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ABSTRACT. Consider a bounded domain D with fractal boundary in R? such that 8D is a f-set (d—1 <
B < d). Under an additional condition we give the norms defined by the volume integrals ”equivalent”
to the LP-norm and the Besov norms on the fractal boundary, respectively.

1. Introduction.

Let D be a bounded domain in R% and assume that 8D is a 3-set (d — 1 < 3 < d), i.e., there
exist a positive Radon measure u on 8D and positive real numbers by, b, 7 such that

(1.1) bir? < p(B(z,7) N AD) < byrP

for all points z € 8D and all positive real numbers r < 7o, where B(z,7) stands for the open ball in
RY with center z and radius 7. Such a measure y is called a 8-measure.

We give examples.

1. If D is a bounded Lipschitz domain in R?, then 8D is a (d — 1)-set and the surface measure
is a (d — 1)-measure.

2. If &D consists of a finite number of self-similar sets, which satisfies the open set condition,
and whose similarity dimensions are 3, then 8D is a §-set and the -dimensional Hausdorff measure
restricted to 8D is a S-measure (cf. [H]).

It is well-known that a S-measure on 8D is equivalent to the f-dimensional Hausdorff measure
restricted to 8D (cf. [JW1], [JW2]).

We fix a f-measure pu on 0D.

It is natural that we consider the L?(u) as a function space on the boundary of D. But we often
need consider spaces with more strong norms than the LP-norm because of the fractal boundary
of D. One of such spaces is a Besov space. In general, let F' be a closed 8-set in R? and p be a
B-measure on F. Let 0 < a < 1. We define a Besov space A% (F) by the Banach space of all function
f € LP(u) such that

- P
/ @) = F@P ) duz) < oo

) lx — zlﬁ"’l’a

with norm

fles = ([ 1P a0 (”;))l/p+ (/ Ul‘g;l—ﬁ;')&tdn(z)dmz))w
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Especially, since R? is a d-set, A2(R?) is the space of all LP-functions f with respect to the d-
dimensional Lebesgue measure, such that

/ |[f() = F(2)IP

o — 2]dra dzdz < 0.

For such a domain D volume integrals are more easy to deal with than integrals on 4D, if f is
defined on D. It seems that the existence of a norm defined by a volume integral ”equivalent” to
the LP-norm or the Besov norm on the fractal boundary is useful for us to prove that operators are
bounded on LP(u) or AP (3D).

A. Jonsson and H. Wallin proved in [JW1] that there exists a continuous extension operator from
AP (0D) to A’;(Rd) and that the restriction operator from A?(R?) to AZ(dD) is continuous, where
y=a+(d-p)/p.

But, what type of a volume integral in D is equivalent to the LP-norm or the Besov norm on
the boundary? In this paper we consider this problem.

Hereafter we suppose that D C B(0, R/2) with R > 1. We may assume that (1.1) holds for all
points z € D and all positive real numbers r < 3R.

To consider the above problem, we need add a condition to D. We say that a set G satisfies the
condition (b) if there exist positive real numbers ¢ and 7; > 0 such that

(1.2) |B(z,7) NG| > cr?

for each point z € OG and each positive real number r < ry, where |A| stands for the d-dimensional
Lebesgue measure of a set A.

If D satisfies the condition (b) and r; < 3R, then, for each r satisfying ry <7 < 3R and z € 8D,
we have -

|B(z,7) N D| 2 |B(z,r1) N D| 2 erf > e 53:)r.

Consequently, if D satisfies the condition (b), then (1.2) holds for every r < 3R by replacing with
another constant c.

In [W, Lemma 2.1] we proved the following lemma, which is fundamental. Lemma 2.1 in [W]

was shown under more strong condition, but, to prove the lemma, it suffices to assume the condition

(b).

LEMMA A. Suppose that D is a bounded domain such that D is a B-set (d—1 < B < d) and
satisfies the condition (b). Let 0 < € <r < 3R and z € dD. Denote by §(y) the distance from y to
OD. Then there exist positive numbers s;, sy such that

syrPedP < / dy < szrﬂcd_ﬁ,
{8(y)<e}nB(z,;)ND -

where s; and so are independent of r, € and 2.

We fix such numbers s, and s;. We may assume that s; <1 and sy > 1.
In this paper we shall prove the following two theorems in §3.

THEOREM 1. Let D be a bounded domain in R? such that OD is a B-set (d—1< 8 < d) and
satisfies the condition (b). Let a > 0 and put

L)) < 5(y) < at),

At={y€D;2 ~

where s1, sy are constant in Lemma A. If f is a nonnegative continuous function on D, then

(1.3) alimsupt®™* [ f(y)dy < | f(z)dp(z) < e liminft?~ [ f(y)dy,
t—0 A, D t—0 A,
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where ¢; and ¢y are constants independent of f.

THEOREM 2. Suppose that D satisfies the same conditions as in Theorem 1. Let 1 < p < oo,
—pa—d+B>0and a+(d—B)/p <X <1. Further leta > 0. If f is A\-Holder continuous on
D, then

. y)P
(1.4) clhmsup/A/A |m_y|d+pa+d ﬂda:dy

t—0

- fy)P f)P
/aD /8D |z — y|Ptre o —giee H@)dnly) < c2lip it A J 4, lw—yl"’“’"*“’ Ll

where ¢; and ¢y are constants independent of f.

2. Lemmas

Hereafter we assume that D is a bounded domain in R? such that D is a (-set satisfying
d-1<pB<dand D C B(0,R/2) (R >1). Furthermore assume that D satisfies the condition (b).

In this section we prepare several lemmas to prove Theorems 1 and 2.

The following lemma is an easy consequence of the property (1.1).

LEMMA 2.1. Let A > 0 and z € 8D. Further, let by, by are positive real numbers in (1.1).
(i) If B < A and a > 0, then

A
|z — 2| Mdu(z) <b a? .
/BDﬂ{aSIx—z” | ( ) 2 A— 6

(i) IfB>A>0and0<b< R, then

/ |z — 2| du(z) < by A WA,
8DN{|z—z|<b} B—A

PROOF. (i) By (1.1) we have

/ |2 - 2 du(z)
6Dﬂ{a.<|z—z|}

o= o> v
< / u({z € 0D |z — 3| > t})dt = / W(B(z, /%) N OD)dt
0 0

-2

A @ b
<h [ =
> V2 o ) — ﬁ

which shows (i).
(ii) This is shown by the same method as (i).
a

LEMMA 2.2. There egists a positive real number s such that sr® < |B(z,r) N D| for each z € D
and each positive number r < R.
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PROOF. If r > (5/4)6(z), then we take z' € OD satisfying |z — 2’| = &(z). Since B(z', (1/4)r)
ND C B(z,r) N D, the condition (b) yields that there is s > 0 satisfying

1 1
s(37)* < IB@, 3r)n D),

whence s(1/4)%r? < |B(z,r) N D).

If §(z) <r < (5/4)0(x), then B(z,(4/5)r) C D and hence wq(4/5)%r? < |B(z,r) N D|, where wy
is the surface measure of the unit ball. '

Finally if r < 6(z), then B(z,7) C D and hence wyr? < |B(z,7) N D|. Thus we have the
conclusion. 0

We fix positive real numbers b3, by satisfying
(2.1) s3r? < |B(z,r) N D| < s47¢
forallz € D and for all 0 < r < R.

Using Lemma 2.2, we can easily show the following lemma by the same method as in the proof
of Lemma 2.1.

LEMMA 2.3. Let A > 0 and z € D. Further let s4 be the positive real number in (2.1).
(D) IfA\>dand R > a >0, then

A

-A d—A
T — dy<s a®™ ",
-/Dn{lac—ylza} | vl ‘A-d

(ii) Ifd > X and 0 < b < R, then

/ I — |y < 542
DA{ja—yl<b) d—

Fix a C*°-function ¢ on R? such that

b2,

¢=10nB(0,1/2), 0<¢<1, supp¢C B(0,1), ¢(z)=¢(-z)

and define, for € R% and r > 0,
y—-z
ha.r(y) = d’( )

r

Note that A, € C*°(R?), ks = 1 on B(z,r/2) and supp A, C B(z,r). Furthermore, |Vh, .| <
c/r, where ¢ is a constant independent of z, r.

LEMMA 24. Let zo, yo € 0D, 2o # Yo, 0 < 4r < |z¢ — Yo| and a, b € R. Assume that
p—pa—d+ 3 >0. Then

(22) / Ia o, 7‘ — To, I(x)z';_'gi};io T‘( ) hyo’r(y))lpdp.(m')dﬂ(y)
< c(laf? + |b|P)rP—P

and

(23) // |0, To,T - xT:;:(_))r;:ch_*_Zo ;( ) hy"’r(y))lpdazdy

< c(lal” + [bI7)r 7o
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PROOF. To show (2.2) we write

/ |a(hag,r (€) = Bag,r(y |(gc)z +|zf:,i°’ r(@) = hyor I 3y

< 2}7/ Ia(h’-’bo r — mo, (y))lpdp,(.’z)dy,(y)

Iw —ylf’“’"‘

[b(Pyo,r (%) = Pyo,r (W)IP _
vor [ Bt i = 1

Then, by Lemma 2.1, (ii) and (i),

|a(hay +(Z) = hao.» ()P
//l'.r—y|<3r l.’L' - y|5+POI dﬂ(ﬂ?)du(y)

< crlafr? / dy(z) / I — [P dp(y)
jx—=zo|<4r |z—y|<3r

< caalPr~P(3r)P 7P (4r)P = c3lalPrPP*

and

/I 0 (8) ~ Paor OO 4 10
|z—y|>3r |x—y|ﬂ+pa
1
<c ap/ du(z / - 4
4lal —a<r () SN ey e p(y)

1
+ealaf? / duy) / )
|ly—=zo| <7 |z—y|>3r |.’L' - y|ﬂ+pa 4

< eslalP(3r) "P*rP = cglalPrP P
From these we deduce
I < crlalPrP—re,
Similarly we also have
12 _<_ Cgblp’l‘ﬁ_pa.
Thus we have (2.2).
We next prove (2.3). Noting that p — pa —d + 8 > 0 and using Lemma 2.3, we have

// lahsg,r (2) = hao,r DI ;o dy
{|z—y|<3r}N(DxD) |z — y|d+pa+d- 3

< 09|a|”r_p/ dz/ |z — y|_d_”°‘_d+ﬁ+”dy
{lz—=zo}|<4r}ND {lz—y|<3r}nD

< croalPrP(3r)PTPO A (4r)d = ¢y |a|Prf TP

We also have

|a(hao,r(2) — Py )P
; dzdy
‘//{lmwlziir}np |z — y|dtpatd=p
1

= c12|a|P/ dm/ —dy
{lz—zo|<r}ND {|e—y|>3r}ND |z — y|d+patd=0
1
+ cula[”/ dy _
{y=zol<r}nD  J{le—y|>3r}nD 1T — y|d+patd—p

< cslafP(3r)TPamdHBrd = ¢ y|alPrPPe,

dz
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Thus we have (2.3).

LEMMA 2.5. Let0<r<a<Randz € dD. Set

F.= {y € D; 3(2_1)1/(01—/3) <d(y) <r}.
2

Then

|B(z,a) N F,| > 5,(1—2°"%aPr?#  and |B(z,a) N F,| < sa(1— (i)z2ﬂ_d)aﬁrd“6.

S92

PROOF. With the aid of Lemma A we have
[B(z,a) N F,|
T, 81\1/(d—
=|B(z,a) N {y € D;4(y) <r}| —|B(z,a) N {y € D;(y) < = (S:) /@=)y

> 510°r47P — 5,aP2P~ 4P = 5, (1 — 2P~ 4)qPrdh

and
s
|B(z,a) N Fy| < s9aPr?=F — 2P=dg2s 10Ppd=F — g, (1 (;1)22ﬂ‘d)aﬁrd‘ﬁ.
2

Thus we have the conclusion.

We denote by diam D the diameter of the set D and set

2 ,2by\1/8 2 2(2d ﬁsz —31) 1/8
2.4 ty = 1 51 50(29
(2.4 1= max{l, 3( b ) 3(8182(2d ﬂ_l)) b

where b;, by and s;, s are constants in (1.1) and Lemma A, respectively. Then we have .

LEMMA 2.6. Let diam D/(4t,) >r>0,a,b€ R, 2z, w € D and |z — w| > 4rt; Then
)

IG’XB(Z r) _bXB(w r)( )lp —pa
(2.5) / / [ — y[Fperdp dzdy > erP—re.

(i)

IG'XB (2,7 - bXB w,r (y)lp —pa
(2:6) L] )lx*ylﬂﬂ,i PO du(a)dly) 2 er7e.

Here c is constants independent of z and r.

PROOF. (i) Note that

a z,r "'b w,r P
/ / lax B(z,r) (%) = OXB(w,r) (¥)] dzdy

Ix —_ y|d+l7a+d g

1
> 1o [ xoen(@is dy
F, s Fon{lw—y|>r} 1T — y|dTPetd=F
1
+ lblp/ XB(w,r (y)dy/ dr = 111 + Ilg.
F, (wr) Fon{|z—=|>r} |IL‘ - y|d+pa+d—ﬁ

O
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Since € B(z,r) and 2r < |z —y| < 3rt; imply lw—y| >ty > 7 andb|x —y| < 3/2|z - y|, we have,
by Lemma A,

2\ d+pot+d-p 1
I > Ial”/ XB(z,r (m)dw/ e dy
F, (=:r) Frﬂ{2r<|z—y|<3r¢1}(3) |y — z|d+pa+d—ﬁ

2 atd—
> (5)TPT P (@) 4Bz, r) N FIF: 0 (B(z, 3rta) \ B(z,20)]

‘Lemma 2.5 yields
|B(z,r) N F,| > s;1(1 — 2P~ 4)rPrd=F,
Noting that t; is defined by (2.4), we have, by Lemma 2.5,
|B(z,3rt;) N F,| — |B(z,2r) N F,|
> 51(3rt1)Prd P (1 — 2°79) — (2r)PriP(sy — 2P~ %5355 1) > (s - 2P=ds2sr1)2Prd,

Therefore we have
L1 > ci|alPrPPe.

The same estimate is obtained for I12. Thus we see that (2.5) holds.
(ii) Similarly we write

|aXB(z r) bXB(w r) (y)lp
du(z)d
/B ] /6 ) |x o () du(y)

> laf? / X8 (@)du(2) / 1z — g PP du(y)
oD a

DN{|w—y|>r}

P / X ()d1(y) / & -y du(z) = Iy + Ion.
aD oDN{|z—z|>r}

Using Lemma A and Lemma 2.1, we have

2\ p+pa
bn 2 alol [ xp(@duta) [ 2P 7e -
8D aDN{2r<|z—y|<3rt1}

> cglalPrP (2r) PP u(B(z, 3rt1) \ B(z,2r)).

y| =P P du(y)

Since
w(B(z,3rty) \ B(z,2r)) > b1 (3rt1)P — ba(2r)P > b,2°17,
we have
I21 Z C4|0,|p7‘ﬁ_pa.
We also have the same estimate for I;. Thus we have (2.6). g

3. Proofs of Theorem 1 and Theorem 2
In this section we shall prove Theorem 1 and Theorem 2.

PROOF of THEOREM 1. We first prove the second inequality of (1.3). Suppose that f is
nonnegative and continuous on D. Since f is uniformly continuous on D, there is, for each € > 0, a
positive real number § > 0 such that |z — y| < ¢ implies | f(z) — f(y)| < e. We consider any positive
real number ¢ satisfying ¢ < §/(10a). Since

0D U A; C U.copB(z,at)
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and 8D U 4, is compact, there is a subfamily of {B(z,at)},csp which covers 8D U A; and consists
of finitely many elements. Using Vitali’s covering theorem, we can find, 21, 29, -+, zm € 8D such
that {B(z;,at)}7., is a subfamily of {B(z,at)}.csp and {B(z],at i, are mutually disjoint and

0D UA; C U7, B(z;, 5at).

Then

/6 1)t < 2; /B OO

<c Em:ma.x{f(z); z € B(z;,5at) N dD}(5at)?

=1

< et? Y (min{f(y); y € B(z;,at) N A;} +€)t?
j=1

Since, by Lemma 2.5,
|B(2!j, at) N Atl Z C3td

and {B(zj,at)}7L, are mutually disjoint, we have

(3.1) /6 HE)du(z) < et / (f(9) +€)dy.

Ay

On the other hand we have, by Lemma A,

/ dy < |B(z0, B) N Ay < cst?# RS,
A

where 2 is a fixed point on dD. This and (3.1) yield

f(2)dp(z) < ca(tP~¢ ; Ff)dy +e).

oD

Thus we have the second inequality of (1.3).
We next prove the first inequality of (1.3). Using the above covering, we have, by (1.1),

o= "’/ fly) <19~ “Z/ )dy

B(z; ,5at)ﬂA¢

< crtP e Zmax{f(y); y € B(z;,5at) N Ay} (5at)*

<cg i(min{f(z); z € B(zj,at) N 8D} + €)(at)®
j=1

<o /6 () + (2 / F2)du(z) + en(OD)).

This leads the first inequality of (1.3). O

We next prove Theorem 2.
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PROOF of THEOREM 2. Choose n > 0 satisfying (d — 8)/p+a <1 < XA and € > 0. Since f is
A-Hélder continuous on D, we can find to > 0 such that

£ (z) = f@)]

|z — y| < to implies ——-= < ¢
|z =yl

and tg < diam D.
Consider any positive real number t satisfying t < t,/(80at;), where t; is the positive real
number defined by (2.4). Put r = at and cover

OD C U,eopB(z,r).

Using Vitali’s covering theorem, we can find a countable subfamily {B(z;,7)} of { B(z,7)}.eap such
that {B(z;,r)} are mutually disjoint and

0D C U;B(z;,5r).

Using the family, we define functions {v; ;} on RY x R? as follows. If B(z;, 20rt;) N B(2;,20rt1) # 0,
then v; ;(z,y) = 0. If B(z;,20rt;) N B(z;,20rt;) = 0, then we define

Vi,j (Ivy) - f(zi)(hz;,lﬂr(x) - hziylor(y)) + f(zj)(hz,',lor(x) - th,lOT(y))'
Let (z,y) € (B(zi,5r) N D) x (B(zj,5r) N D). If B(z;,20rt1) N B(z;,20rt,) = 0, we have

vii(2,y) = (f(2) = F)] < 1f(z)hzin0r(2) = £(@)] + 1 (2)hz; 100 () = F(W)]
=f(z:) = f(=@)| +1f(z;) = f(W)

< €lzi — 2|7 + €]z — y|" < 2e(5r)7 < 2€]z — y|".
If B(z;,20rty) N B(zj,20rt;) # §, then
lvij(@,y) — (f(z) = f@W)] = |f(z) = f()| <elz—y|"

We also define functions {w; ;} on R? x R as follows. If B(z;,2rt;) N B(z;,2rt1) # 0, then
w; j(z,y) = 0. If B(z;,2rt1) N B(zj,2rt1) = 0, we define

Wi, j (fE,y) = f(zi)XB(zi,'r‘)(m) - f(zj)XB(Zj,T)(y)‘

Then we can also estimete

i j(2,y) = (f(&) = FW)] < crelz = y|”

for each pair (¢,y) € (B(zi,r) N D) x (B(zj,r) N D). Note that each z € D belongs to at most N
many numbers of {B(z;,5r)}, where N is a constant depending only on d. Hence

L 5/ ‘i;é-z—wi—plwdu( )du(y)
|f(z) - f®)IF
< Z/ B(z:,5r)N8D /B(z,-,sr)nap

|:1: — |g+pa dp(z)dp(y)
. Z / / E o ypee m|ﬁ1{|~pa du(2)duly) + eaé” / / & — y| =77 P dp () dps(y)

. Z // |3E1)J y|ﬁ+pa du(z)du(y) + cse’.
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Using Lemma 2.4, we have

(3-2) Li<ea ) (IF)P+If()IP) P77 + cae?,

i)j

where Z stands for the sum for (i, j) satisfying |z; — 2;| > 40rt;.
On the other hand using Lemma 2.6 and noting that pn —pa —d+ 8 > 0 and A; = F,, we have

|P
I N
fwi (T, y p —d—pa—d+8+pn
>E / /r|m—yld+”°‘+d ﬁdfcdy—%e A D[m—y{ ‘ dzdy

> CSZ |f(2)IP + £ (25)[P) P77 = cge?,

1,3

where Z stands for the sum for (7, 7) satisfying |z; — 2;| > 4rt;. Combining (3.2) with (3.3), we
have the second inequality of (1.4).
We next show the first inequality of (1.4). Since

)P
I, = //D|x_ 1d+pa+d ﬁdzdy

|vii (2, y)| P —d—pa+d+8+pn v
<Z// |x—y|d+P°‘+d —5dwdy + cre ; D]:z:—yl dzdy,

we have, by Lemma 2.4,

!

I <cg ) (If (@) + 1£(2)IP)r° 72 + caeP.

1,5

On the other hand Lemma 2.6 yields

Y)Y w; ; (2, )|
/8D /aD Iz —y |ﬂ+pa e dn(@)du(y) Z@Z/@ /w ||$_’ |ﬂ+pa du(x)du(y) — coe?
i,j

2 1o Z(if(zi)lp + [ £(25)[P)rP 7P = cre?.

i’j

Thus we also have the first inequality of (1.4).
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