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Abstract: We consider progressive water-waves on the
interface between two fluids of different densities. Such in-
terfacial waves problem is a generalization of surface waves
problem, which we have studied extensively in [2,3]. By
this generalization, our numerical results on the bifurca-
tion problem of the surface waves can be explained math-
ematically. We showed in [2] the ratio of the propagation
speeds between the upper and lower fluids plays an im-
portant role in governing bifurcation structures. And it is
meaningful to see changes in bifurcation structures as the
key parameter varies. We show here our numerical results.

1. Introduction and formulation

The problem discussed here is to consider interfacial
progressive waves between two fluids of different densities.
Both of the fluids are assumed to be incompressible and
inviscid. The flows are assumed to be two-dimensional
and irrotational. Let m, be the mass density of the up-
per fluid and m; be of the lower fluid. The constants ¢,
‘and ¢; are mean speeds of the upper fluid and the lower
fluid, respectively. We take a coordinate system (z-y),
moving together with the interfacial wave. Namely the
wave profiles are stationary when we observe them in this
coordinate system. Let y = h(x) represent the interface.
The problem is to determine the shape of the interface,
that is to say, it is a free boundary problem. The depths

of fluids may be finite or infinite. The gravity and the sur- -

-face tension are taken into account. Let g and T be the
gravity acceleration and the surface tension coefficient, re-
spectively. We further assume that the wave profile is pe-
riodic in z with a period L and is symmetric with respect
to the y-axis.

By these assumptions, the fluid motion can be described
by using the velocity potential and the stream function.
One of the mathematical difficulties of the problem is that
the boundary is not known in advance. The difficulty can
be overcome considering the problem described by the ve-
locity potential and the stream function. However here,
modifying Kotchin [1], we use the more convenient formu-
lation, which will be shown as follows :
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Problem
Find 2rw-periodic functions 8 = 6(0) and S = S(o) such
that
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H and H are linear operators defined through the Fourier
series as follows:
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This problem has five dimensionless parameters b, p, ¢, 7
and 7,,. We can see it is a bifurcation problem with these
five bifurcation parameters. b, p and g are parameters con-
cerning with the average energy densities, the gravity ac-
celeration and the surface tension, respectively, given as
follows:
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m and 7, are parameters concerning with the depth of
fluids such as 0 < 7y, 1, < 1. m = 0 or 1, = 0 corresponds
to the infinite depth of the lower fluid or the upper fluid,
respectively.

Our task is to solve F (6(c),S(0)) = (F1, F3) = 0, for
given b,p,q,m, and ;. When the parameter b is equal
to zero the above formulation reduces to the surface wave
problem. Namely if the fluid motion above the free bound-
ary is neglected, the problem reduces to surface progres-
sive waves. Note that if b = 0 then the equation F;, = 0
contains unknown 6 only.

Our concern is to see the bifurcation structures globally
as b changes from 0.

2. Numerical method and results

Here we will show only the results of which the depths
of both fluids are infinite since the depths play little role
in the bifurcation. Consequently 7, and 7; are fixed to be
zero hereafter.

Since the profiles of wave are assumed to be symmetric
with respect to y-axis, 8(o) and S(o) are odd functions.
Then using the spectral-collocation method, we look for
approximate solutions of the following form:

N N
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where a; and b; (1 < j < N) are unknowns. Consider A
and Bj, defined as
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for k=1,2,---,N. This defines the following mapping
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which is denoted by G : R® x R¥ x RY — RN x RV,
Consequently we look for (b, p,q;a,b) € R* xRN xRN —
RY such that G(b,p,q;a,b) = 0.

It can be easily seen we have a trivial solution (a,b) =
(a1,--+,an,b1,---,bn) = (0,0) whatever (b, p,q) may be.
And our aim is to find (a, b) # (0,0). Regarding the bifur-
cation, we can see the followings details of which is written
in [3]:

o The Fréchet derivative D,G has a nontrivial null
space if -and only if (b, p, q) satisfies

(1+b)n =p+n?q
for some n =1,2,---, N. In this case, the vector ¥ =
2
(sin no, — sin na) is a null vector; D, ;G(X) = 0.

This means existences of a primary bifurcation of
mode n (n =1,2,---).

e (b,po,40;0,0) is a double bifurcation point of mode
(m,n), where pg = mn(1+b)/(m+n) and go = (1 +
b)/(m +n) for 0 < m < n.
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If (o) and S(o) are obtained, then the interface
{(z(0),y(0)) ; 0 < o < 27} is given by
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Figure 1: The bifurcation diagram and plots of h(z), 8(c)
and S(o) at A on the Crapper’s waves of mode 1 branch;
p=0and b=0. In the diagram he horizontal axis repre-
sents ¢ and the vertical axis represents a;, the first Fourier
coefficient of 8. A shows the onset of solutions which have
self-intersections. Profiles of solution are drawn in one
wavelength.

2.1 Pure Capillary Waves

We put p = 0. This is the case of pure capillary waves.
For surface waves of deep water, Crapper (’57) gave the
exact solutions, which have explicit expressions in terms
of elementary functions. :

Figure 1 shows Crapper’s waves simulated by our al-
gorithm. The bifurcation diagram is drawn in a; versus
g and the profiles of h(z),8(c) and S(o) are drawn in
—n < 0 < . Though there is shown a diagram in a; > 0,
there is in a; < 0 symmetrically with respect to the z-axis.
It is a pitchfork bifurcation. The wave profile h(z) of the
solution at the point A has a contact point as is shown in
the Figure. The solutions to the right of A contain self-
intersections in their profiles, which are unphysical waves
but are considered to be valid solutions mathematically.
The computations are performed with N = 127. The sim-
ulated solutions correspond well to the exact solutions.

It can be proved mathematically that there is no sec-
ondary bifurcation from the branches of Crapper’s waves.
Then is Crapper’s wave a unique solution? We have to
check whether there might be a family of solutions, which
are disconnected from Crapper’s waves. Concerning the
question, we conjecture numerically that there is no so-
lution other than Crapper’s waves for b = 0. Then how
about for b0 ?
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Figure 2: The bifurcation diagrams of pure capillary waves
when b varies. The branches are symmetrically in a; < 0
with respect to the z-axis.
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Figure 3: The profiles of solution of pure capillary waves
when b = 1 and p = 0. These are solutions located near
turning points. (o) and S(o) have sharp inclinations at
o= *m. '
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Figure 2 shows the bifurcation diagrams when b varies.
The figure shows that there is no solution other than a
primary branch when & < by ~ 0.364---. If b = bg
there appears a looped branch disconnected from a pri-
mary branch. And the looped branch touches the primary
branch when b = b, = 0.767 < - -. Namely, for by < b < by,
we can see another bifurcation solutions than a primary
bifurcation.

Examples of solutions are shown in Figure 3 for b = 1.
They are located on a wedge part of the branch. The
computations have been performed with N = 2047, but
it needs to take larger N or another scheme in order to
simulate accurately. §(c) and S(o) have sharp inclinations
at 0 = £ as are shown in the figure.

2.2 Gravity Waves

We put ¢ = 0. This is the case of gravity waves.

Figure 4 shows bifurcation diagram of gravity waves of
mode 2, which is drawn in a; versus p. The primary bi-
furcation of mode 2 is a pitchfork bifurcation. But a sec-
ondary bifurcation branch exists only in as > 0. The
secondary bifurcation is a pitchfork and is supercritical in
p. The secondary branch ends when h(z) has one sharp
crest at z = 0 and the crest forms a corner of angle 2 /3,
namely 311)% |8(0)| = m/6. The bottom profiles are plots of

nearly highest wave on the secondary-branch.
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Figure 4: The bifurcation diagram of mode (1,2) and the
wave profile of the nearly highest wave on the secondary
branch when b = 0 and ¢ = 0. The primary branch is
symmetrically in as < 0 with respect to the z-axis, but
the secondary branch exists only in as > 0.

Figure 5 shows the case of b = 0.005. In this case
there does not appear sharp crest but a mushroom shaped
wave. We guess the secondary branch may continue to be
a nearly touching wave profile, but we could not examine
it although we increased N up to 3071. As b is larger, it
develops an S shape.

2.3 Capillary-Gravity Waves
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Figure 5: The bifurcation diagram of mode (1,2) and the
wave profile of the nearly highest wave on the secondary
branch when b = 0.005 and ¢ = 0.

Here we consider the cases of p 7% 0 and ¢ 7% 0. In this
case there exist double bifurcation points of mode (m,n)
which arise from the interaction between the mth and nth
harmonics of the motion for m 3 n.

Around the double bifurcation, we can see very compli-
cated and interesting structures. In [2,3] we show many
kinds of bifurcations around the double bifurcation for the
surface waves problem. Applying a bifurcation theory, we
calculated the normal form of mode (1,2) and confirmed
our numerical results mathematically. We proved in [2]
that in the interfacial waves problem, b is the key param-
eter to give a degenerate bifurcation point of some coeffi-
cient in the normal form. When the degenerate bifurcation
point appears, much more complicated structures may be
possible.

The numerical results of b = 0 and b = 1 are shown
in Figures 6 and 7, respectively. The right diagrams in
the figures are views from the g-axis. In the case of
m =1, = 0, a degenerate bifurcation point appears when
b = 1. We see more complicated structures in Figure 7
than in Figure 6. For b = 0, (p,q) = (2/3,1/3) is the
double bifurcation point of mode (1,2) and the middle in
Figure 6 represents the diagram at the double bifurcation
point. When p = 0.6, a secondary branch emanates from
the upper part of mode 2 primary branch. It constitutes
a closed loop to meet the mode 2 branch again. When
p = 0.7, a secondary branch emanates from the lower part
of mode 2 primary branch. Here the mode 1 branch con-
stitutes a closed loop to meet the mode 2 branch.

In Figure 7 there is no closed branch as is in the case of
b=0. For b=1, (p,q) = (4/3,2/3) is the double bifurca-
tion of mode (1,2) and the middle of Figure 7 represents
the diagram at the double bifurcation point. When p = 1.5
and p = 1.333, the primary mode 1 branch forms closed
loop but it meets mode 4 branch. When p = 1.26, the
secondary branch emanating from the lower part of mode
2 branch forms closed loop but it meets mode 3 branch.
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Figure 6: The bifurcation diagrams around the double
bifurcation of mode (1,2) when & = 0. When p = 0.6,
a secondary bifurcation branch emanates from the upper
part of the mode 2 primary branch. When p = 0.7, a sec-
ondary bifurcation branch emanates from the lower part
of the mode 2 primary branch. The bottom figures are
some wave profiles for p = 0.666.
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Figure 7: The bifurcation diagrams around the double bi-
furcation of mode (1,2) when b = 1. When p = 1.5 and
p = 1.333, the left branch meets mode 4 branch. When
p = 1.26, the left branch meets mode 3 branch. The bot-
tom figures are some wave profiles for p = 1.5.
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3. Concluding remarks

We have examined bifurcation structures varying either
or both of 7, and n in [0,1). Our computation shows
that the aspect ratio of the flow, i.e., the depths of the
upper and the lower fluid, play little role in the bifurcation
structure qualitatively.

It is proved that there exist triple bifurcation points in
the interfacial waves problem, but they all exist in unphys-
ical range b < 0. However the problem has an equally valid
mathematical meaning even for negative b. We think it is
important to study bifurcation structures around triple
bifurcation points. Because Zufiria [4,5] obtained numer-
ically non-symmetric surface waves which arise from the
interaction of three modes. They seem to strongly sug-
gest the existence of a triple bifurcation point of mode
(1,3,6), though it was proven there exist no triple bifur-
cation point in the surface wave problem. It might be
possible to interpret Zufiria’s bifurcations as the effect of
the triple bifurcation of interfacial waves, since the surface
wave problem is embedded in the interfacial problem. It
would be interesting to study structures around the triple
bifurcation.
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