by G_{λ} the operator which maps $f \in \overline{C_0(\Omega)}$ to the function v uniquely determined in the sense of Lemma 3.1. Then G_{λ} is a bounded linear operator of $\overline{C_0(\Omega)}$ into $L^{\infty}(\Omega)$ satisfying that $\|G_{\lambda}f\|_{L^{\infty}} \leq \frac{1}{\lambda}\|f\|_{L^{\infty}}$ for any $f \in \overline{C_0(\Omega)}$ and that $f \geq 0$ implies $G_{\lambda}f \geq 0$. Since $(G_{\lambda}f)(x)$ is continuous in Ω , the value of the function $(G_{\lambda}f)(x)$ is determined for every $x \in \Omega$. Hence, for any fixed x, $(G_{\lambda}f)(x)$ is a positive linear functional of $f \in \overline{C_0(\Omega)}$. Therefore, by the Riesz representation theorem, there exists a measure $G_{\lambda}(x;\cdot)$ in Ω such that $G_{\lambda}(x;\Omega) \leq \frac{1}{\lambda}$ and that

$$(G_{\lambda}f)(x) = \int_{\Omega} G_{\lambda}(x; dy) f(y) \quad \text{for any } f \in \overline{C_0(\Omega)}.$$
 (3.5)

By means of this formula G_{λ} is extended to a bounded linear operator in $L^{\infty}(\Omega)$ satisfying $||G_{\lambda}|| \leq \frac{1}{\lambda}$.

We denote by J_{λ} the operator which maps $f \in L^{2}(\Omega)$ to the function v uniquely determined in the sense of Lemma 3.1. Then J_{λ} is a bounded linear operator of $L^{2}(\Omega)$ into $H_{0}^{1}(\Omega)$ and it holds that $\|J_{\lambda}f\|_{L^{2}} \leq \frac{1}{\lambda}\|f\|_{L^{2}}$ for any $f \in L^{2}(\Omega)$.

It is clear from the definition of J_{λ} that $(J_{\lambda}f)(x) = (G_{\lambda}f)(x)$ in Ω for any $f \in \overline{C_0(\Omega)}$. Since $L^{\infty}(\Omega) \subset L^2(\Omega)$ from the boundedness of Ω , we have the following

LEMMA 3.2

6

$$(J_{\lambda}f)(x) = (G_{\lambda}f)(x)$$
 a.e. for any $f \in L^{\infty}(\Omega)$.

PROOF Suppose f_n converges to some f monotonously where f_n and f are bounded and Borel measurable. Then, by means of the bounded convergence theorem, we obtain that $\lim_{n\to\infty} (G_{\lambda}f_n)(x) = (G_{\lambda}f)(x)$ for any $x\in\Omega$ and that $\lim_{n\to\infty} \|f_n - f\|_{L^2} = 0$, accordingly $\lim_{n\to\infty} \|J_{\lambda}f_n - J_{\lambda}f\|_{L^2} = 0$. Hence the set of all bounded Borel measurable functions f satisfying $(J_{\lambda}f)(x) = (G_{\lambda}f)(x)$ a.e. is a monotone class containing $C_0(\Omega)$. Therefore it contains all bounded Borel measurable functions. ///

The following two lemmas may be proved by means of Lemmas 3.1 and 3.2.

LEMMA 3.3 For any $f \in L^{\infty}(\Omega)$, the function $u = G_{\lambda}f$ satisfies

$$(u, \lambda \phi - B\phi)_a = (f, \phi)_a$$
 for any $\phi \in C_0^2(\Omega)$.

LEMMA 3.4 For any f and $g \in L^2(\Omega)$, we have $(J_{\lambda}f, g)_a = (f, J_{\lambda}g)_a$; in particular if f and $g \in L^{\infty}(\Omega)$, then $(G_{\lambda}f, g)_a = (f, G_{\lambda}g)_a$.

LEMMA 3.5 (Resolvent equation)

$$J_{\lambda} - J_{\mu} = (\mu - \lambda)J_{\lambda}J_{\mu}$$
. In particular $G_{\lambda} - G_{\mu} = (\mu - \lambda)G_{\lambda}G_{\mu}$ in $L^{\infty}(\Omega)$.

PROOF Put $u = J_{\mu}f$ for any $f \in C_0^1(\Omega)$. We get $u \in C^2(\Omega)$ and $(\mu - B)u = f$ by Lemma 3.1. Put $g = (\lambda - B)u$. Then the function $v = J_{\lambda}g$ satisfies

$$\lambda(v,\phi)_a + (\nabla v, \nabla \phi)_a = (g,\phi)_a \text{ for any } \phi \in C_0^1(\Omega).$$
 (3.6)

On the other hand it holds that

$$\lambda(u,\phi)_a + (\nabla u, \nabla \phi)_a = (\lambda u - Bu, \phi)_a = (g,\phi)_a \text{ for any } \phi \in C_0^1(\Omega).$$
 (3.7)

By (3.6), (3.7) and by the uniqueness of the function v stated in Lemma 3.1, we get $u = v = J_{\lambda}g = J_{\lambda}(\lambda - B)u$. Hence

$$J_{\mu}f = u = J_{\lambda}(\lambda - \mu + \mu - B)u$$
$$= J_{\lambda}(\lambda - \mu)J_{\mu}f + J_{\lambda}(\mu - B)J_{\mu}f$$
$$= (\lambda - \mu)J_{\lambda}J_{\mu}f + J_{\lambda}f.$$

Since $C_0^1(\Omega)$ is dense in $L^2(\Omega)$, the proof is complete. ///

LEMMA 3.6 For any fixed $\lambda > 0$ and any $f \in L^{\infty}(\Omega)$, we have

$$\lim_{\mu \to \infty} \|\mu G_{\mu} G_{\lambda} f - G_{\lambda} f\|_{L^{\infty}} = 0.$$

PROOF By the resolvent equation for $\{G_{\mu}\}$, we have

$$\mu G_{\mu}G_{\lambda}f - G_{\lambda}f = \lambda G_{\lambda}G_{\mu}f - G_{\mu}f$$
 for any $f \in L^{\infty}(\Omega)$.

Since G_{λ} satisfies $||G_{\lambda}|| \leq \frac{1}{\lambda}$, we obtain

$$\begin{split} \|\mu G_{\mu} G_{\lambda} f - G_{\lambda} f\|_{L^{\infty}} & \leq & \|\lambda G_{\lambda} G_{\mu} f\|_{L^{\infty}} + \|G_{\mu} f\|_{L^{\infty}} \\ & = & \frac{1}{\mu} \|\lambda G_{\lambda} \mu G_{\mu} f\|_{L^{\infty}} + \frac{1}{\mu} \|\mu G_{\mu} f\|_{L^{\infty}} \\ & = & \frac{1}{\mu} \{ \|\lambda G_{\lambda} \| \|\mu G_{\mu} \| \|f\|_{L^{\infty}} + \|\mu G_{\mu} \| \|f\|_{L^{\infty}} \} \\ & \leq & \frac{2}{\mu} \|f\|_{L^{\infty}} \end{split}$$

Hence $\|\mu G_{\mu}G_{\lambda}f - G_{\lambda}f\|_{L^{\infty}}$ tends to 0 as $\mu \to \infty$. ///

Now we have the following lemma.

LEMMA 3.7 $(G_{\lambda}f)(x)$ is continuous in Ω for any $f \in L^{\infty}(\Omega)$ and any $\lambda > 0$.

PROOF We fix an integer n such that $2n+1>\frac{m}{2}$ where m denotes the dimension of the space domain Ω , and let $\{\lambda, \lambda_1, \lambda_2, \ldots, \lambda_n\}$ be a monotone increasing sequence.

NSR. O., Vol. 53

First of all we consider the equation $(\lambda - B)u = f$ in Ω for $f \in L^{\infty}(\Omega)$ ($\subset L^{2}(\Omega)$). By using Lemma 3.1 we may see that the solution of this equation belongs to $H_{0}^{1}(\Omega)$, that is, $J_{\lambda}f \in H_{0}^{1}(\Omega)$. Next we consider the equation $(\lambda_{1} - B)u = J_{\lambda}f$. By means of the theorem of regularity of weak solutions of elliptic partial differntial equations([4] Theorem 8.10), we get $u = J_{\lambda_{1}}J_{\lambda}f \in H_{loc}^{3}(\Omega) \cap L^{2}(\Omega)$. Repeating the same argument, we may prove successively that

$$J_{\lambda_1}J_{\lambda}f \in H^3_{\mathrm{loc}}(\Omega) \cap L^2(\Omega), \quad J_{\lambda_2}J_{\lambda_1}J_{\lambda}f \in H^5_{\mathrm{loc}}(\Omega) \cap L^2(\Omega), \quad \dots,$$
$$J_{\lambda_n}J_{\lambda_{n-1}}\dots J_{\lambda_1}J_{\lambda}f \in H^{2n+1}_{\mathrm{loc}}(\Omega) \cap L^2(\Omega).$$

Since $2n+1>\frac{m}{2}$, we have $H^{2n+1}_{\rm loc}(\Omega)\subset C^0(\Omega)$ by virture of Sobolev's lemma. Since operators $J_\lambda,J_{\lambda_1},J_{\lambda_2},\ldots,J_{\lambda_n}$ are mutually commutable and $J_\lambda f=G_\lambda f$ a.e. for any $\lambda>0$ and any $f\in L^\infty(\Omega)$ (Lemma 3.2), we may see that $\lambda_1G_{\lambda_1}\lambda_2G_{\lambda_2}\ldots\lambda_nG_{\lambda_n}G_\lambda f$ is continuous in Ω . On the other hand, $\{\mu G_\mu G_\lambda f\}$ converges uniformly to $G_\lambda f$ as $\mu\to\infty$ by Lemma 3.6, and $\|\lambda_\nu G_{\lambda_\nu}\|\leq 1$ for $1\leq\nu\leq n-1$ (here $\|\cdot\|$ denotes the operator norm in $L^\infty(\Omega)$). Hence, if we rewrite λ_n by μ and let $\mu\to\infty$, then $\lambda_1G_{\lambda_1}\ldots\lambda_{n-1}G_{\lambda_{n-1}}\mu G_\mu G_\lambda f$ converges to $\lambda_1G_{\lambda_1}\ldots\lambda_{n-1}G_{\lambda_{n-1}}G_\lambda f$ uniformly; accordingly $\lambda_1G_{\lambda_1}\ldots\lambda_{n-1}G_{\lambda_{n-1}}G_\lambda f$ is continuous in Ω . Repeating this process we may finally conclude that $G_\lambda f$ is continuous in Ω . ///

LEMMA 3.8 For any $\lambda > 0$ and any $x \in \Omega$, the measure $G_{\lambda}(x, E)$ is absolutely continuous, and the density $G_{\lambda}(x, y)$ is nonnegative for a.a. $y \in \Omega$ and satisfies

$$\int_{\Omega} G_{\lambda}(x,y) d_{a}y \leq \frac{1}{\lambda}.$$

(Hereafter we use the expression "a.a." as the abbreviation of "almost all".)

PROOF For any Borel set E, the indicator $\chi_E \in L^{\infty}(\Omega) \subset L^2(\Omega)$. So $G_{\lambda}(x, E) = (G_{\lambda}\chi_E)(x)$. Hence $G_{\lambda}(x, E)$ is continuous in x as mentioned above and it holds that

$$\int_{\Omega} G_{\lambda}(x, E)^{2} d_{a}x \leq \frac{1}{\lambda^{2}} \|\chi_{E}\|_{L^{2}}^{2} = \frac{1}{\lambda^{2}} |E| \quad \text{where } |E| = \int_{E} d_{a}x.$$

Therefore |E| = 0 implies $G_{\lambda}(x, E) = 0$ for a.a. x and, by the continuity of $G_{\lambda}(x, E)$ in x, we get $G_{\lambda}(x, E) = 0$ for all x. Hence $G_{\lambda}(x, E)$ is absolutely continuous. ///

The following lemma may be proved by means of the standard measure-theoretical argument.

LEMMA 3.9 Assume that F(x,y) is a function on $\Omega \times \Omega$ satisfying the following two conditions:

- i) for any fixed $x \in \Omega$, F(x,y) is measurable in y and satisfies that $\int_{\Omega} |F(x,y)| d_a y \le M$ where M is a constant independent of x;
- ii) $\int_{\Omega} |F(x,y)| \phi(y) d_a y$ is continuous in x for any $\phi \in C_0(\Omega)$.

Then there exists a function $\tilde{F}(x,y)$ measurable on $\Omega \times \Omega$ satisfying that $F(x,y) = \tilde{F}(x,y)$ for $a.a.y \in \Omega$ for every $x \in \Omega$.

For any $\lambda > 0$, the density function $G_{\lambda}(x,y)$ in Lemma 3.8 satisfies the assumption for F(x,y) in Lemma 3.9. Hence this lemma assures the existence of a measurable function $\tilde{G}_{\lambda}(x,y)$ on $\Omega \times \Omega$ such that $\tilde{G}_{\lambda}(x,y) = G_{\lambda}(x,y)$ for a.a. $y \in \Omega$ for every $x \in \Omega$. Therefore we can replace the function $G_{\lambda}(x,y)$ in Lemma 3.8 by the measurable function $\tilde{G}_{\lambda}(x,y)$ on $\Omega \times \Omega$. We hereafter consider that the function $G_{\lambda}(x,y)$ itself is measurable on $\Omega \times \Omega$.

By virture of the measurability, we may apply Fubini's theorem to the function $G_{\lambda}(x,y)$; for instance, we may show that Lemma 3.4 implies the following Lemma 3.10.

LEMMA **3.10**

$$G_{\lambda}(x,y) = G_{\lambda}(y,x)$$
 for $a.a.(x,y) \in \Omega \times \Omega$.

COROLLARY

$$\int_{\Omega} G_{\lambda}(x,y) d_a x \leq \frac{1}{\lambda} \quad \text{for a.a.y.}$$

From now on, throughout this section, let p $(1 \le p < \infty)$ be arbitrarily fixed. For any $\lambda > 0$, the function u(x) defined by

$$u(x) = \int_{\Omega} G_{\lambda}(x, y) f(x) d_a y, \quad f \in L^{\infty}(\Omega)$$

satisfies $||u||_{L^p} \leq \frac{1}{\lambda}||f||_{L^p}$ as may be seen from the Hölder-Riesz inequality. Hence we can define the operator J_{λ} in $L^p(\Omega)$ by

$$(J_{\lambda}f)(x) = \int_{\Omega} G_{\lambda}(x, y) f(y) d_{a}y \quad \text{for any } f \in L^{p}(\Omega).$$
 (3.8)

 J_{λ} is a bounded linear operator in $L^{p}(\Omega)$ satisfying $||J_{\lambda}|| \leq \frac{1}{\lambda}$. In case p = 2, the definition of J_{λ} mentioned above consists with the definition of J_{λ} in $L^{2}(\Omega)$ mentioned before.

The following lemma is derived from Lemma 3.5 since $L^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$ with respect to L^{p} -norm.

LEMMA 3.11 (Resolvent equation)

$$J_{\lambda} - J_{\mu} = (\mu - \lambda)J_{\lambda}J_{\mu}$$
 in $L^{p}(\Omega)$ for any λ and μ .

COROLLARY The range $\mathcal{R}(J_{\lambda})$ of J_{λ} is independent of λ .

LEMMA 3.12 $\mathcal{R}(J_{\lambda})$ is dense in $L^{p}(\Omega)$.

PROOF For any $u \in C_0^2(\Omega)$, $f = (\lambda - B)u$ is in $C_0(\Omega) \subset L^p(\Omega)$. The function $v = J_{\lambda}f$ is also written as $v = G_{\lambda}f$. Hence v is the function uniquely determined by f in the sense mentioned in Lemma 3.1. Thus we obtain $u = v \in \mathcal{R}(J_{\lambda})$. Since $C_0^2(\Omega)$ is dense in $L^p(\Omega)$, $\mathcal{R}(J_{\lambda})$ is also dense in $L^p(\Omega)$. ///

LEMMA 3.13 The operator J_{λ} is one-to-one in $L^{p}(\Omega)$, the inverse operator J_{λ}^{-1} with the domain $\mathcal{D}(J_{\lambda}^{-1}) = \mathcal{R}(J_{\lambda})$ is a closed operator.

PROOF For any $f \in L^p(\Omega)$, we put $u = J_{\lambda}f$. If $f \in C_0^1(\Omega) \subset L^2(\Omega)$, then the function $J_{\lambda}f$ defined in $L^p(\Omega)$ is identical with that defined in $L^2(\Omega)$. Hence, by Lemma 3.3, we have

$$\langle u, \lambda \phi - B \phi \rangle_a = \langle f, \phi \rangle_a \quad \text{for any } \phi \in C_0^2(\Omega).$$
 (3.9)

We use the notation $\langle u,v\rangle_a=\int_\Omega u(x)v(x)d_ax$ whenever the right-hand side makes sense. Any $f\in L^p(\Omega)$ is the limit of a sequence $\{f_n\}\subset C^1_0(\Omega)$ in $L^p(\Omega)$, whence $u_n=J_\lambda f_n$ converges to $u=J_\lambda f$ in $L^p(\Omega)$ by the definition (3.8) of J_λ . Therefore (3.9) holds for any $f\in L^p(\Omega)$. Hence u=0 implies f=0. Thus we see that the operator J_λ is one-to-one. Since J_λ is bounded and accordingly closed, the inverse operator J_λ^{-1} is also closed. ///

LEMMA 3.14 The operator A defined by $A = \lambda I - J_{\lambda}^{-1}$ is a closed operator independent of λ . The domain $\mathcal{D}(A)$ of A is dense in $L^{p}(\Omega)$.

PROOF By Corollary to Lemma 3.11, $\mathcal{D}(A) = \mathcal{R}(J_{\lambda})$ is independent of λ , and $\mathcal{D}(A)$ is dense in $L^p(\Omega)$ by Lemma 3.12. It holds that $\lambda J_{\lambda} J_{\mu} f - J_{\mu} f = \mu J_{\lambda} J_{\mu} f - J_{\lambda} f$ for any $f \in L^p(\Omega)$ by the resolvent equation (Lemma 3.11). For any $u \in \mathcal{D}(A)$, we apply the above equation to $f = J_{\mu}^{-1}u$. Then we get $\lambda J_{\lambda} u - u = \mu J_{\lambda} u - J_{\lambda} J_{\mu}^{-1}u$, which implies $\lambda u - J_{\lambda}^{-1}u = \mu u - J_{\mu}^{-1}u$. Thus we obtain that $A = \lambda I - J_{\lambda}^{-1}$ is independent of λ . Hence A is a closed operator by virture of Lemma 3.13. ///

LEMMA 3.15 The operator A is the smallest closed extension of \tilde{B} .

PROOF It may easily be proved that A is a closed extension of \tilde{B} . We shall show that it is the smallest one. Let A_1 be an arbitrary closed extension of \tilde{B} . For any $u \in \mathcal{D}(A)$ there exists $f \in L^p(\Omega)$ such that $u = J_{\lambda}f$. We take a sequence $\{f_n\} \subset C_0^2(\Omega)$ such that $f_n \to f$ in $L^p(\Omega)$. Then $u_n = J_{\lambda}f_n$ converges to u in $L^p(\Omega)$. Since u_n is also denoted by $G_{\lambda}f_n$, u_n is the function uniquely determined by f_n as mentioned in Lemma 3.1. Accordingly $u_n \in \tilde{\mathcal{D}}$ and $\tilde{B}u_n = Bu_n$ by Lemma 3.1. Since A_1 is an extension of \tilde{B} , we get $u_n \in \mathcal{D}(A_1)$ and $A_1u_n = Bu_n = \lambda u_n - f_n$ converges to $\lambda u - f$ in $L^p(\Omega)$. Since A_1 is closed, we obtain $u \in \mathcal{D}(A_1)$ and $A_1u = \lambda u - f = Au$. Lemma 3.15 is thus proved. ///

We can summarize the discussion mentioned above as follows. The operator $A = \lambda I - J_{\lambda}^{-1}$ is a natural closed extension of \tilde{B} . The domain $\mathcal{D}(A)$ is dense in $L^p(\Omega)$, and $\|(\lambda - A)^{-1}\| = \|J_{\lambda}\| \leq \frac{1}{\lambda}$ for any $\lambda > 0$. Therefore, by the Hille-Yosida theorem, we obtain the following

THEOREM 1 The operator A generates a contraction C_0 -semigroup $\{T_t\}$ in $L^p(\Omega)$, namely $\frac{d}{dt}T_t = AT_t$ where $\frac{d}{dt}$ denotes the strong derivative in $L^p(\Omega)$.

4 Analyticity of the C_0 -semigroup

We mentioned the main purpose of this paper in §1. In this section we first state our result as the following theoem.

THEOREM 2 The operator A in §3 is the generator of an analytic semigroup of bounded linear operators $\{T_t\}_{t\geq 0}$ in $L^p(\Omega)$ $(1\leq p<\infty)$.

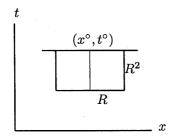
In order to prove Theorem 2, it is sufficient to show the following two propositions i) and ii):

- i) The operator A is the infinitesimal generator of a C₀-semigroup $\{T_t\}_{t\geq 0}$ in $L^p(\Omega)$.
- ii) For any fixed M>0, there exists a constant $C_M>0$ such that $u=e^{tA}u_0$ satisfies $\|\frac{\partial u(\cdot,t)}{\partial t}\|_{L^p}\leq \frac{C_M}{t}\|u_0\|_{L^p}$ for any $u_0\in L^p(\Omega)$ and any $t\in (0,M)$.

We already proved i) in §3. We shall prove ii) in this section.

We define the "ball" $B_R = B_R(x^\circ)$ in \mathbf{R}^m with center x° and radius R and the parabolic ball $Q_R = Q_R(x^\circ, t^\circ)$ with center (x°, t°) and radius R as follows:

- $B_R(x^\circ) = \{x \mid |x x^\circ| < R\}$ $(|x| = \max_i |x_i|)$
- $Q_R(x^{\circ}, t^{\circ}) = \{(x, t) \mid |x x^{\circ}| < R, \ 0 \le t^{\circ} t < R^2\}$



Hereafter we always assume 0 < R < 1.

Let L_1, \ldots, L_l be the cylinders stated in §2. In each L_k , we consider the coordinate system $(x_1, \ldots, x_{m-1}, x_m)$ defined in §2 and the differential operator B extended to W_k defined by

$$W_k = \{(x_1, \dots, x_{m-1}, x_m) \mid |x_j| < 1 \ (1 \le j \le m-1), \ |x_m| < \frac{1}{2}\}$$

with respect to the coordinate system in L_k (see the last two paragraphs of §2). We put

$$W'_k = \{(x_1, \dots, x_{m-1}, x_m) \mid |x_j| < \frac{1}{2} \ (1 \le j \le m-1), \ |x_m| < \frac{1}{4}\}.$$

Then we may readily see from (2.3),(2.4) and (2.5) that

$$\bigcup_{k=1}^{l} W_k' \supset \partial \Omega. \tag{4.1}$$

Hence $\delta = \operatorname{dist}(\partial\Omega, \ \Omega \setminus \bigcup_{k=1}^{l} W_k')$ is positive, where $\operatorname{dist}(\cdot, \cdot)$ denotes the Euclidean distance with respect to the orthogonal coordinate system originally defined in \mathbf{R}^m . We put

$$D = \{x \in \Omega \mid \operatorname{dist}(x, \partial\Omega) > \frac{\delta}{4}\} \quad \text{and} \quad D' = \{x \in \Omega \mid \operatorname{dist}(x, \partial\Omega) > \frac{\delta}{2}\}.$$

Then

$$\overline{\Omega} \subset W_1' \cup W_2' \cup \ldots \cup W_l' \cup D'. \tag{4.2}$$

For any point $x^{\circ} \in W'_k$ $(1 \leq k \leq l)$, we consider the "ball" $B_R(x^{\circ})$ and the parabolic ball $Q_R(x^{\circ}, t^{\circ})$ with respect to the coordinate system in W_k ; for any point $x^{\circ} \in D'$, we consider $B_R(x^{\circ})$ and $Q_R(x^{\circ}, t^{\circ})$ with respect to the original coordinate system in \mathbb{R}^m , where we may assume without loss of generality that D' contains the origin $\mathbf{0} = (0, \ldots, 0)$. We fix a positive number $M \leq \frac{\delta}{8}$. Then, if $0 < R \leq \min\{\frac{1}{8}, \frac{\delta}{8}\}$ and $(2R)^2 < t^{\circ} < M$, we have

$$B_{2R}(x^{\circ}) \subset W_k$$
 and $Q_{2R}(x^{\circ}, t^{\circ}) \subset W_k \times (0, M)$ (4.3)

or

$$B_{2R}(x^{\circ}) \subset D$$
 and $Q_{2R}(x^{\circ}, t^{\circ}) \subset D \times (0, M)$ (4.4)

according as $x^{\circ} \in W'_k$ or $x^{\circ} \in D'$.

LEMMA 4.1 If u is a weak solution of $\frac{\partial u}{\partial t} = Bu$ in a domain containing the closure of $Q_R(x^{\circ}, t^{\circ})$, then there exists a constant c_1 such that

$$|u(x,t)| \le c_1 \left(\frac{1}{|Q_R(x^{\circ},t^{\circ})|} \iint_{Q_R(x^{\circ},t^{\circ})} u(y,s)^2 d_a y ds \right)^{\frac{1}{2}} \quad \text{for any } (x,t) \in Q_{\frac{R}{2}}(x^{\circ},t^{\circ})$$

$$(4.5)$$

where $|Q_R(x^{\circ}, t^{\circ})|$ denotes the Lebesgue measure of $Q_R(x^{\circ}, t^{\circ})$; the constant c_1 is independent of R and u.

This lemma is essentially due to Theorem 3 in [7; p.113]. Under the assumption of our lemma, the theorem says: the supremum of the left-hand side of (4.5) over $Q_{R'}(x^{\circ}, t^{\circ})$ is estimated by the right-hand side where the constant c_1 depends on R' and R. However, we may see from the proof of the theorem stated in [7] that c_1 depends only on the ratio of R' to R. Hence we obtain Lemma 4.1.

Let $\{T_t\}$ be the contraction C₀-semigroup generated by $A(=\lambda I - J_{\lambda}^{-1})$ in §3. Then, from the argument in §3, it may readily be seen that

$$\langle -Av, \psi \rangle_a = (\nabla v, \nabla \psi)_a$$
 for any $v \in \mathcal{D}(A)$ and any $\psi \in C_0^{\infty}(\Omega)$. (4.6)

Since $C_0^{\infty}(\Omega)$ is dense in $H_0^1(\Omega)$ with respect to H^1 -norm, the above relation (4.6) holds for any $\psi \in H_0^1(\Omega)$.

We consider the solution $u \equiv u(x,t)$ defined by $u(\cdot,t) = T_t u_0 = e^{tA} u_0$ for any given $u_0 \in L^p(\Omega)$; see the proposition ii) stated below Theorem 2. Since $\mathcal{D}(A^2)$ is dense in $L^p(\Omega)$, it is sufficient to prove the proposition ii) under the assumption: $u_0 \in \mathcal{D}(A^2)$. Then, for any s > 0, we have $u(\cdot,s) \in \mathcal{D}(A)$ and $\frac{\partial u(\cdot,s)}{\partial s} = AT_s u_0 = T_s A u_0$. Since $Au_0 \in \mathcal{D}(A)$, we have $\frac{\partial u(\cdot,s)}{\partial s} \in \mathcal{D}(A)$. Since $\mathcal{D}(A) = \mathcal{R}(J_\lambda) \subset H^1_0(\Omega)$ as in §3, it follows from (4.6) that

$$\left\langle -Au(\cdot,s), \frac{\partial u(\cdot,s)}{\partial s} \right\rangle_{a} = \left(\nabla u(\cdot,s), \nabla \frac{\partial u(\cdot,s)}{\partial s} \right)_{a} \quad \text{for any } s. \tag{4.7}$$

Now we investigate u(x,t) in $(W_k \cap \Omega) \times (0, M)$ and in $D \times (0, M)$ (see (4.2),(4.3) and (4.4)); we may use the fact that the solution u(x,t) considered in $(W_k \cap \Omega) \times (0, M)$ is extended to the solution in $W_k \times (0, M)$ stated in §2. It may readily be seen from the process of the extension that

the extended solution \boldsymbol{u} is a weak solution of the parabolic equation

$$\frac{\partial u}{\partial t} = Bu \text{ in } W_k \times (0, M).$$
 (4.8)

Since the operator A is an extension of \tilde{B} , it follows from (4.7) and (4.8) that

$$\left\langle -Bu(\cdot,s), \frac{\partial u(\cdot,s)}{\partial s} \varphi(\cdot,s) \right\rangle_{a} = \left(\nabla u(\cdot,s), \nabla \left(\frac{\partial u(\cdot,s)}{\partial s} \varphi(\cdot,s) \right) \right)_{a} \tag{4.9}$$

for any function $\varphi(y,s) \in C_0^{\infty}(\Omega \times (0,\infty))$. Using this fact, we prove the following lemma, which is a parabolic version of Caccioppoli's inequality.

LEMMA 4.2 Let u=u(y,s) be as mentioned above, and assume that $\frac{t}{4\sqrt{2}} < R^2 < \frac{t}{4} < M$. Then

$$\iint\limits_{Q_R(x,t)} \left| \frac{\partial u}{\partial s}(y,s) \right|^2 d_a y ds \le \frac{c_2}{t^2} \iint\limits_{Q_{2R}(x,t)} |u(y,s)|^2 d_a y ds;$$

where c_2 is a constant independent of x, t, R and m.

PROOF Throughout the proof of this lemma, $Q_R(x,t)$ will be briefly denoted by Q_R .

Let $\varphi_0(y)$ and $\varphi_1(s)$ be functions of class C^{∞} in Ω and in $(0,\infty)$ respectively satisfying that

$$\begin{cases} 0 \leq \varphi_0(y) \leq 1 \text{ in } \Omega, & \varphi_0(y) = \begin{cases} 1 & \text{if} \quad y \in B_R(x) \\ 0 & \text{if} \quad y \notin B_{2R}(x), \end{cases} |\nabla \varphi_0(y)|_a \leq \frac{C_0}{R} \text{ in } B_{2R}, \\ 0 \leq \varphi_1(s) \leq 1 \text{ in } (0, \infty), \quad \varphi_1(s) = \begin{cases} 1 & \text{if} \quad 0 \leq t - s \leq R^2 \\ 0 & \text{if} \quad t - s \geq (2R)^2, \end{cases} \left| \frac{\partial \varphi_1(s)}{\partial s} \right| \leq \frac{C_0^2}{R^2} \text{ in } (0, \infty) \end{cases}$$

for a suitable constant C_0 , and define $\varphi(y,s) = \varphi_0(y)\varphi_1(s)$. Then

$$\begin{split} &\iint\limits_{Q_R} \left| \frac{\partial u}{\partial s}(y,s) \right|^2 d_a y ds \leq \iint\limits_{Q_{2R}} \left| \frac{\partial u}{\partial s}(y,s) \right|^2 \varphi(y,s)^4 d_a y ds \\ &= \iint\limits_{Q_{2R}} B u(y,s) \frac{\partial u}{\partial s}(y,s) \varphi(y,s)^4 d_a y ds. \end{split}$$

By (4.9), the above integral equals

$$-\iint_{Q_{2R}} \left(\nabla u(y,s) \cdot \nabla \left(\frac{\partial u}{\partial s}(y,s)\varphi(y,s)^{4} \right) \right)_{a} d_{a}y ds$$

$$= -\iint_{Q_{2R}} \left(\varphi(y,s)^{4} \nabla u(y,s) \cdot \nabla \left(\frac{\partial u}{\partial s}(y,s) \right) \right)_{a} d_{a}y ds$$

$$-\iint_{Q_{2R}} \left(\frac{\partial u}{\partial s}(y,s) \nabla u(y,s) \cdot \nabla \left(\varphi(y,s)^{4} \right) \right)_{a} d_{a}y ds$$

$$= -\frac{1}{2} \iint_{Q_{2R}} \frac{\partial}{\partial s} \left(\nabla u(y,s) \cdot \nabla u(y,s) \right)_{a} \varphi(y,s)^{4} d_{a}y ds$$

$$-\iint_{Q_{2R}} \frac{\partial u}{\partial s}(y,s) \left(\nabla u(y,s) \cdot 4\varphi(y,s)^{3} \nabla \varphi(y,s) \right)_{a} d_{a}y ds. \tag{4.10}$$

In order to estimate each term of the above expression (4.10), we prepare the following inequalities.

$$\begin{split} &\iint\limits_{Q_{2R}} \left(\varphi(y,s)^2 \nabla u(y,s) \cdot \nabla u(y,s) \right)_a d_a y ds \\ &= -\iint\limits_{Q_{2R}} \left(\nabla \left(\varphi(y,s)^2 \right) \cdot \nabla u(y,s) \right)_a u(y,s) d_a y ds - \iint\limits_{Q_{2R}} \varphi(y,s)^2 \left(B u(y,s) \right) u(y,s) d_a y ds \\ &\le \left| \iint\limits_{Q_{2R}} \left(2 \varphi(y,s) \nabla \varphi(y,s) \cdot \nabla u(y,s) \right)_a u(y,s) d_a y ds \right| + \left| \iint\limits_{Q_{2R}} \varphi(y,s)^2 \frac{\partial u}{\partial s}(y,s) u(y,s) d_a y ds \right| \\ &\le \left| \iint\limits_{Q_{2R}} \frac{2 C_0}{R} |u(y,s)| |\nabla u(y,s)|_a |\varphi(y,s)| d_a y ds + \iint\limits_{Q_{2R}} \varphi(y,s)^2 \left| \frac{\partial u}{\partial s}(y,s) \right| |u(y,s)| d_a y ds \; ; \end{split}$$

accordingly

$$\begin{split} &\frac{2C_0^2}{R^2} \iint\limits_{Q_{2R}} |\varphi(y,s)|^2 |\nabla u(y,s)|_a^2 d_a y ds \\ & \leq & \alpha \frac{2C_0^4}{R^4} \iint\limits_{Q_{2R}} |u(y,s)|^2 d_a y ds + \frac{1}{\alpha} \frac{2C_0^2}{R^2} \iint\limits_{Q_{2R}} |\nabla u(y,s)|_a^2 |\varphi(y,s)|^2 d_a y ds \\ & + \beta \frac{C_0^4}{R^4} \iint\limits_{Q_{2R}} |u(y,s)|^2 d_a y ds + \frac{1}{\beta} \iint\limits_{Q_{2R}} \left|\frac{\partial u}{\partial s}(y,s)\right|^2 \varphi(y,s)^4 d_a y ds \end{split}$$

where α and β are constants > 1 determined later. Hence

$$\begin{split} &\frac{2C_0^2}{R^2}\left(1-\frac{1}{\alpha}\right)\iint\limits_{Q_{2R}}|\varphi(y,s)|^2|\nabla u(y,s)|_a^2d_ayds\\ \leq &\left.(2\alpha+\beta)\frac{C_0^4}{R^4}\iint\limits_{Q_{2R}}|u(y,s)|^2d_ayds+\frac{1}{\beta}\iint\limits_{Q_{2R}}\left|\frac{\partial u}{\partial s}(y,s)\right|^2\varphi(y,s)^4d_ayds. \end{split}$$

Taking a constant k such that $k(1-\frac{1}{\alpha}) \geq 1$, we get

$$\frac{2C_0^2}{R^2} \iint\limits_{Q_{2R}} |\varphi(y,s)|^2 |\nabla u(y,s)|_a^2 d_a y ds$$

$$\leq k(2\alpha + \beta) \frac{C_0^4}{R^4} \iint\limits_{Q_{2R}} |u(y,s)|^2 d_a y ds + \frac{k}{\beta} \iint\limits_{Q_{2R}} \left| \frac{\partial u}{\partial s}(y,s) \right|^2 \varphi(y,s)^4 d_a y ds (4.11)$$

Using the inequality (4.11), we may achieve the following estimates.

The first term of (4.10):

$$-\frac{1}{2} \iint_{Q_{2R}} \frac{\partial}{\partial s} (\nabla u(y,s) \cdot \nabla u(y,s))_{a} \varphi(y,s)^{4} d_{a} y ds$$

$$= -\frac{1}{2} \int_{B_{2R}} |\nabla u(y,t)|_{a}^{2} \varphi(y,t)^{4} d_{a} y + \frac{1}{2} \iint_{Q_{2R}} \left(\frac{\partial}{\partial s} \left(\varphi(y,s)^{4} \right) \nabla u(y,s) \cdot \nabla u(y,s) \right)_{a} d_{a} y ds$$

$$\leq \left| \frac{1}{2} \iint_{Q_{2R}} 4 \varphi(y,s)^{3} \frac{\partial \varphi}{\partial s} (y,s) \left(\nabla u(y,s) \cdot \nabla u(y,s) \right)_{a} d_{a} y ds \right|$$

$$\leq \frac{2C_{0}^{2}}{R^{2}} \iint_{Q_{2R}} |\varphi(y,s)|^{2} |\nabla u(y,s)|_{a}^{2} d_{a} y ds$$

$$\leq k(2\alpha + \beta) \frac{C_{0}^{4}}{R^{4}} \iint_{Q_{2R}} |u(y,s)|^{2} d_{a} y ds + \frac{k}{\beta} \iint_{Q_{2R}} \left| \frac{\partial u}{\partial s} (y,s) \right|^{2} \varphi(y,s)^{4} d_{a} y ds. \tag{4.12}$$

The second term of (4.10):

$$\left|-\iint\limits_{Q_{2R}}\frac{\partial u}{\partial s}(y,s)\left(\nabla u(y,s)\cdot 4\varphi(y,s)^3\nabla\varphi(y,s)\right)_ad_ayds\right|$$

$$\leq 2\gamma \frac{C_0^2}{R^2} \iint_{Q_{2R}} \varphi(y,s)^2 |\nabla u(y,s)|_a^2 d_a y ds + \frac{2}{\gamma} \iint_{Q_{2R}} \left| \frac{\partial u}{\partial s}(y,s) \right|^2 \varphi(y,s)^4 d_a y ds
\leq k\gamma (2\alpha + \beta) \frac{C_0^4}{R^4} \iint_{Q_{2R}} |u(y,s)|^2 d_a y ds + \frac{k\gamma}{\beta} \iint_{Q_{2R}} \left| \frac{\partial u}{\partial s}(y,s) \right|^2 \varphi(y,s)^4 d_a y ds
+ \frac{2}{\gamma} \iint_{Q_{2R}} \left| \frac{\partial u}{\partial s}(y,s) \right|^2 \varphi(y,s)^4 d_a y ds \tag{4.13}$$

where γ is a constant > 1 determined later.

It follows from (4.10),(4.12) and (4.13) that

$$\begin{split} \iint\limits_{Q_{2R}} \left| \frac{\partial u}{\partial s}(y,s) \right|^2 \varphi(y,s)^4 d_a y ds &\leq k (2\alpha + \beta) \frac{C_0^4}{R^4} \iint\limits_{Q_{2R}} |u(y,s)|^2 d_a y ds \\ &+ \frac{k}{\beta} \iint\limits_{Q_{2R}} \left| \frac{\partial u}{\partial s}(y,s) \right|^2 \varphi(y,s)^4 d_a y ds + k \gamma (2\alpha + \beta) \frac{C_0^4}{R^4} \iint\limits_{Q_{2R}} |u(y,s)|^2 d_a y ds \\ &+ \frac{k \gamma}{\beta} \iint\limits_{Q_{2R}} \left| \frac{\partial u}{\partial s}(y,s) \right|^2 \varphi(y,s)^4 d_a y ds + \frac{2}{\gamma} \iint\limits_{Q_{2R}} \left| \frac{\partial u}{\partial s}(y,s) \right|^2 \varphi(y,s)^4 d_a y ds, \end{split}$$

accordingly

$$\{1-\frac{k(1+\gamma)}{\beta}-\frac{2}{\gamma}\}\iint\limits_{Q_{2R}}\left|\frac{\partial u}{\partial s}(y,s)\right|^2\varphi(y,s)^4d_ayds\leq k(1+\gamma)(2\alpha+\beta)\frac{C_0^4}{R^4}\iint\limits_{Q_{2R}}|u(y,s)|^2d_ayds.$$

Here we choose α, β, γ and k in such a way that $1 - \frac{k(1+\gamma)}{\beta} - \frac{2}{\gamma} > 0$ and consequently $C_0' \equiv k(1+\gamma)(2\alpha+\beta)/\{1 - \frac{k(1+\gamma)}{\beta} - \frac{2}{\gamma}\} > 0$; for instance, we may put $\alpha = 2, \beta = 21, \gamma = 4$ and k = 2. Then we get

$$\iint\limits_{Q_R} \left| \frac{\partial u}{\partial s}(y,s) \right|^2 d_a y ds \leq \iint\limits_{Q_{2R}} \left| \frac{\partial u}{\partial s}(y,s) \right|^2 \varphi(y,s)^4 d_a y ds \leq C_0' \frac{C_0^4}{R^4} \iint\limits_{Q_{2R}} |u(y,s)|^2 d_a y ds.$$

Since $t < 4\sqrt{2}R^2$, we obtain the following inequality where $c_2 = 32C_0'C_0^4$:

$$\iint\limits_{Q_B} \left| \frac{\partial u}{\partial s}(y,s) \right|^2 d_a y ds \leq \frac{c_2}{t^2} \iint\limits_{Q_{2B}} |u(y,s)|^2 d_a y ds. ///$$

Now we carry out the estimate of $\left\|\frac{\partial u(\cdot,t)}{\partial t}\right\|_{L^p}$ in the proposition ii) stated below Theorem 2. Since $\mathcal{D}(A^2)$ is dense in $L^p(\Omega)$, it suffices to prove the estimate under the assumption: $u_0 \in \mathcal{D}(A^2)$. This assumption implies that the strong derivative $\frac{du}{dt}$ in $L^p(\Omega)$ satisfies $\frac{d}{dt}\left(\frac{du}{dt}\right) = A\left(\frac{du}{dt}\right)$. Hence we may see that

the distributional derivative $u_t = \frac{\partial u}{\partial t}$ of the above solution u is a weak solution of the parabolic equation $\frac{\partial u_t}{\partial t} = Bu_t$ (4.14) with Dirichlet boundary condition stated in Definition 2.2.

The original solution u(x,t) in $(\Omega \cap W_k) \times (0,M)$ is extended to the solution in $W_k \times (0,M)$ as stated in §2. By virtue of the property (4.14) of the original solution, the extended solution u(x,t) satisfies that

the distributional derivative $u_t = \frac{\partial u}{\partial t}$ is a weak solution of the parabolic equation $\frac{\partial u_t}{\partial t} = Bu_t$ in $W_k \times (0, M)$. (4.15)

We take an arbitrary point $(x,t) \in W'_k \times (0,M)$ and a positive number $R < \frac{1}{8}$ such that $\frac{t}{\sqrt{2}} < (2R)^2 < t$. Then, by means of (4.3) we have

$$B_{2R}(x) \subset W_k$$
 and $Q_{2R}(x,t) \subset W_k \times (0,M)$.

Hence, because of (4.15), we may apply Lemma 4.1 to $u_t = \frac{\partial u}{\partial t}$ and we have

$$\left| \frac{\partial u}{\partial t}(x,t) \right| \le c_1 \left(\frac{1}{|Q_R(x,t)|} \iint_{Q_R(x,t)} |u_s(y,s)|^2 d_a y ds \right)^{\frac{1}{2}}. \tag{4.16}$$

By Lemma 4.2, the right-hand side of the above inequality is less than or equal to

$$c_{1}\left(\frac{c_{2}}{t^{2}}\frac{1}{|Q_{R}(x,t)|}\iint_{Q_{2R}(x,t)}|u(y,s)|^{2}d_{a}yds\right)^{\frac{1}{2}}$$

$$=\frac{c_{3}}{t}\left\{\frac{1}{|Q_{2R}(x,t)|}\iint_{Q_{2R}(x,t)}|u(y,s)|^{2}d_{a}yds\right\}^{\frac{1}{2}}\qquad(c_{3}=2^{\frac{m}{2}+1}c_{1}c_{2}^{\frac{1}{2}})$$

$$\leq\frac{c_{3}}{t}\left\{\int_{t-4R^{2}}^{t}\frac{1}{4R^{2}|B_{2R}(x)|}ds\int_{B_{2R}(x)}|u(y,s)|^{p}d_{a}y\right\}^{\frac{1}{p}}\qquad(p\geq2).\quad(4.17)$$

The last inequality, which is evident for p=2, may be seen for p>2 from the following relation; by Hölder's inequality, we have

$$\begin{split} &\frac{1}{|Q_{2R}(x,t)|} \iint\limits_{Q_{2R}(x,t)} |u(y,s)|^2 d_a y ds \\ &\leq \left(\iint\limits_{Q_{2R}(x,t)} |u(y,s)|^p d_a y ds \right)^{\frac{2}{p}} \left(\iint\limits_{Q_{2R}(x,t)} \left(\frac{1}{|Q_{2R}(x,t)|} \right)^r d_a y ds \right)^{\frac{1}{r}} & \left(\frac{2}{p} + \frac{1}{r} = 1 \right) \\ &= \frac{1}{|Q_{2R}(x,t)|^{\frac{2}{p}}} \left(\int_{t-4R^2}^t ds \int_{B_{2R}(x)} |u(y,s)|^p d_a y \right)^{\frac{2}{p}}. \end{split}$$

The Lebesgue measure $|B_{2R}(x)|$ of $B_{2R}(x)$ with respect to the coordinate system (x_1,\ldots,x_m) in W_k is $(4R)^m$ (independent of x), so we denote it simply by $|B_{2R}|$, and define $\phi_{2R}(x)=\frac{1}{|B_{2R}|}\chi_{B_{2R}(0)}(x)$. Then we have

$$\phi_{2R}(x-y) = \frac{1}{|B_{2R}|} \chi_{B_{2R}(0)}(x-y) = \frac{1}{|B_{2R}|} \chi_{B_{2R}(x)}(y)$$
(4.18)

and

$$\int_{W_{\mathbf{k}}} \phi_{2R}(x-y) d_a x \le c_0 \tag{4.19}$$

where c_0 is a constant determined by the density $\sqrt{a(x)}$ of the measure $d_a x$; we may assume that $c_0 \geq 1$.

It follows from (4.16), (4.17) and (4.18) that

$$\left|\frac{\partial u}{\partial t}(x,t)\right|^p \leq \left(\frac{c_3}{t}\right)^p \int_{t-4R^2}^t \frac{1}{4R^2} ds \int_{W_k} \phi_{2R}(x-y) |u(y,s)|^p d_a y. \tag{4.20}$$

Integrating both sides of (4.20) over W'_k with respect to x, changing the order of integrations and using (4.19), we obtain

$$\int_{W'_{k}} \left| \frac{\partial u}{\partial t}(x,t) \right|^{p} d_{a}x \leq \left(\frac{c_{3}}{t} \right)^{p} \int_{t-4R^{2}}^{t} \frac{1}{4R^{2}} ds \int_{W_{k}} |u(y,s)|^{p} d_{a}y \int_{W'_{k}} \phi_{2R}(x-y) d_{a}x \\
\leq \left(\frac{c_{3}}{t} \right)^{p} c_{0} \int_{t-4R^{2}}^{t} \frac{1}{4R^{2}} ds \int_{W_{k}} |u(y,s)|^{p} d_{a}y. \tag{4.21}$$

Since u(y,s) considered in W_k is the extension of the solution u(y,s) originally defined in $W_k \cap \Omega$ as mentioned in §2, we have

$$\int_{W_k} |u(y,s)|^p d_a y \le 2 \int_{W_k \cap \Omega} |u(y,s)|^p d_a y \le 2 ||u(\cdot,s)||_{L^p(\Omega)}^p \le 2 ||u_0||_{L^p(\Omega)}^p$$

(the factor 2 comes from the process of the extension mentioned in [2]). Hence (4.21) implies that

$$\int_{W_{L}^{t}} \left| \frac{\partial u(x,t)}{\partial t} \right|^{p} d_{a}x \leq \left(\frac{c_{3}}{t} \right)^{p} c_{0} \int_{t-4R^{2}}^{t} \frac{1}{4R^{2}} 2 \|u_{0}\|_{L^{p}(\Omega)}^{p} ds = 2 \left(\frac{c_{3}}{t} \right)^{p} c_{0} \|u_{0}\|_{L^{p}(\Omega)}^{p} (4.22)$$

The above argument is applicable to the solution u(x,t) considered in $D \times (0,M)$ without the process of extending B and u to the outside of Ω , and we get

$$\int_{D'} \left| \frac{\partial u(x,t)}{\partial t} \right|^p d_a x \le \left(\frac{c_3}{t} \right)^p c_0 \int_{t-4R^2}^t \frac{1}{4R^2} \|u_0\|_{L^p(\Omega)}^p ds = \left(\frac{c_3}{t} \right)^p c_0 \|u_0\|_{L^p(\Omega)}^p. (4.23)$$

Since a finite number of W_k 's and D are concerned, we may choose the same constant c_3 in (4.22) for W_1, \ldots, W_l and in (4.23) for D. Hence, taking (4.2) into account, we obtain

$$\int_{\Omega}\left|\frac{\partial u(x,t)}{\partial t}\right|^{p}d_{a}x \leq \left[\sum_{j=1}^{l}\int_{W'_{j}}+\int_{D'}\right]\left|\frac{\partial u}{\partial t}(x,t)\right|^{p}d_{a}x \leq \left(2l+1\right)\left(\frac{c_{3}}{t}\right)^{p}c_{0}\|u_{0}\|_{L^{p}(\Omega)}^{p},$$

namely

$$\|\frac{\partial u(\cdot,t)}{\partial t}\|_{L^{p}(\Omega)} \le \frac{c_{M}}{t} \|u_{0}\|_{L^{p}(\Omega)} \tag{4.24}$$

where $c_M = c_3 c_0 (2l+1) (\geq c_3 \{c_0 (2l+1)\}^{\frac{1}{p}})$ for any $p \geq 1$; the constant c_M may depend on M. Thus we have proved the desired estimate for $p \geq 2$.

We shall prove the estimate (4.24) in the case $1 \le p < 2$. We first remark that the constant c_M in (4.24) is independent of $p \ge 2$.

We shall denote the operators considered in $L^p(\Omega)$ by the symbols with superscript (p); namely, the operators T_t , A in $L^p(\Omega)$ will be denoted by $T_t^{(p)}$, $A^{(p)}$ respectively, and the strong derivative in $L^p(\Omega)$ by $D_t^{(p)}$.

Take an arbitrary function $f \in C_0^2$. Then, from the argument in §3, we may see that $(T_t^{(p)}f)(x)$ as a function of x in Ω is independent of p for every t > 0, and accordingly $(D_t^{(p)}T_t^{(p)}f)(x)$ also is independent of p. In fact, Yosida's semigroup theory shows that

$$T_t^{(p)} f = \lim_{\lambda \to \infty} \sum_{n=0}^{\infty} e^{-t\lambda} \frac{(t\lambda)^n}{n!} \left(\lambda J_{\lambda}^{(p)}\right)^n f \quad \text{(strong convergence in } L^p(\Omega)),$$

while $J_{\lambda}^{(p)}f$ is given by (3.8) for any p. Since $A^{(2)}$ is the smallest closed extension of \tilde{B} with domain $\tilde{\mathcal{D}}$, we have $C_0^2(\Omega) \subset \tilde{\mathcal{D}} \subset \mathcal{D}(A^{(2)})$. Therefore the following relation holds for any f and $\phi \in C_0^2(\Omega)$ and any $p \geq 1$:

$$\langle D_t^{(p)} T_t^{(p)} f, \phi \rangle_a = \langle D_t^{(2)} T_t^{(2)} f, \phi \rangle_a = \langle A^{(2)} T_t^{(2)} f, \phi \rangle_a$$
$$= \langle f, T_t^{(2)} A^{(2)} \phi \rangle_a = \langle f, D_t^{(2)} T_t^{(2)} \phi \rangle_a. \tag{4.25}$$

For any M > 0, c_M denotes the constant which appears in (4.24).

LEMMA 4.3 For any $\phi \in C_0^2$ and any $t \in (0, M)$, it holds that

$$\operatorname{ess.sup}_{x \in \Omega} |(D_t^{(2)} T_t^{(2)} \phi)(x)| \le \frac{c_M}{t} ||\phi||_{L^{\infty}}. \tag{4.26}$$

Proof Let α be an arbitrary positive number less than

ess.sup
$$|(D_t^{(2)}T_t^{(2)}\phi)(x)|,$$

and denote the set $\{x \in \Omega \mid |(D_t^{(2)}T_t^{(2)}\phi)(x)| > \alpha\}$ by $\Omega_{\alpha t}$. Then we have $\Omega_{\alpha t} = \{x \in \Omega \mid |(D_t^{(p)}T_t^{(p)}\phi)(x)| > \alpha\}$ for any $p \ge 1$. Hence

$$||D_t^{(p)}T_t^{(p)}\phi||_{L^p} \ge \alpha |\Omega_{\alpha t}|^{\frac{1}{p}}.$$

On the other hand, $\|D_t^{(p)}T_t^{(p)}\phi\|_{L^p} \leq \frac{c_M}{t}\|\phi\|_{L^p} \leq \frac{c_M}{t}\|\phi\|_{L^\infty}|\Omega|^{\frac{1}{p}}$ for $p\geq 2$ by means of (4.24). Therefore $\alpha|\Omega_{\alpha t}|^{\frac{1}{p}}\leq \frac{c_M}{t}\|\phi\|_{L^\infty}|\Omega|^{\frac{1}{p}}$. Let $p\to\infty$, and we get $\alpha\leq \frac{c_M}{t}\|\phi\|_{L^\infty}$. Since α can be chosen arbitrarily near to ess. $\sup_{x\in\Omega}|(D_t^{(2)}T_t^{(2)}\phi)(x)|$, we obtain (4.26). ///

PROPOSITION 4.1 For any $f \in L^p(\Omega)$ $(1 \le p < 2)$, any M > 0 and any $t \in (0, M)$, it holds that $\|D_t^{(p)}T_t^{(p)}f\|_{L^p} \le \frac{c_M}{t}\|f\|_{L^p}$.

PROOF It suffices to prove this proposition for $f \in C_0^2(\Omega)$. In the case 1 , denote by <math>q the conjugate exponent of p: $\frac{1}{p} + \frac{1}{q} = 1$. For any f and $\phi \in C_0^2(\Omega)$ ($\subset L^q(\Omega)$), we obtain by (4.24) and (4.25) that

$$\begin{split} |\langle D_t^{(p)} T_t^{(p)} f, \phi \rangle_a| &= |\langle f, D_t^{(2)} T_t^{(2)} \phi \rangle_a| &= |\langle f, D_t^{(q)} T_t^{(q)} \phi \rangle_a| \\ &\leq \|f\|_{L^p} \|D_t^{(q)} T_t^{(q)} \phi\|_{L^q} \leq \frac{c_M}{t} \|f\|_{L^p} \|\phi\|_{L^q}. \end{split}$$

This estimate implies the desired result for p > 1.

In the case p=1, we get the following estimate for any $f \in C_0^2(\Omega)$ and any $\phi \in C_0^2(\Omega)$ ($\subset L^{\infty}(\Omega)$) by means of (4.25) and Lemma 4.3:

$$|\langle D_t^{(1)} T_t^{(1)} f, \phi \rangle_a| = |\langle f, D_t^{(2)} T_t^{(2)} \phi \rangle_a| \le ||f||_{L^1} ||D_t^{(2)} T_t^{(2)} \phi||_{L^{\infty}} \le \frac{c_M}{t} ||f||_{L^1} ||\phi||_{L^{\infty}};$$

this implies the desired result for p = 1. ///

We may conclude from (4.24) proved for $p \geq 2$ and Proposition 4.1 that $\{T_t^{(p)}\}$ is an analytic semigroup in $L^p(\Omega)$ for any p $(1 \leq p < \infty)$.

References

- [1] B.J.Dahlberg, On the Poisson integral for Lipschitz and C^1 -domains, Studia Mathematica, T. LXVI.,(1979), 13-24.
- [2] M.Giga, The extension of solutions of parabolic differential equations with Dirichlet boundary condition, Bull.Lib.Arts & Sci.Nippon Med.Sch., 21 (1996), 1-5.
- [3] M.Giga, On the mollification of coordinate systems in the neighborhood of the boundary point of Lipschitz domain, Bull.Lib.Arts & Sci.Nippon Med.Sch., 24 (1998),1-4.
- [4] D.Gilbarg and N.S.Trudinger, Elliptic partial differential equations of second order, Springer, (1977).
- [5] C.E.Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, Amer.Math.Soc.Colloq.Publ. (1994).
- [6] P.D.Lax and A.N.Milgram, Parabolic equations, Contributions to the theory of partial differential equations, Princeton (1954), 167-190.

- [7] J.Moser, A Harnack inequality for parabolic differential equations, Comm.Pure Appl.Math., 17 (1964), 101-134.
- [8] El-Maati Ouhabaz, Gaussian estimates and holomorphy of semigroup, Proc.Amer.Math.Soc. 123, No.5 (1995),1465-1474.
- [9] A.Pazy, Semigroups of linear operators and applications to partial differential equations, Springer (1983).
- [10] K. Yosida, Functional analysis, Springer, 6th ed. (1980).