CBEOKKTREERHEHE

#53% Hl1w

Natural Science Report, Ochanomizu University, Vol. 53, No. 1 (2002) 97

Can partial evaluation improve the performance of ray tracing?

Kenichi Asai

Department of Information Science, Faculty of Science, Ochanomizu University
2-1-1 Otsuka Bunkyo-ku Tokyo 112-8610 Japan
asai@is.ocha.ac. jp

Abstract

This short paper reports our experience on us-
ing runtime partial evaluation to improve the per-
formance of ray tracing. By exploiting constant
information on objects and light during the ray
tracing process, we can produce a specialized ray
tracer which runs up to two times faster than the
unspecialized version. Thanks to the integration
of a partial evaluator into an interpreter, special-
ization is achieved simply by inserting a pe com-
mand. Although the implementation is still proto-
typical, the experimental results show that partial
evaluation does have a role in ray tracing.

1 Partial evaluation

Partial evaluation (or program specialization) is
a program transformation technique which im-
proves efficiency of a program by performing as
much computation as possible before all the in-
puts become available [8]. For example, consider
the following power function written in a func-
tional programming language Scheme [9].
(define (power m n)
(if (= n 0)
1
(* m (power m (- n 1)))))
If the value of n is known to be a constant, say 4,
then we can make a specialized version of power
where n is always 4 by unfolding the recursive call
to power without knowning the value of m as fol-
lows:
(power m 4)
-> (* m (power m 3))
-> (* m (* m (power m 2)))

-> (*m (* m (* m (power m 1))))
-> (*m (*m (*m (*x m (power m 0)))))
-=> (*xm (*xm(xm(xm1))))

Thus, we obtain the following specialization:

(define (power4 m)
(:m (*m (*xm (*m 1)))))

which is much faster than the original execution
(power m 4). '

Partial evaluation is effective when a function
is used many times, and some of its arguments are
always the same. In the above example, it pays
off to make power4 once, if it is used sufficiently
many times afterwards.

The partial evaluation technique is widely
used, for example, in generation of compilers
from interpreters [6, 8], optimization of object-
oriented languages [5], and compilation of re-
flective languages [10]. Because of its ability to
mechanically specialize general-purpose programs
into specialized, more efficient programs, it is
said that partial evaluation achieves both the
productivity and efficiency [8]. Partial evalu-
ation has been mainly studied for functional
languages, but there are also partial evaluators
for C such as Tempo [4] and C-Mix [1]. (See
http://compose.labri.fr/prototypes/tempo/
for Tempo, and http://www.diku.dk/research-
groups/topps/activities/cmix/ for C-Mix.)

We have implemented a Scheme interpreter
where a special partial evaluation construct pe is
available [3]. For example, we can obtain the spe-
cialized power program as follows:

> (pe (lambda (m) (power m 4)))
(lambda (m) (* m (* m (* m (* m 1)))))

Given a function as an argument, pe returns a
function which is the specialized version of the
original argument. In contrast to the conven-
tional partial evaluators, which have been mainly
a source to source program transformation, pe
specializes its argument at runtime. We do not
have to prepare a program in a separate file for
specialization, but we simply insert pe whenever

98 Kenichi Asai

NSR. O., Vol. 53

(define (main V-point objects lights)

(map (pe (lambda (pixel)

(let ((V-vector (- pixel V-point)))
(ray-trace V-point V-vector objects lights))))
; list all the pixels on the screen))
(define (ray-trace V-point V-vector objects lights)
(if V-vector intersects with objects

(add ; ambient light

; diffuse reflection (if lighted directly)
; specular reflection (via recursion))
; return back-ground color))

Figure 2: Pseudo code for ray tracing

Figure 1: A sample image (128128 pixels)

we want specialization. This makes it easy to use
partial evaluation in a larger program. (In addi-
tion, we need to annotate the program to make
the recursion variables explicit. We will not dis-
cuss it further in this paper, however.)

2 Ray tracing

Ray tracing produces a realistic image of 3D ob-
jects by calculating the color of each pixel on
the screen. Figure 1 shows a sample output of
ray tracing. Given a configuration of 3D ob-
jects, we trace light in the reverse direction from
the view-point (V-point) to each pixel on the
screen. When it intersects with an object, we
collect various light that reaches that intersect-
ing point, such as ambient light (uniform light
whose intensity is the same at all places), dif-
fuse reflection (light coming directly from the light
source; effective only when the point is visible
from the light source), and specular reflection (re-
flected light coming from the direction of mirror-
reflection; computed using recursion). Figure 2
shows the pseudo code for it.

3 Where to use partial evalua-
tion

The interesting observation on the above pseudo
code is that (1) ray-trace is called as many times
as the number of pixels on the screen, and that
(2) for each execution, the object configuration
objects and the light configuration 1lights are
constants. Since the number of times ray-trace
is called is quite large, we can expect that the
execution will become faster if we make a spe-
cialized version of ray-trace (with respect to the
fixed objects and lights) once, and use this op-
timized version to compute the color of all the
pixels. This is exactly where partial evaluation
can contribute.

We do so by inserting pe in main as is already
done in Fig. 2. The pe construct makes the spe-
cialized version of ray-trace where objects and
lights are fixed, but pixel is unknown (since it is
A-abstracted). Intuitively, it inlines all the traver-
sals over the objects and lights configuration into
the resulting specialized program.

4 Experimental results

We have implemented a ray tracer that conforms
to the requirements in the ICFP 2000 program-
ming contest, where the task was to implement a
ray tracer. (See http://www.cs.cornell.edu/
icfp/ for the details of this contest.) It sup-
ports five object types (spheres, cubes, cylinders,
cones, and planes), three operations on objects
(union, intersection, and difference), three light
types (directional light, point light, and spot-
light), various transformations (translation, scal-
ing, and rotation), and procedural surface ren-

99

June 2002 Can partial evaluation ifnprove the performance of ray tracing?

scene size without PE with PE | ratio size without PE with PE | ratio
spheres 32x24 23.7 12.1 | 1.96 || 320x240 7.0 4.3 | 1.65
spheres2 32x24 28.1 13.7] 2.05 || 320x240 8.4 48| 1.74
reflect 32x24 51.8 23.9 | 2.17 || 320x240 13.9 7.7 1 1.80

fib 32x24 48.5 42.0 | 1.16 || 320x240 17.1 11.6 | 1.47

cube 32x20 4.0 2.6 | 1.53 || 320x200 1.7 1.36 | 1.25

dice 64 x40 241.1 138.8 | 1.74 || 640x400 75.1 47.9 | 1.57

spot 32x24 16.1 10.1 | 1.48 || 320x240 5.0 3.9 1.30

golf 32%x24 80.3 38.8 | 2.07 || 320x240 21.4 119y 1.80

Table 1: Experimental results in seconds. The columns ‘size’ show the number of pixels. The left half
uses pe construct while the right half uses manual annotation to achieve partial evaluation.

dering. We have also implemented bounding vol-
umes to reduce the number of intersection calcula-
tion. The experiment was done on Sun Blade 1000
(UltraSPARC-III, 750MHz, 512 MB memory) us-
ing Chez Scheme compiler with optimize-level 3.

Table 1 shows the experimental results. The
column ‘scene’ shows the name of the scenes that
we used. The left half of the table shows how
the use of pe makes the execution faster. We can
observe 16 percent to 2 times speedup by the use
of partial evaluation. In all cases, the time for
partial evaluation was ignorable.

However, the absolute figures for these experi-
ments are not very satisfactory. Even after partial
evaluation, it takes more than ten seconds for a
scene of size only 32x24 pixels. One of the rea-
son for it is that the ray tracing program is exe-
cuted (interpreted) on top of the partial evaluator
we made. Although the partial evaluator itself is
compiled via Chez Scheme compiler, the ray trac-
ing program is interpreted by this (compiled) par-
tial evaluator. If we could implement the partial
evaluator by extending the Chez Scheme compiler
directly, we could obtain better figures.

To see it, we have made another experiment.
Since it is not very easy to directly extend the
Scheme interpreter to cope with pe, we imple-
mented the effect of partial evaluation manually
by rewriting the ray tracing program by hand
instead. It is well-known that partial evalua-
tion can be simulated by separating the program
into two stages and inserting gquote and ungquote.
(Note that we can no longer achieve partial eval-
uation by simply inserting pe. Instead, we have
to rewrite major parts of the program. Proper
knowledge on (offline) partial evaluation is also
required to do it.) Then, the resulting program
is compiled using Chez Scheme compiler. The

experimental results for this hand-tweaked ray
tracer are given in the right half of Table 1.

First, notice that the sizes of scenes are 100
times larger than the previous experiment. This
means that this implementation is about 300
times faster than the previous one. (For example,
the scene ‘spheres’ finished 23.7 x 100/7.0 ~ 338
times faster.) From this, we can see that the over-
head of interpretation was about the magnitude
of 300 times. Partial evaluation then adds about
25 to 80 percent speedup. Although the speedup
is rather modest than the previous experiment,
partial evaluation does improve the performance.

Then, the natural question to ask is whether
this is sufficient or not. Unfortunately, it is still
not very fast. The winning program of the ICFP
2000 programming contest is so fast that the ex-
ecution time for all the scenes used in this ex-
periment was zero! (See http://www.cis.upenn.
edu/~“sumii/icfp/ for the details of the winning
program.)

To compare the winning program with ours,
we have experimented on a larger (and more com-
plicated) scene, and found that the winning pro-
gram is about 70 times faster than our ray tracer
without partial evaluation. (We could not com-
pare the version that uses partial evaluation be-
cause the produced specialized code was so big
that the Chez Scheme compiler could not com-
pile it.) Assuming optimistically that we obtain
2 times speedup via partial evaluation, we still
lose by about 35 times from the winning pro-
gram. Because the winning program is written in
a typed language (OCaml), it is benefited from
static type-checking to remove runtime checks.
Estimating optimistically that static type check-
ing makes programs three times faster, we still
lose by more than ten times. Currently, we have

100 Kenichi Asai

no clue how to bridge this gap.

5 Related work

Specialization of ray tracing was first done by
Mogensen[11]. Andersen[2] specialized an already
efficient ray tracer written in C. We did the
same experiment using Scheme extended with pe.
Thanks to the presence of pe, we could achieve
specialization simply by inserting pe at an appro-
priate place. The realistic application of special-
ization in graphics is found in [7].

6 Conclusion

This short paper reported our experience on us-
ing partial evaluation to improve the performance
of ray tracing. By exploiting the static informa-
tion (the objects and light configuration), we can
produce a specialized ray tracer which runs up to
two times faster than the unspecialized version.
Thanks to the integration of a partial evaluator
into an interpreter, specialization was achieved
simply by inserting pe at an appropriate place.

Because we did not directly change the under-
lying language implementation to support partial
evaluation but we implemented it as a stand-alone
program, it suffers from severe interpretive over-
head. Although this approach is good for proto-
typical implementation, it does not suit for prac-
tical uses of partial evaluation. Since we obtained
significant speedup for the ray tracer with manual
partial evaluation, however, there is a good hope
that implementing partial evaluation directly in
the underlying Scheme implementation will be
beneficial.

References

[1] Andersen, L. O. Program Analysis and Spe-
cialization for the C Programming Language,
Ph.D. thesis, DIKU, University of Copen-
hagen (May 1994).

[2] Andersen, P. H. “Partial Evaluation Applied
to Ray Tracing,” Software Engineering in
Scientific Computing, pp. 78-85, DIKU re-
port D-289 (1996).

[3] Asai, K. “Integrating Partial Evaluators into
Interpreters,” In W. Taha, editor, Semantics,

[10]

[li]

NSR. O., Vol. 53

Applications, and Implementaiion of Pro-
gram Generation (LNCS 2196), pp. 126-145
(September 2001).

Consel, C., L. Hornof, R. Marlet, G. Muller,
S. Thibault, E. -N. Volanschi, J. Lawall,
and J. Noyé “Tempo: Specializing Systems
Applications and Beyond,” ACM Computing
Surveys, Vol. 30, Issue 3es (September 1998).

Dean, J., C. Chambers, and D. Grove
“Identifying Profitable Specialization in
Object-Oriented Languages,” ACM SIG-
PLAN Workshop on Partial FEvaluation
and Semantics-Based Program Manipulation
(PEPM ’94), pp- 85-96 (June 1994).

Futamura, Y. “Partial evaluation of compu-
tation process — an approach to a compiler-
compiler,” Systems, Computers, Controls,
Vol. 2, No. 5, pp. 45-50, (1971), reprinted
as Higher-Order and Symbolic Computation,
Vol. 12, No. 4, pp. 381-391, Kluwer Aca-
demic Publishers (December 1999).

Guenter, B., T. B. Knoblock, E. Ruf
“Specializing Shaders,” Proceedings of SIG- -
GRAPH 95 (Computer Graphics Proceed-
ings) pp. 343-350 (1995).

Jones, N. D., C. K. Gomard, and P. Sestoft
Partial Evaluation and Automatic Program
Generation, New York: Prentice-Hall (1993).

Kelsey, R., W. Clinger, and J. Rees (edi-
tors) “Revised® Report on the Algorithmic
Language Scheme,” Higher-Order and Sym-
bolic Computation, Vol. 11, No. 1, pp. 7-105,
Kluwer Academic Publishers (August 1998).

Masuhara, H., S. Matsuoka, K. Asai, and
A. Yonezawa “Compiling Away the Meta-
Level in Object-Oriented Concurrent Reflec-
tive Languages Using Partial Evaluation,”
Tenth Annual Conference on Object-Oriented
Programming Systems, Languages, and Ap-
plications (OOPSLA ’95), pp. 300-315, (Oc-
tober 1995).

Mogensen, T. £. “The Application of Partial
Evaluation to Ray-Tracing,” Master’s thesis,
DIKU, University of Copenhagen (1986).

