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ABSTRACT

We investigate the Hausdorff dimension of generalized Sierpinski carpets by using thermodynamic
formalism.

1 Introduction

The Hausdorff dimension of the generalized cookie-cutter set in R has been obtained in several
ways. In [1] and [3], it is obtained by using the pressure P [4] in thermodynamic formalism.
As for the generalized Sierpinski carpets, C. McMulle [2] gave the Hausdorff dimension for the
special Sierpinski carpet, which is generated by functions {f;(z) = n(z — ;’;) "o and {g;(z) =
m(z — ;%)};n:_ol However, the way to obtain the dimension of the generalized Sierpinski carpets
is not known.

In this paper, we investigate a way to obtain the Hausdorff dimension of generalized Sier-
pinski carpets in R? by using thermodynamic formalism. We treat the affine functions {g;(z)}
with different derivatives and obtain the Hausdorff dimension of the Sierpinski carpet by using
symbolic dynamics (Theorem 3.1) and also by using thermodynamic formalism (Theorem 4.1).
To consider the case that the functions {fi(z)} and {g;(z)} are not affine, we give a conjecture
to obtain the Hausdorff dimension of the generalized Sierpinski carpet by using thermodynamic
formalism.

2 Preliminaries

The generalized cookie-cutter set can be considered as follows:
Let X = [0,1] and take points zg, 1, ,Z2,—1 in X satisfying

O=xp<z1 < - <x9p_1 = 1.

Put intervals
r—1

Xi = [.’1,'21;,.'1,‘2,'_(_1] (Z =O,...,r—1) and D = UXz
1=0
Define a continuous function f : D — X with |f'(z)] > 1 for any z € D. Then a generalized
cookie-cutter set E associated with f is the set

E:=()f*x). : (2.1)

k=1
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Let F; (: =0,...,7 — 1) be the branches‘ of the inverse of f, that is,
Fi(z) == fYz)nX; fori=0,...,r—1.

So F; maps X bijectively onto X;.
Let ¢ : D — R be a Lipschitz function and for £ € N define

k-1

Skd(z) =Y (')

J=0
for z € D. It is known [1] that the limit

lim llog Z exp Sxo(x)

- k—o0
xeFixfk

P(¢)

exists, where Fixf* denotes the set of fixed points of f*. By taking ¢(z) = —slog|f'(x)| for
z € D, the Hausdorff dimension dimg E of the cookie-cutter set E is known as follows.

Theorem A. [1] Let E be the cookie-cutter set defined by (2.1) and let s be the unique real
number satisfying ‘ :

P(-slog|f']) = 0.

Then dimy E = s.

‘We will extend this result to the subset of R? such as the generalized Sierpinski carpet. If
we can choose the suitable function ¢(z) on R? corresponding to ¢(z) = —slog(x) on R, the
Hausdorff dimension will be obtained by using the relation P(¢) = 0.

In [2], given n,m € N with n > m and a subset R of the set {(3,j) E NxN:0<i<n,0<
j < m}, a general Sierpinski carpet E is defined as

- Tk N Yk
E= {(Z nk,zmk). (zk,yk) € R for allk} (2.2)
k=1 k=1 o :
and the following theorem is given. | |
Theorem B. [2] The Hausdorff dimension of E defined by (2.2) is given by
dimg E = log,, [ > #1°&™
5=
where t; is the number of i such that (i,j) € R.

We shall generalize the theorem B above to the generalized sierpinski carpet in R2.
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3 Symbolic Dynamical System
Let I = (0,1] and take points Zo, 1, ,%n and Yo, Y1, "+ ,Ym In T satisfying

O=zo<z1< - <2py=1

O=ypw<y<--<ym=1,
where T is the closure of the set I. Put intervals
L = (zi—1,z5) (¢=1,...,n) and Jj:=(yj—1,y;] (G=1,...,m).

Let fi:; > I(i=1,...,n)and g; : J; = I (j =1,...,m) be continuous, monotone functions
satisfying f;(I;) = T and gj(J;) = I. Define f: I > Tand g:I — I as

f(z):= fi(z) forzel; and g¢(y):=g;(y) foryeJj
Take a subset
R = {(u1,v1),.--, (ur,vr)} . (3.1)
of the set {(i,j) : 1 <i <n,1<j<m}. Defineamap F:j,_; I, x Jo, > I xIby
P@y) = (uy (@00 @)

for (z,y) € Iy, X Jy, withp=1,...,r. Put

E:= ﬁ FFIx1). | (3.2)
k=1

Then F is a generalized Sierpinski carpet. we shall consider the Hausdorff dimension dimpyg F of
the generalized Sierpinski carpet F.
In this paper we shall consider the following functions f; : I; — I and g; : J; — I defined by

filx) =aix (x—xi-1) and  g;(y) :=b; x (y — yj-1)

fori=1,...,nand j =1,...,m, where a; :=;andbj =

FY—v— L __ . Moreover, we suppose
that there exists a > 1 such that

Yi—Y;j-1

l. ay, =aforanyp=1,...,r
2. by, <aforanyp=1,...,r.

In order to obtain the Hausdorff dimension of E; we shall consider the symbolic dynamics. Let
o0
Sy = H{l,...,r} ={z==z122... |25 € {1,...,r} for j € N},
X .

Sk .= H{l,...,r}z{i:il...iktij6{1,...,7'} for j € {1,...,k}}




4 ' Risa Hosoda and Fukiko Takeo NSR. O., Vol. 52

for any k € N and

[o 0]
Sy = U Sk,
k=1
Foranyi=1i;...1% € Sf, let
C(i):={z ¢ Srlz; =145 for 1 < j <k}
be a cylinder set of S;. Let 6, be the inverse map of fup X gu, such that
bp: I XTI — Ty, xJy, by Op(z,y) := fi;l(a:)xg;;l(y) p=1,...7).

Consider maps 7: S, — I x I, 75 : S; — I(j = 1,2) defined by

T(z) := klig.lo 0, 00,0---06,(1,1)
(n(@),m(@) = 7(z) |

for z = z123... € S;. Then 7(S,;) = E. A covering of E has correspondence with a covering
of S;. We shall consider a covering of S, with cylinder sets. For i = ¢1ip...4 € Sf , the image
7(C(@i)) in I x I of a cylinder set C(i) is a rectangle with width |(f*)'(z)|"! = a~* and height
[(g*) (9)| 7, where (z,y) € 7(C(i)).

To consider the Hausdorff dimension of F, we shall consider squares in I x I.

For k€ N,y € [0,1] and j € {1,...,m}, put

ky; = #{i€{0,....k—1}|g'(y) € J;},

lhy := [logal(gk)'(y)!]=[Zl_fy,jloga|bj|:| and
j=1

gy = #{i€{0,...,lky —1} | ¢'(v) € J;},

where [ -] is the Gauss symbol. Then the following is easily obtained.
‘ m _ m B
Lemma 1. (1) k= Z ky,j, lk,y = Z lk’y,j.
i=1 j=1

(2) a7 < al(g")'(y)| " < @t

(3) Fork € N, i€ SF and y,y € 72(C(i)), we have
r

lk,y = lk,y’ and (gk),(y) = (gk),(y,)~

For i € SF with k € N, by putting y € 72(C(i)) and I = I, we shall define

IL; = i:lo izlo---o ijl(I),
Ji = glogplo--ogi(I) and

A{) = L xJi
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Then for any z € 71 (C(i)) and y € 72(C(i)), we have
L = |(fY (@)™ and | 5] = [(6°)'(y)] " (3:3)
and A(i) is a nearly square by lemma 1 (2). For i' € Sk with i = i(j = 1,...,1) and
vi = i (j=1+1,...,k), the set 7(C(1')) is also a subset of A(i). So put
cj = #{ple {1,...,7}Hvp =5}

for j € {1,...,r}. Then the number of 7(C(i')) in A(i) is Cuiy,y, Coiyyy * " Coiy - ,

Consider a probability measure p on I x I such that u(Iy, x va') = u(Iup, X Jy,) if vp = V.
For j € {1,...,m}, put pj := p(Ju, X Ju,) if j = vp and p; := 0 if j # vp forany p € {1,... ,T}
Then E;’_L__l cjp; = 1 holds.

k
——
Fori=7j---7 € S*¥ and A(i) = I; x J;, we have |I;| ~ bj"’c and |J;| = bj_k'. If we suppose
W(AR) = (5%

with some s > 0, then we have

-k k—-l k

since the number of rectangles 7(C(i')) in A(z) is ¢~ . Hence

j’

ogabi—1

.~ BTS
Ky = by

So we can guess that the Hausdorff dimension s of E satisfies the following equation:

log, b

—s log, b _

E bj Cy; =1.
j=1

In fact we can prove the following theorem.

Theorem 3.1. Let E be the generalized Sierpinski carpet defined by (3.2) satisfying
cj =c¢; foranyi, j € {1,...,m}.

Then the Hausdorff dimension of E is given by the solution s of the following equation:
= log, b B ‘
—s log, b; S
> bt =1 . (3.4)
Jj=1

* Before proving theorem 3.1, we shall give some lemmas. Let C be a covering of E, which is
a subset of {A(i) | i € S¥,k € N}. For k € N and i € SF with y € 75(C(i)), put

ok
M) = (g™ ()] = I s, (3.5)
j=1 . .

Then we have the following lemmas. -
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Lemma 2. Fork € N and i € S¥, consider A(i) = I; x J;, z € 71 (C(i)) and y € 7o(C(i)). Then
by putting l = I, we have

1Ll = 1(f) ()
Il = 1(6")' ()
AT < AW < A +a)A®D !
Proof. By using equations (3.3), (3.5) and Lemma 1 (2), we get the conclusion. d

Lemma 3. For s > 0, the following (1) and (2) are eq'uivalent.
(1) For any € > 0 there exists a covering C of E satisfying

(a) C is a subset of {A(i) | i€ S¥,k € N} and
(b) > i) <e.

A(i)ec

(2) H*(E) = 0.

Proof. (1) = (2): For any é > 0, take € with 0 < € < (§/(a+1))°. Then tﬁeré exists a covering
C of E such that Y~ A(i)™® < £ and so A(i) € C implies A\(i)™% < e. If A(i) = I; x J; with i € S¥
is contained in C, then
A <e
So as for the diameter |A(i)| of A(i), we have by lemma 2
|AG)| < (@ + 1)AE)"L < (a+ 1)V < 6.

Hence C is a é-cover and

inf{z |U;|® : {U;} is 6 — cover of'E} < Z |AG)[*

A(ec
<@+1)° 30 M) < (a+ 1)’
A(i)ec .

If 6 goes to zero, then ¢ goes to zero and so

HY(E) = %i_r)r(x)inf{z |Ui|® : {U;} is & — cover of E} = 0.

- (2) = (1): For any € > 0, there exists § > 0 and a §— covering {U; : j € A} of E such that
| Z‘IUJ'IS/< Z-
€A |
For each j € A, there exists A(i;,), A(i;,), A(ij;), A(i;,) with i;, € S? (k=1,...,4) such that

U; C A(ij) U A(ijz) U A(ij,) U A(ij,)
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and
IA(ijk)I <2|Uj| fork=1,...,4.

Then C = {A(i;,) |j €A, k=1,...,4} is a covering of E and

sz(m)'s < ZZIAUM * < 4ZIUJ\S <e.

JEA k=1 JEA k= 1 JGA

For i € Sk, put - o
| A@) == 771(AG)).
Then as for a covering C of S, we have the following similar result.

Lemma 4. For s > 0, the following (1) and (2) are eqmvalent

(1) For any € > 0 there exists a covering C of Sr = ’T—l(E) satisfying
(a) C is a subset of {A(i) | i€ SF, ke N} and

(b) > M) *<e

A(i)e€

(2) H*(E) =

For j € {1,...,m}, put
vj = bj_sc;?g“ b=t
by using the number s satisfying the equation (3.4). Define a measure ji on Sy by;

ﬁ(é(zl cen ’Lk)) = l/vi1 s VUik'

Then i is a probability measure on S;.
Since the following holds for i € S¥

AW =A@ = U Clir.. irwer .. wp),

Wi4i---Wg

where the union is taken over all w = wyyr... W € ‘Sf_l such that vy, = v;, for all ¢ €
{l+1,...,k}, we have

k 1%, b5 e
~ ~ j=1 Ov; Cvi;
BAE) = WClri0) [] en, = g
' L=l - = Cu;

H =1 b5 HJ 1C§y]losabj £ N

i

m
_ Hbv-. : Hck logab—lk“
1] ]

m b Y , : .
| J i i=1 j=1
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where y € 72(C(i)).
For i € SF, put

Then

For z € S,, define the functions
with 21...2; € S,'f.
Then we have the following
Lemma 5. If ¢; = ¢; holds for any i, j € {1,...,m}, then
lim hy(z) =1
k—o0

for all z € S,.

Proof.  If ¢j = c holds for any j € {1,...,m}, then for any z € S, with y = 72(2),
;lk (Z) = {H;n:], cEy,j logu bj _l_k-%j }l/k = {cZ?:l(E‘y;j loga bj _l—k,yxj)}l/k
lask — oo.

By using Lemmas 4 and 5, we shall prove the following
Lemma 6. If c; = ¢; holds for any i, j € {1,...,m}, then
dimpg F < s.
Proof. Put
I={i€5 |h@i)> D)}
For i € Z, we have | | ‘ -
BA®D) > (AG@)

by the equation (3.6).
For each k € N, let

Ty = {i €T |21 < Afi) < 2’“}.

(3.6)

= 008 Y ®~1s) goes to

-

(3.7)

Note that any z € S, is covered by A(i) with i € Z for infinitely many k, since lim hy(z) =1 >
(A(21 ... 2)) /%, Hence Mg = Up>x Uiez, A(i) is a covering of S, for any large K € N. If



Octorber 2001 Generalized Sierpinski carpets 9

A(i) N A(i') # 0, then either A(i) or A(i") contains the other set. So let a subfamily M’ of
Mg be a covering of S, consisting of disjoint sets and for k¥ > K, put

IIK’k = {i €1 | A(l) € MIK.}
As for the number #(Z'k k) of elements of 7'k i, by using (3.7) we have

#(IIK,]C) x 2—k(s+€) < Z )\(i)—(s‘*‘f) < Z ﬂ,(fi(l)) <1,

i€l g,k i€’ ke k ‘

and hence #(Z'g 1) < 2F(s+e).
By taking K large enough that (2a + 2)5¥2¢ 3" . 27" < ¢, we have by using lemma 2

T AEFE = 3 S DT S AT x (0 + 1)HEAG )

A()eM'k k=K i€’ k1 k=K.
e i ~ 00 o
< (a + 1)s+2e Z 2k(s+s)2—(k—1)(s+25) - (2a + 2)s+25 Z 9—ne <e.
v n=K o n=K

By using Lemma 4, we have dimyg E < s. - O

Lemma 7. If ¢; = ¢; holds for any i, j € {1,...,m}, then
dimg F > s. -
Proof. Taking 3 with 8 < s, we shall show that there exits € > 0 such that ZA(i)ec" Mi) B > ¢
for any covering C of S, consisting of a subset of {A(i) [i€ Sk k € N}. For K € N, put
B = {z € 5, : hi(z) < |(¢") (ra(2))| T for any k > K}.

By the relation 8 < s, we have |(gk)’(7'2(z))|s_;g > 1 and limg o0 hi(z) = 1 by lemma 5. So
we can take K € N such that [L(E’K) > 0 and put ¢ = min{ﬁ(E’K),b;gf}, where brax =
max {b,, | p € {1,...,7}}. Let C be any covering of S, consisting of a subset of {A(i) | i €
Sk k € N} and let Dy, = {A(i) € C | i € §¥} for any k € N. If there exists k(< K) such that
#(Dg) # 0, then

ST DD M) 2 > K >
A(i)eC A(i)eDy
For z € A(i) N Ex with i € S (k > K), we have z; = i; for j = 1, ey bk ry(z) and vy, = v;; for
3 =lkry@) + 1., k. Hence h(i) = hi(z) and
A(A@) = PN ™ = Fi(2)* M)~ < AD)FF 0 = M)
If A(i) € C implies i € S¥ with k > K, then
A=Y T 20> S ad@) = S mAD) > i(Ex) > e
Ai)eC k>K A(i)eDy I?ZK A(i)eDy, A(i)eC

Therefore #*(F) > 0 by lemma 4 and we have dimy E > s. O



10 Risa: Hosoda and Fukiko Takeo NSR. O., Vol. 52

proof of Theorem 3.1. By using the number s satisfying the equation (3.4), we have proved
dimg E < s in lemma 6 and dimyg E > s in lemma 7. So the number s satisfying the equation
(3.4) is the Hausdorff dimension of E. O

4 Thermodynamic formalism

Let I, I;, Jj, a, ¢;, R = {(ul,vl),.'. ., (ur,v;)}, f and F be defined at Section 3. For y € Jj,
put . ‘ : .

Cy=C]'.‘

As an extension of Theorem A to the set in R2, we shall consider the function ¢ I x I = R
corresponding to —slog|f'(z)| on I, defined by

¢(z,y) = —slog|g’(y)| + (log, |9’ (y)| — 1) log &y, (4.1)

for (z,y) € I x I.

We shall consider the pressure function P(¢) by using the map F : \J_; Iy, X Jy, —
(0,1] x (0,1] as follows:

k—1

P(¢) = lim —’lelog Z epoq’?(Fi(w,y)),

k—o0 :
(z,y)€EFixF* =0

where F* is defined on F~*(I x I) and FixF* = {(z,y) € F7%*(I x I) : (z,y) = F¥(z,y)}. The
existence of the above limit is shown in a similar way to ([1}, Th 5.1).
Then we have the following

Theorem 4.1. Let E be the generalized Sierpinski carpet defined by (3.2) satisfying (i) or (ii):
(i) bj =b; for any i, j € {1,...,m}.
(i) ¢j =c; for any i, j € {1,...,m}.
Let s be the unique real number satisfying
P (—sloglg' ()] + (log, |¢' ()| — 1) log &) = 0.
Then
dimyg F = s.

Proof. Put ¢(z,y) = —slog|g'(y)| + (log, |9'(y)| — 1) log & for (z,y) € I x I. We have

k-1
Y exp) ¢ (Fi(z,y))

(z,y)EFixFk =0 (z,y)EFixFk i=0

k-1
i \i1—s=log, |¢'(giy)|—1
= Z ng’(gzy)l scgoii lo'(g'y)i-1

(z,y)€FixFk* i=0

k-1

Y exp) {(-sloglg'(g'y)| + (log, o' (g'y)| — 1) log &ye, }
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For y € Fixg*, we have #{(z',y') € FixFF* : ¢y = y} = &,é4y - - - E,i-1,, and
yCay gk-ly

k-1 k-1
. o d (At -1 ; _gl (gt
j : l I |gl(gzy)| scyoiia lg'(g*y)-1 _ E I l |g'(gly)| scgoig; Io'(s y)l (42)

(z,y)€FixF*k =0 y€EFixgk 1=0

Put v; = b;sc;-og" % for j € {1,...,m}. Since the right-hand side of (4.2) consists of all the
combinations of k elements of {;}7L,, we have

k-1
5 T es O = oo
y€Fixgr 1=

So we have
1 log, b
— h — . k _ —s 108, Uj
P(¢) = kllm A log(jg—.1 v;)* = log ]E_l b e

By the assumption P(¢) = 0, we have

m

—s log, b;
SRR
=1

In case of (i), the above equation implies that

m
—slogb+ Z c;f)g“ b=o.
j=1
So by Theorem B, s is the Hausdorff dimension of E.

In case of (ii), by using theorem 3.1, we get the conclusion.
O

In this paper, we have supposed that the functions {f;} and {g;} are affine functions. We want
to get the Hausdorff dimension in more general cases by using thermodynamic formalism. So
we give the following conjecture.

5 Conjecture

Let intervals
I; = (zi-1,23] (i=1,...,n) and Jj:=(yj-1,9] (G =1,...,m)

and a subset
R := {(u1,v1),.-., (ur,vr)}

of the set {(i,5) : 1 <i <n,1 <j < m)} be those defined in Section 3.
Consider the maps f € C?(I) and g € C?(I) satisfying
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(C-1) flre and g|J]9 are one-to-one maps onto (0, 1) respectively fori =1,...,nand j =1,...,m.

(C-2) 1 <inf{|g'(y)ly € I} < sup{lg'(y)| : y € I} < inf{|f'(2)| : x € I},

where J° denotes the interior of J.
Forp=1,...,7,put ap = IIuP|_1, Bp = [va|"1, Dy = Uj_y Iy, and Dy = U;ZIJUP.
For t > 0 and y € D», define wy(t) as the solution w of the following equation:

—(t+logg w)
E Qp o =1,
DP:YE€Jyy

where the summation is taken over p such that (z,y) € J,, with some z € D; and fory € I\ D,
let wy(t) =0.
For each z € I, define the function 8; on I by

Buly) = By if (z,y) € I, x J;, withsomep € {1,...,r}
W= 0 otherwise.

Since for each = € I, wy(t) is an decreasing function on (0, 00), there exists some t satisfying
the following:

1
/0 wy () Bz (y)dy = 1 (5.1)

and let w; 4, be wy(t) satisfying (5.1). For f and g satisfying (C-1) and (C-2), define the function

ey = (1@
o) = (1- L t0g s, - s1017/@)1

Then for s satisfying P(¢) = 0, we suppos_é that dimg E = s holds.

Remark. We shall apply the above conjecture to the case of Theorem 4.1. Then oy = a,
Be(y) = 19'(W)], wy(t) = |g'(y)|7*H18% and wey = |g'(y)|7*H1°8 %! with s satisfying the
equation (3.4). So the function ¢ defined above is the same as that defined by (4.1) as shown in
the following: ‘ -

d(z,y) = (1-log,|g'(y)|)loglg'(y)|*HE &t —sloga
= (log, ¢’ (y)] — 1)1logé; — slog|g'(y)|-
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