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ABSTRACT. Consider a bounded domain D with fractal boundary in R® such that 8D is a B-set (d—1 <
B < d). Under an additional condition we estimate the L?-norm and the Besov norms with respect to
the parabolic metric on the lateral boundary of the cylinder D x (0,T") by the LP-norm and the Besov
norms defined by the volume integrals, respectively.

1. Introduction.

Let D be a domain in R4 such that the boundary 0D is compact and assume that 9D is a S-set
(d—1< B < d), ie., there exist a positive Radon measure u on 8D and positive real numbers by,
by, 1o such that

(1.1) birB < u(B(z,r) N 8D) < byr?

for all points z € D and all positive real numbers r < rg, where B(z,r) stands for the open ball in
R¢ with centered at z and radius r. Such a measure p is called a 3-measure.
We fix a S-measure p on 8D and consider the cylinder with respect to the domain D

2p =D x(0,T)
and the lateral boundary
Sp =8D x [0,T].

The parabolic metric is very useful to estimate the norms of operators with respect the heat kernel in
this cylinder. Recall that the parabolic metric p(X,Y) between two points X = (z,t) (z € R%, t €
R)and Y = (y,s) (y € RY, s € R) is defined by

pXY) = (|2~ yf + |t~ s])'/?

and the heat kernel ( 2)
exp —i’“y .
WX -Y) = (M(t_"Q ift—-s>0
0 otherwise.

We detote by pr the product measure of the B-measure p and the 1-dimensional Lebesgue
measure restricted to [0,T]. Let p > 1, a > 0. We denote by L?(ur) the set of all LP-functions
defined on Sp with respect to ur and by A2(Sp) the Banach space of all functions in LP(ur) such

that
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For f € AE(Sp) a Besov norm is defined by

ke = ( [ |f<X>|PduT<X>)1/p

(// Ig())(()y |a+lz/3;|:, duT(X)dﬂT(Y)> v )

For such a cylinder §2p volume integrals are more easy to deal with than integrals on Sp, if f is ‘
defined on D x [0, T). It seems that, if we find a norm defined by a volume integral ”equivalent” to
the LP-norm or the Besov norm on the fractal boundary, it is useful for us to prove that operators
are bounded on L?(ur) or AE(Sp).

By the same method of A. Jonsson and H. Wallin [JW1] we can extend the function f on Sp to
E(f) on R? x [0, T) such that the function X = £(f)(X) is a C'-function on R4+ \ (8D x R) by
using a Whitney decomposition of a parabolic type..

But, what type of a volume integral in D x (0,T) is equivalent to the LP-norm or the Besov
norm on Sp? In this paper we consider this problem.

Hereafter we suppose that 0D C B(0, R/2) with R > 1. We may assume that (1.1) holds for all
points z € 8D and all positive real numbers r < 3R.

To consider the above problem; we need add a condition to D. We say that a set G satisfies the
condition (b) if there exist positive real numbers ¢ and r; > 0 such that
(1.2) |B(z,7) NG| > cr
for each point z € G and each positive real number r < ry, where | A| stands for the d-dimensional
(resp. the (d 4 1)-dimensional Lebesgue measure) if A ¢ R? (resp. A C R4*1).

If D satisfies the condition (b), then (1.2) holds for every » < 3R by replacing with another
constant c.

For y € D (resp. Y € D x (0,T)) we denote by §(y) (resp. 6(Y)) the d- dimensional Euclidean
distance from y to 8D (resp. the (d + 1)- dimensional Euclidean distance from Y to Sp). Note that
0(y) =6() for Y = (y, s).

Put,forr>0and0<c<1,

(1.3) Fro={Y = (y,5) € DN B(O,R)) x (0,T);cr < d(y) < r}.

THEOREM 1. Let D be a domain in R such that 8D is a compact B-set (d -1 < B < d)
and satisfies the condition (b). Then there is a constant cg < 1 such that, if f is a nonnegative,
uniformly continuous function on D N B(0, R) x [0,T)] with respect to the parabolic metric p,

(1.4) ¢; lim sup rﬁ"d/ F(¥)dYy
=30 e

1€0

S B—d
< fs (2)dur(2) < eplimiptr /F f(¥)ay,

r,eg

where ¢; and cy are constants independent of f.

THEOREM 2. Suppose that D satisfies the same conditions as in Theorem 1. Let 1 < p < oo,
p—pa—~d+B>0anda+ (d—B8)/p< A<l If fis A\-Hélder continuous on D N B(0, R) x [0,T]
with respect to the parabolic metric, then, for the positive number co in Theorem 1,

. f)P
(1.5) €1 hr:l_f(‘)lp /Fr o /F, o P(X Y)d+2+pa+d 54X ‘?Y

<f [ Y)[,ﬁ(jiﬂ,fduﬂ)f)dmn
<C2hrn1nf/ / F)P dXdy,

X y d+2+pa+d Jé8
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and

. Lol
(1.6) c3 hmsup/ /; X, Y d+2-|—pa —————dur(Y)dX

r—0 Frcq

< ) SO i ctncr

< ¢4 lim inf/ lim l—f~(———)~———(———)—‘£d/,LT(Y)dX
= r=0 Jp, . Sp p(X,Y)d+2+pe )

where ¢1, ¢2, c3 and ¢y are constants independent of f.

2. Fundamental lemmas

Hereafter we assume that D is a domain in R? such that 0D is a compact (-set satisfying
d—-1<pB<dand 8D C B(0,R/2) (R > 1) and T < R. Note that we may assume that 7y > 3R in
(1.1) by taking other constants b; and bs.

In this section we prepare several fundamental lemmas.

Denote by the parabolic ball B(X,r) with centered at X and radius r defined by

CBX,r)={Y e R p(X,Y) <} -
and the parabolic cylinder C(X,r) with centered at X = (z,t) and radius r defined by
C(X,r) ={Y = (y,s) [z —yl <, |t = s| <2},
Note that

@) C B(X,r) c C(X,r).

(2.1) CX, =

The following lemma will be shown by the same method as in the proof of the Vitali covering
lemma.

LEMMA 2.1.  Suppose that {C(X;,r;)}JL, are parabolic cylinders. Then we can choose a
subsequence {C(X;,,7;,) =y of {C(z;,7;)} T, such that they are mutually disjoint and

U;’l:lC(Xj,Tj) - Ulk=10(Xjka3"'jk)-

The following lemma is an easy consequence of the property (1.1).
LEMMA 2.2. Let Z € Sp and 0 <r < 3R. Then
(2:2) bsr®*? < pur(B(Z,m) N Sp) < barP*?,

where by and by are constants independent of Z and 7.

LEMMA 2.3. Let A >0 and Z € Sp. Further, let by be the positive real number in (2.2).
i) IfB+2<Aand 3R >a >0, then

/ (X, Z) P dur(X) < b4————)\————aﬁ+2_’\.
Spn{a<p(X,2)}
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(i) IfB+2>X>0and0<b<3R, then

A

poA+2—A
B+2-X

/ p(X, 2)dup(X) < by
SN {p(X,2)<b}

PRrROOF. (i) By (2.2) we have

/ p(X, Z2) " dpr(X)
Spn{a<p(X,Z)}

-2 -
uA

= / " ur({X € Spip(X, 2) > 1))t = / ur(B(Z, 7)) N Sp)dt
0 0

¢ by
<b =B+ /A gy = 747 B+2-)
>~ VU4 /(; )\ _ ‘3 — 20, 3

which shows (i).
(ii) This is shown by the same method as (i).

LEMMA 2.4. Let X € (DN B(0,R)) x (0,T) and 0 < r < R. Then
(2.3) |B(X,r) N ((D N B(0,R)) x [0,T))] < sartt?.
Furthermore, if D satisfies the condition (b), then |
(2.4) 5179 < |B(X,r) N ((D N B(0,R)) x [0,T))|.
Here s1, s2 are constants independent of X and r.

PROOF. It is clear that (2.3) holds. If D satisfies the condition (b), then, by [W4, Lemma 2.2],
there exists a constant ¢ such that

er? < |B(z,7) N D|
for each z € D and each positive real number r < R. This and (2.2) lead to (2.4).

We fix positive real numbers s; and s satisfying (2.4) and (2.3), respectively. »
Using Lemma 2.4, we can easily show the following lemma by the same 'method as in the proof
of Lemma 2.3.

LEMMA 2.5. Let A >0 and X € (DN B(0,R)) x (0,T).
) IfA>d+2and R>a >0, then

/ p(X, Y)Y < sz;ad“**.
(DAB(0,R))x (0,T)N{p(X,Y)2a} A—d—2

(ii) Ifd+2> X and 0 < b < R, then

A
p(X, Y)Y < g9 ——a—abdT2A

/<DnB(o,R))x(O,T)n{p<x,Y>5b} d+2-2A

We see that the following lemma holds as in the proofs of [W1, Lemma 2.1 and W2, Lemma
2.1].
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LEMMA A. Suppose that D is a domain such that 8D is a compact B-set (d—1< 8 < d) and
satisfies the condition (b). Further assume that 8D C B(0,R/2). Let0 < e < R, 0 <7 < 3R and
z € 8D. Then there exist positive numbers ¢, co such that

crrPed=P </ © dy < cprPedP,
{8(y)<e}nB(z,r)

where ¢; and ¢y are independent of r, € and z.

The following lemma is an easy consequence of Lemma A.

LEMMA 2.6. Suppose that D satisfies the condition (b). Let 0 < e < R, 0 < r < 3R and
Z € Sp. Then there exist positive numbers s3, s4 such that

(2.5) s3rPt2ed—F < / dY < sgrPt2ed—#
{6(Y)<e}nB(Z,r)N(D%(0,T))

where s3 and s4 are independent of r, € and Z.

3. Estimates of parabolic atoms

Fix a C*-function ¢ on R% such that
¢=10nB(0,1/2), 0<¢<1, supp¢CB(0,1), ¢(z)=¢(-z)
and a C'*°-function ¥ on R such that
p=lonl-7,3], 0<¥<I, swppyC(-L1), () =b(-1)

Define, for X = (z,t) € R%*! and r > 0,

s—1
)

y—z
9. (V) = ¢(L=T)u(
for Y = (y,s). Note that gx,, € C®(R%), gx,» =1 on C(X,r/2) and
supp gx,» C C(X,r). Furthermore, |Vygx.| < ¢/r and |£gx,,| < %, where c is a constant
independent of z, .
We have the following lemma.

LEMMA 3.1. Let Xo, Yy € Sp, 0 < 4r < p(Xo,Ys) anda, b € R. Assume that p—pa—d+3 > 0.
Then

(3.1) / / |a(9x0,r (X) = 9x0,r(Y)) + b(gyo,r(X) —

p(X,Y)B+2+pa 90, () dpr(X)dur(Y)

<ec |a|” + |bip) B+2— —Pa,

A(X) = gx0.n(Y)) + b(gve.r (X) = gy (V)P
(32) /DX(OT LD |a(gX0,( ) 9x p((X,)gf';'d_f_(zg—:;a( ) gy ( ))' d,uT(Y)dX

< c(|af? + [p|P)ro+emre
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and

la(gx,,~(X) = 9x0,7(Y)) + 0(gy,,»(X) = gy, »(Y))|?
3.3 , . . .
33 /D><(0 T) -/Dx 0,T) p(X,Y)d+2+patd—p dXdYy

< c(|af? + |pfP)rP+a-re

PROOF. Set Xy = (zo, %) and Yy = (yo, s0)- To show (3.1) we write

] 1202000 =g ’8?%;3(3::;( ) = 90D gy (X ydpr(v)

=¥ / / |a(9X‘;(XXl)/)ﬁ£§i;o€y))| dpr(X)dpr(Y)

b gYy,r X ~Y
+2p//| Yo, X})fﬂ-f:j-pa( i dur(X)dur(Y) =1 + L.

Then

la(gxq,~(X) — gxo,-(¥Y))|P
//;(X,Y)<3r t;)(.>£',)f)ﬁ+2+m dur(X)dur(Y)
190, (X) = 920,r (X1)P
s elel / /p<x Y)<ar 0 p(X,Y)B+2+po dur(X)dur(Y)

19x0,7(X") = gx0,-(Y)IP
+ clalP //;;(X ¥y<ar op(X’Y)ﬁ+23-pa dur(X)dpr(Y)
= Iy + Iia,

where X = (z,t), Y = (y,s) and X' = (z, ). Since
(3'4) ngo.T'(X) - gXo,r(Xl)l

0
< sup |o-gxor (2, )8 = tIX{|z—zo|<r} (T) X {[s—to] <42r2} (8)
sglo, T]

s—t
< 02| lX{im—»mg\<‘r}($)X{|s to]<4r2}(8)
and
(35) IgXo T(X’) — 9Xo, T(Y)I
sup IVegx0,r (@, )T = Y|X {20~y <ar} U)X {to—s|<r2} (8)

T —
SCs.l " iX{|zo—'y|<4r}(y)X{]to—s|<rz}(5)a

we have, by (2.2) and Lemma 2.3,

p

- —P—2i—pa
I; < c4| le de(X)/ p(X,Y)~P-2-Pat2pg,, (V)
" JO(Xoar)nSp p(X,Y)<3r
< C5|a[Pr—2p(3r)2p~pa(4r)ﬁ4r2 — Ce|a|p7"g+2’p°‘

and

1
Lo < crlalP = / dur(Y) / p(X,Y)B=2PetP (X
C(Xo,47)NSp p(X,Y)<3r

< cglalPrPrPPepPr2 = cy|q|PrPt2oPe.
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Using Lemma 2.3 again, we also have

la(gx,,r(X) - 9x0.r(Y))IP
’ : dur(X)dur (Y
//p(x,Y)zsr p(X,Y)B+2+pa pr(X)dur(Y)
AP
52?// apNXer OO () dpur (v
p(x,Y)zsrl | p(X,Y)B+2+pa pr(X)dur(Y)

~(Y)|P
+2P// ap.J_g_)fL(__d O dun(Y
P(X,Y)ZSTI | p(X,Y)B+2+pe ur(X)dur(Y)

<ecold? [ dur(X) DX, Y) P2 P (V)
Xo,r) p(X,Y)>3r

+ crolal? f dur(Y) / p(X,Y) B3Py (X)
C(X017') p(X,Y)?_?)’I‘

< C11 ,r.ﬁ+2—poz .

From these we deduce
I]_ S c12|a|prﬂ+2_p°‘.
Similarly we also have
12 S Cl3|bip’f‘ﬁ+2—pa.

Thus we have (3.1).
We next prove (3.2). To do so, we write

la(gx0,r(X) = gx,,(Y))IP
2 : dur(Y)dX
./Dx(o,T) /Spﬁ{p(X,Y)<3r} p(X,Y)d+2+pe ur(¥)
—_ Y|P
S QPIaIp/ / I(gXOy”'(X) dgxzoﬂ'(X )| d'U,T(Y)dX
Dx(0,T) J Spn{p(X,Y)<3r} p(X,Y)dF2tpa

9x0,7(X") = 9x0,, (V)P
+2pa”/ / 190, o dur(Y)dX
‘ o Dx(0,T) J Spn{p(X,Y)<3r} p(X,Y)d+2+pe ¥)

= Iy + I30.

Noting that p — pa — d + 8 > 0 and using (3.4) and Lemma 2.3, we have

By SeulaPr> [ ax p(X, ) 43P 20 gy (1)
C(Xo,4r) {p(X,Y)<3r}NSD

< ¢15|al|PrPt2-Pe,

Similarly we have, by (3.5) and Lemma 2.5,

I3 < 016|a|p'f'_p/
C(Xo,4r)NSp

< c”lalprﬂ-i—?-—Pa_

dur () / p(X,Y) 42 Petpgx
p(X,Y)<3r
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We also have, by Lemmas 2.3 and 2.5,

la(gx,,r(X) = gx,,-(Y))?
: . d Y)dX
/Dx(O,T) /Spﬂ{p(X,Y)Zﬂrr} p(X,Y)d+2+pa ur(Y)

Plgx,,r(X)IP
< / / 9Pl9x0.r (OF ;- 31yax
Dx(0,7) JSpn{p(X,Y)>3r} P(X,Y)dF2+pPa pr(¥)

la|P|gx,,»(¥Y)|P
+/ / 10 19%0.r U i (V) dX
Dx(0,T) JSpnip(x,Y)>3r} P(X,Y)d+24Pe nwr(Y)
1

s slel” / ax Xy )daipa 4T
181 | C(Xo,m) {p(X,Y)>3r}NSp p(X,Y)d+2+m

1
+ cigla p/ dHT Y / 1
. C(Xor)NSp v p(X,¥)23r P(X,Y)dH24pe

< clg]alprﬁ'”‘po‘.

¥)

Thus we have (3.2). Similarly we can also show (3.3) by Lemma 2.5.
|

LEMMA 3.2. Suppose that D satisfies the condition (b). Let0 <r < R,0<a< R and Z € Sp.
Then there is a positive real number co such that

(3.6) |B(Z,a) N Fco| > 850°T2r9P  and |B(Z,a) N F, .| < sgaPt2rd=5,

PROOF. With the aid of Lemma 2.6 we have, for ¢ > 0,

\B(Z,a) N F, | .
=|B(Z,a) N{Y € Qp;8(Y) <7} = [B(Z,a) N {Y € Qp;8(Y) < cr}]
Z 33aﬁ+2’l"d~ﬁ — S4aﬁ+2(c’l‘)d_ﬁ = (33 — Cd_ﬁ34)aﬁ+27‘d—ﬁ’

where s3, s4 are constants in (2.5). If we set

_ 1(6_3)1/<d~a><1

284 ’

then
|B(Z,a) N\ Fyop| > craPt2rd=5,

which is the first inequality.
We next show the second inequality. By (2.5) we have

IB(Z,a) N F, .| < s4aPT2r97F — 53¢ Paf 2048 = (5, — 53¢277)aP 2700,

Since s4 — sscg_ﬁ > 0, we have the conclusion. O
Set
_ 2 bay1/(8+2) 2 ,86\1/(8+2)
(3.7) t; = 2max{1, 3(b3) , 3(55) },

where b3, by and s5, s¢ are constants in (2.2) and (3.6), respectively. Then we have
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LEMMA 3.3. Suppose that D satisfies the condition (b). Let R/(4t;) > r > 0, a, b € R,

Zy, Zy € Sp and p(Z1,Zy) > 4rty Then

(@)
laxc(z,,n(X) ~= bxc(z,,n (Y)IP ~pa
(3.8) / / (X V)T Trpatd=p dXdY > crP P,
f‘ CU 7' CO
(ii)
laxc(z,,r) (X) ~ bXc(z,,r) (Y)I f—par
. > > L
(39) / ., p(X, V)2 +pe pr(X)ax 2 er
(iid)
laxc(zi,n (X) = bxoz, V)P, B—par
(3.10) L e T (X (V) 2 r 7,

Here ¢ is a constant independent of Zy, Zy and r.

PROOF. (i) Note that

X)—b p
/ dY/ laxc(z,,r) (X) — bxc(ze,r (V)] AXdY
TCO T‘Co

p(X,Y)d+potd=5
> |a|”/ c(21,7)(X) dX/ ! ay

FreoN{p(22,Y)>/2r} p(X,Y)d+2+patd—p

r,e0

1
+ b”/ Xo(2e,m) (Y dY/
16 Frcg C(22, )( ) Freg M {p(21,X)>V3r} p(X,Y)d+2+patd—p

= 111 + 112.

dz

Since X € C(Z,r) and 2r < p(Z1,Y) < 3rty imply p(Z2,Y) > rt; > +/2r and p(X,Y) <
(vV2/2 4 1)p(Z,,Y), we have, by Lemma 2.6,

Ly > |a? / Xo(z2my (X)X
Fr;‘v‘O

dy

V2 1) —d—2—pa—d+8 1

X e
'/Fr,co N{2r<p(Z1,Y)<3rtr} 2 p(Z,,Y)d+2Fpatd—p

> c1|alP(3rty) =4 2"Pe B\ C (21, ) O oy || Foey N (B(Z1, 371 \ B(Zy, 2))]-

Lemma 3.2 yields
|C(Z1,7) O Frey| > |B(Z1,7) N Frey| > ssrPT2pd=h,

Noting that ¢; is defined by (3.7), we have, by Lemma 3.2,

IB(Zl’ 3Tt1) n Frscﬂl - IB(Zh 27") N Fr,col
> 55(3rt,)PH2pd=B _ go(2r)Pt2pd—F > (3ﬁ+2tf+255 ~ 528+ i+,

Therefore we have
I > Cgla‘p'fﬁ_*_z—pa.

The same estimate is obtained for I1;. Thus we see that (3.8) holds.
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(iii) Similarly we write

laxc(z,,7) (X) = bxc(z,,) (V)P
[SD LD lp(X Y)ﬁ+2+p: d}LT(X)d[,LT(Y)

2 0P [ oz, (Odur() XY (Y)
Sp SpN{p(Z2,X)>V2r}

+ ol / XC(zam (¥)dur(Y) / p(X,Y) B2 (X)
Sp Spn{p(Z,X)>V2r}
= Iy + Ins. .

Using Lemma 2.2, we have
I 2 alal” [ xo(z,n(X)dur(X)
D
V2

X / (= + 1)“"2"’“;;(21,Y)—f’—ﬂ—z’adw(y)
Spn{2r<p(Z1,Y)<3rt1} 2
> 04|a|”rﬁ+2(3t1r)"ﬁ’2"p°‘pT(B(Z, 3rt1) \ B(Zy,2r)).

Since

pr(B(Z1,3rt1) \ B(Zy1,2r)) > bg(3rt;)PT2 — by(2r)P+2

> (3ﬁ+2tf+2b3 _ b426+2)rﬁ+2,
we have

Iny > cslalPrPt2-re,

We also have the same estimate for Is3. Thus we have (3.10).
Similarly we can also show (3.9). )

4. Proofs of Theorem 1 and Theorem 2

In this section we shall prove Theorem 1 and Theorem 2.

PROOF of THEOREM 1. We first prove the second inequality of (1.4). Suppose that f is non-
negative and continuous on D x [0,T] with respect to the metric p. Since f is uniformly continuous
on D x [0,T] with respect to p, there is, for each € > 0, a positive real number § > 0 such that
p(X,Y) < & implies |f(X) — f(Y)] < e. We consider any positive real number ¢ satisfying t < §/15.
Since

Sp U F,. ., CUzes, C(Z,2r)

and Sp U F,.., is compact, there is a subfamily of {C(Z,2r)}zes, which covers Sp U F;. ., and
consists of finitely many cylinders. Using Lemma 2.1, we can find, Z1, Zs,: - ,Z,, € Sp such that
{C(Z;,2r)}7, is a subfamily of {C(Z,2r)}zes, and {C(Z;,2r)}]., are mutually disjoint and

Sp UTe C UR,C(Z;,6r).

Noting that f is also continuous with respect the Euclidian topology, we have

| r@an@ <y [ {(2)dur(2)
Sp =

C(ZJ' ,GT)ﬁSD

< imax{f(Z); z € C(Z;,6r)N Sp}(6r)"*?

=1

< corP™ dz min{f(Y); Y € C(Zj,r) N Freo} + )2
Jj=1
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Since, by Lemma 3.2,
|C(Z;,2r) N Fy o] > cardt?

and {C(Z;,2r)}7L, are mutually disjoint, we have

(41) F@dur(2) < e [ (1) + 9a.
SD Fr‘,co

On the other hand we have, by Lemma, 2.6,

/ dY < |C(Zo, B) N Fyoy| < csrd=B RO+2,
Fr,éo

where Zj is a fixed point on Sp. This and (4.1) yield

F@)dur(2) < ealr®™ [ F)AY + ).

SD Fr',co

Thus we have the second inequality of (1.4).
We next prove the first inequality of (1.4). Using the above covering, we have, by (2.2),

rﬁ'd/
F,

r,eq

rP—d 3
f¥) < ; /C FY)dy

(Z,' ,61")FIF,—,C0

<Py “max{f(Y); Y € C(Z;,6r) N Fy oo} (6r)%+?

j=1

<o 3 (min{£(2); Z € TUZI N Sp} + €)1+

Jj=1

< co /S ((2) + dur(2) = eol [ £(2)dur(2) + eur (Sp)).

This leads the first inequality of (1.4). a

We next prove Theorem 2.

PROOF of THEOREM 2. We first prove (1.5). Choose n > 0 satisfying (d — 8)/p+a <n < A
and € > 0. Since f is A\-Holder continuous on D x [0,T] with the parabolic meric p, we can find

to > 0 such that
If(X) = fF(Y)]

X,

p(X,Y) < to implies

and to __<_ R
Consider any positive real number r satisfying r < to/(80t;), where ¢, is the positive real number
defined by (3.7). Since the set Sp U F\. o, is compact, we cover

SpUF, . CUi,C(Yy,2r),

where Y}, € Sp. Using Lemma 2.1, we can find a subfamily {C(Z;,2r)} of {C(Yk,2r)} such that
{C(Z;,2r)} are mutually disjoint and

SpuU Fr,cg - UjC(Zj,GT).
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Using the family, we define functions {v;;} on R¥+! x R*! as follows. If p(Z;, Z;) < 24rt,,
then v; ;(X,Y) = 0. If p(Z;, Z;) > 24rt,, then we define

0 ; (X, Y) = f(Z:)(92,12+(X) — 92.,12-(Y)) + £(Z;)(92, 12+ (X) — 92, ,12- (V).
Let (X,Y) € (C(Z;,6r)N(D x[0,T))) x (C(Z;,6r)N(D x[0,T))). If p(Z;, Z;) > 24rt;, we have
|vi; (X, Y) — (f(X) = F(Y))]
< |f(Zi) gz, 120(X) = F(X)| +15(Z5)92;,12-(Y) — F(Y)]
=f(Z:) - F(X)[ +1f(Z;) - f(¥)]
< ep(Zi, X)" + €p(Z5,Y)" < 26(6V2r)" < 2¢p(X,Y)".
If p(Z;, Z;) < 24rty, then
vi; (X, Y) = (F(X) = (V) = (X)) = F(Y)] < ep(X,Y)7.
We also define functions {w;;} on R x Rt as follows. If p(Z;, Z;) > 4rt,, we define
wi; (X,Y) = f(Zi)xc(z:,20)(X) = F(Z;)xc(z;,20(Y).
Then we can also estimate
lwi; (X,Y) = (F(X) = F(Y))] < crep(X,Y)"
for each pair (X,Y) € (C(Zi,r) N (D x [0,T))) x (C(Z;j,r) N (D x [0,TY)).

We note that each X € D x [0,T] belongs to at most N many numbers of {C(Z;,6r)}, where
N is a constant depending only on d. Hence

X y (X.Y)B+2tpa
lf(X) - Ff)IP
< WA = TP (X dur (v
Z/(Zi,Sr)ﬂSD /C(Z»er)nsp p(X,Y)P+2+pa r(X)dpr (¥)

<ol [[ et 0d
+ co€? // (X, Y)_ﬁ—z_pa+pnduT(X)d/£T(Y)
= Z // IZEJYXﬁf?)-iI—pa dpr(X)dpr(Y) + cze?.

Noting that v;;(X,Y) =0 if p(Z;, Z;) < 24rty and {C(Z;,2r)} are mutually disjoint, we have

S [ s )

<a Iz [

dur () | P(X, V) P2 gy (V)
SpNC(Z;,6r) p(X,Y)>127t; .

ra S [ dur(¥) [ P(X,Y) =272 4y (X)
i SpnNC(z;,6r) X,Y)>12rty

< et f(Z)IP,
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whence

(4.2) I <cg Z |f(Z pBT2—pa | o P

Let C(Z;,r) be one of parabolic cylinders {C(Z;,r)} and denote by Z;, one of the points of
the centers of {C'(Z;,r)} such that p(Z;, Z;,) > 4rty a,nd p(Zi, Z;) > p(Zl,Zh) for each center Z,
satisfying p(Z;, Z;) > 4rty. Since {C(Z;,6r)} is a covering of F, ., we see that p(Z;, Z;,) < tor,
where {5 is a constant independent of r and i. Therefore, if X € C(Z;,7) and Y € C(Zj,,r), then

p(X,Y) < tzr, where t3 is a constant independent of r and :. Consequently we have, by Lemma 3.2,

(4.3) /0/ ) = TP oy

p(X,Y)d+2+patd—p

(¢

If(X) - F)P
> . dXdy
Z /r eoNC(Z:,7) /F, oNC(Z;,r) P(X, Y )dF2tpatd=h

lwi; (X, V)P
>c E / / dxXdy
! Fr,eqNC(Zi,7) ny (X, Y)d+2tpatd=p

rcO (ij

— cgeP / / p(X,Y)~d-2-pe—dtbingx Yy
C(Zo,R)ND JC(Zo,R)ND

> cg}: / (f(Z)PdX / p(X,Y) 4 2pa=dtBgy

r cgnC(ZJ T )
+ ¢g }:‘ / f(Z;)|Pdy / p(X, Y)Tdm2mPemdt B cgeP
r CO 1 conC(Zz 3T

F, COﬂC(Z,,r)

> c10 Z 17(2:) Ip) r"“—"“ — cne?,
1

where Zg is some point of Sp. Combining (4.2) with (4.3}, we have the second inequality of (1.5).
We next show the first inequality of (1.5). Since

I = / / (X))~ TP v uy

X Y d+2+pa+d—p

v, (X, Y|P
<ec / / : dXdy
12 Z Fr.cqNC(Z; ,67) J Fr. o, NC(Z; 67) p(X,Y)dt2rpotd=p

+ c1a€? / / p(X,Y)d-2-patdtbirgx gy,
C(Zo,R) JC(Zo,R) '
we have, by the above methods,

I, < ci3 Z(lf(ziﬂplp)rﬁm—pa + c13€P.
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On the other hand, we also have
|F(X) - )P
/s,, /SD p(X,Y)B+2tpa Sy prarpa Wr(X)dur(Y)

If(X) = fY)P
- Z /SDHC(Z.,r /SDnC( Z;,r) W;d“T(X)dNT(Y)

>c / / —— L (X)dur(Y
14; SpNC(Zi,r) JSpnc(z;,ry P(X, Y )PP (X)dpur(Y)

s / / p(X, V) 822t Pn (X ) dpr (Y )
Sp JYSp

20y /S o [FZP A () / (X, Y) P ragu(Y)

SDnC(ZJi ,7‘)
tes S /
j

1£(Z;)Pduz(Y) / P(X,Y) P2 P (X) - cyre?
SpNC(Z;,r)

Sp ﬁC(Z,-j )

2 cCis Z(|f(Zi)|p)Tﬁ+2_pa — cy7€”.

Thus we also have the first inequality of (1.5).
Similarly we can prove the inequality (1.6).

References

[JW1] A.Jonsson and H. Wallin, A Whitney extension theorem in L, and Besov spaces, Ann. Inst.
Fourier, Grenoble 28,1 (1978), 139-192.

[JW2] A.Jonsson and H. Wallin, Function spaces on subsets of R, Harwood Academic Publishers,
London-Paris-New York, 1984.

[W1] H.Watanabe, The double layer potentials for a bounded domain with fractal boundary, Po-
tential theory-ICPT94, Walter de Gruyter and Co. Berlin-New York, 1996.

[W2] H.Watanabe, Layer heat potentials for a bounded cylinder with fractal lateral boundary,

' Natur. Sci. Rep. Ochanomizu Univ. 49,2 (1998), 1-31.

[W3] H.Watanabe, Besov spaces on fractal sets, Josai Math. Monograph 1 (1999), 121-134.

(W4] H. Watanabe, Estimates of the Besov norms on fractal boundary by volume integrals, Natur.
Sci. Rep. Ochanomizu Univ. 51, 1 (2000),1-10.



