ESTIMATES OF THE BESOV NORMS ON FRACTAL BOUNDARY BY VOLUME INTEGRALS

HISAKO WATANABE

Graduate School of Humanities and Sciences, Ochanomizu University Bunkyo-ku, Tokyo 112-8610, Japan (Received August 30)

ABSTRACT. Consider a bounded domain D with fractal boundary in \mathbb{R}^d such that ∂D is a β -set $(d-1 \leq \beta < d)$. Under an additional condition we give the norms defined by the volume integrals "equivalent" to the L^p -norm and the Besov norms on the fractal boundary, respectively.

1. Introduction.

Let D be a bounded domain in \mathbb{R}^d and assume that ∂D is a β -set $(d-1 \leq \beta < d)$, i.e., there exist a positive Radon measure μ on ∂D and positive real numbers b_1 , b_2 , r_0 such that

$$(1.1) b_1 r^{\beta} \le \mu(B(z, r) \cap \partial D) \le b_2 r^{\beta}$$

for all points $z \in \partial D$ and all positive real numbers $r \leq r_0$, where B(z, r) stands for the open ball in \mathbb{R}^d with center z and radius r. Such a measure μ is called a β -measure.

We give examples.

- 1. If D is a bounded Lipschitz domain in \mathbb{R}^d , then ∂D is a (d-1)-set and the surface measure is a (d-1)-measure.
- 2. If ∂D consists of a finite number of self-similar sets, which satisfies the open set condition, and whose similarity dimensions are β , then ∂D is a β -set and the β -dimensional Hausdorff measure restricted to ∂D is a β -measure (cf. [H]).

It is well-known that a β -measure on ∂D is equivalent to the β -dimensional Hausdorff measure restricted to ∂D (cf. [JW1], [JW2]).

We fix a β -measure μ on ∂D .

It is natural that we consider the $L^p(\mu)$ as a function space on the boundary of D. But we often need consider spaces with more strong norms than the L^p -norm because of the fractal boundary of D. One of such spaces is a Besov space. In general, let F be a closed β -set in \mathbf{R}^d and μ be a β -measure on F. Let $0 < \alpha \le 1$. We define a Besov space $\Lambda^p_{\alpha}(F)$ by the Banach space of all function $f \in L^p(\mu)$ such that

$$\iint \frac{|f(x) - f(z)|^p}{|x - z|^{\beta + p\alpha}} d\mu(x) d\mu(z) < \infty$$

with norm

$$||f||_{\alpha,p} = \left(\int |f(x)|^p d\mu(x)\right)^{1/p} + \left(\int\int \frac{|f(x) - f(z)|^p}{|x - z|^{\beta + p\alpha}} d\mu(x) d\mu(z)\right)^{1/p}$$

Especially, since \mathbf{R}^d is a d-set, $\Lambda^p_{\alpha}(\mathbf{R}^d)$ is the space of all L^p -functions f with respect to the d-dimensional Lebesgue measure, such that

$$\iint \frac{|f(x) - f(z)|^p}{|x - z|^{d + p\alpha}} dx dz < \infty.$$

For such a domain D volume integrals are more easy to deal with than integrals on ∂D , if f is defined on \overline{D} . It seems that the existence of a norm defined by a volume integral "equivalent" to the L^p -norm or the Besov norm on the fractal boundary is useful for us to prove that operators are bounded on $L^p(\mu)$ or $\Lambda^p_{\alpha}(\partial D)$.

A. Jonsson and H. Wallin proved in [JW1] that there exists a continuous extension operator from $\Lambda^p_{\alpha}(\partial D)$ to $\Lambda^p_{\gamma}(\mathbf{R}^d)$ and that the restriction operator from $\Lambda^p_{\gamma}(\mathbf{R}^d)$ to $\Lambda^p_{\alpha}(\partial D)$ is continuous, where $\gamma = \alpha + (d-\beta)/p$.

But, what type of a volume integral in D is equivalent to the L^p -norm or the Besov norm on the boundary? In this paper we consider this problem.

Hereafter we suppose that $\overline{D} \subset B(0, R/2)$ with $R \geq 1$. We may assume that (1.1) holds for all points $z \in \partial D$ and all positive real numbers $r \leq 3R$.

To consider the above problem, we need add a condition to D. We say that a set G satisfies the condition (b) if there exist positive real numbers c and $r_1 > 0$ such that

$$(1.2) |B(z,r) \cap G| \ge cr^d$$

for each point $z \in \partial G$ and each positive real number $r \leq r_1$, where |A| stands for the d-dimensional Lebesgue measure of a set A.

If D satisfies the condition (b) and $r_1 < 3R$, then, for each r satisfying $r_1 < r \le 3R$ and $z \in \partial D$, we have

$$|B(z,r)\cap D|\geq |B(z,r_1)\cap D|\geq cr_1^d\geq c\left(\frac{r_1}{3R}\right)^dr^d.$$

Consequently, if D satisfies the condition (b), then (1.2) holds for every $r \leq 3R$ by replacing with another constant c.

In [W, Lemma 2.1] we proved the following lemma, which is fundamental. Lemma 2.1 in [W] was shown under more strong condition, but, to prove the lemma, it suffices to assume the condition (b).

LEMMA A. Suppose that D is a bounded domain such that ∂D is a β -set $(d-1 \le \beta < d)$ and satisfies the condition (b). Let $0 < \epsilon \le r \le 3R$ and $z \in \partial D$. Denote by $\delta(y)$ the distance from y to ∂D . Then there exist positive numbers s_1 , s_2 such that

$$s_1 r^{\beta} \epsilon^{d-\beta} \le \int_{\{\delta(y) < \epsilon\} \cap B(z,r) \cap D} dy \le s_2 r^{\beta} \epsilon^{d-\beta},$$

where s_1 and s_2 are independent of r, ϵ and z.

We fix such numbers s_1 and s_2 . We may assume that $s_1 \leq 1$ and $s_2 \geq 1$. In this paper we shall prove the following two theorems in §3.

THEOREM 1. Let D be a bounded domain in \mathbf{R}^d such that ∂D is a β -set $(d-1 \leq \beta < d)$ and satisfies the condition (b). Let a > 0 and put

$$A_t = \{ y \in D; \frac{at}{2} \left(\frac{s_1}{s_2} \right)^{1/(d-\beta)} \le \delta(y) < at \},$$

where s_1 , s_2 are constant in Lemma A. If f is a nonnegative continuous function on \overline{D} , then

$$(1.3) c_1 \limsup_{t \to 0} t^{\beta - d} \int_{A_t} f(y) dy \le \int_{\partial D} f(z) d\mu(z) \le c_2 \liminf_{t \to 0} t^{\beta - d} \int_{A_t} f(y) dy,$$

where c_1 and c_2 are constants independent of f.

THEOREM 2. Suppose that D satisfies the same conditions as in Theorem 1. Let $1 \le p < \infty$, $p - p\alpha - d + \beta > 0$ and $\alpha + (d - \beta)/p < \lambda < 1$. Further let a > 0. If f is λ -Hölder continuous on \overline{D} , then

$$(1.4) c_1 \limsup_{t \to 0} \int_{A_t} \int_{A_t} \frac{|f(x) - f(y)|^p}{|x - y|^{d + p\alpha + d - \beta}} dx dy$$

$$\leq \int_{\partial D} \int_{\partial D} \frac{|f(x) - f(y)|^p}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y) \leq c_2 \liminf_{t \to 0} \int_{A_t} \int_{A_t} \frac{|f(x) - f(y)|^p}{|x - y|^{d + p\alpha + d - \beta}} dx dy,$$

where c_1 and c_2 are constants independent of f.

2. Lemmas

Hereafter we assume that D is a bounded domain in \mathbb{R}^d such that ∂D is a β -set satisfying $d-1 \leq \beta < d$ and $\overline{D} \subset B(0,R/2)$ $(R \geq 1)$. Furthermore assume that D satisfies the condition (b). In this section we prepare several lemmas to prove Theorems 1 and 2. The following lemma is an easy consequence of the property (1.1).

LEMMA 2.1. Let $\lambda > 0$ and $z \in \partial D$. Further, let b_1 , b_2 are positive real numbers in (1.1). (i) If $\beta < \lambda$ and a > 0, then

$$\int_{\partial D \cap \{a < |x-z|\}} |x-z|^{-\lambda} d\mu(x) \le b_2 \frac{\lambda}{\lambda - \beta} a^{\beta - \lambda}.$$

(ii) If $\beta > \lambda > 0$ and $0 < b \le R$, then

$$\int_{\partial D \cap \{|x-z| \le b\}} |x-z|^{-\lambda} d\mu(x) \le b_2 \frac{\lambda}{\beta - \lambda} b^{\beta - \lambda}.$$

PROOF. (i) By (1.1) we have

$$\int_{\partial D \cap \{a < |z - x|\}} |z - x|^{-\lambda} d\mu(x)
\leq \int_0^{a^{-\lambda}} \mu(\{x \in \partial D; |z - x|^{-\lambda} > t\}) dt = \int_0^{a^{-\lambda}} \mu(B(z, t^{-1/\lambda}) \cap \partial D) dt
\leq b_2 \int_0^{a^{-\lambda}} t^{-\beta/\lambda} dt = \frac{b_2 \lambda}{\lambda - \beta} a^{\beta - \lambda},$$

which shows (i).

(ii) This is shown by the same method as (i).

LEMMA 2.2. There exists a positive real number s such that $sr^d \leq |B(x,r) \cap D|$ for each $x \in D$ and each positive number $r \leq R$.

PROOF. If $r > (5/4)\delta(x)$, then we take $x' \in \partial D$ satisfying $|x - x'| = \delta(x)$. Since $B(x', (1/4)r) \cap D \subset B(x, r) \cap D$, the condition (b) yields that there is s > 0 satisfying

$$s\left(\frac{1}{4}r\right)^d \le |B(x', \frac{1}{4}r) \cap D|,$$

whence $s(1/4)^d r^d \leq |B(x,r) \cap D|$.

4

If $\delta(x) \leq r < (5/4)\delta(x)$, then $B(x, (4/5)r) \subset D$ and hence $\omega_d(4/5)^d r^d \leq |B(x, r) \cap D|$, where ω_d is the surface measure of the unit ball.

Finally if $r < \delta(x)$, then $B(x,r) \subset D$ and hence $\omega_d r^d \leq |B(x,r) \cap D|$. Thus we have the conclusion.

We fix positive real numbers b_3 , b_4 satisfying

$$(2.1) s_3 r^d \le |B(x,r) \cap D| \le s_4 r^d$$

for all $x \in \overline{D}$ and for all $0 < r \le R$.

Using Lemma 2.2, we can easily show the following lemma by the same method as in the proof of Lemma 2.1.

LEMMA 2.3. Let $\lambda > 0$ and $z \in \overline{D}$. Further let s_4 be the positive real number in (2.1). (i) If $\lambda > d$ and R > a > 0, then

$$\int_{D\cap\{|x-y|>a\}} |x-y|^{-\lambda} dy \le s_4 \frac{\lambda}{\lambda - d} a^{d-\lambda}.$$

(ii) If $d > \lambda$ and $0 < b \le R$, then

$$\int_{D\cap\{|x-y|\leq b\}} |x-y|^{-\lambda} dy \leq s_4 \frac{\lambda}{d-\lambda} b^{d-\lambda}.$$

Fix a C^{∞} -function ϕ on \mathbb{R}^d such that

$$\phi=1$$
 on $\overline{B(0,1/2)},\quad 0\leq \phi\leq 1,\quad \mathrm{supp}\ \phi\subset B(0,1),\quad \phi(x)=\phi(-x)$

and define, for $x \in \mathbf{R}^d$ and r > 0,

$$h_{x,r}(y) = \phi\left(\frac{y-x}{r}\right).$$

Note that $h_{x,r} \in C^{\infty}(\mathbf{R}^d)$, $h_{x,r} = 1$ on $\overline{B(x,r/2)}$ and supp $h_{x,r} \subset B(x,r)$. Furthermore, $|\nabla h_{x,r}| \le c/r$, where c is a constant independent of x, r.

LEMMA 2.4. Let x_0 , $y_0 \in \partial D$, $x_0 \neq y_0$, $0 < 4r < |x_0 - y_0|$ and a, $b \in \mathbf{R}$. Assume that $p - p\alpha - d + \beta > 0$. Then

(2.2)
$$\iint \frac{|a(h_{x_0,r}(x) - h_{x_0,r}(y)) + b(h_{y_0,r}(x) - h_{y_0,r}(y))|^p}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y) < c(|a|^p + |b|^p) r^{\beta - p\alpha}$$

and

(2.3)
$$\int_{D} \int_{D} \frac{|a(h_{x_{0},r}(x) - h_{x_{0},r}(y)) + b(h_{y_{0},r}(x) - h_{y_{0},r}(y))|^{p}}{|x - y|^{d + p\alpha + d - \beta}} dx dy$$

$$\leq c(|a|^{p} + |b|^{p})r^{\beta - p\alpha}$$

PROOF. To show (2.2) we write

$$\iint \frac{|a(h_{x_0,r}(x) - h_{x_0,r}(y)) + b(h_{y_0,r}(x) - h_{y_0,r}(y))|^p}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y)
\leq 2^p \iint \frac{|a(h_{x_0,r}(x) - h_{x_0,r}(y))|^p}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y)
+ 2^p \iint \frac{|b(h_{y_0,r}(x) - h_{y_0,r}(y))|^p}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y) \equiv I_1 + I_2.$$

Then, by Lemma 2.1, (ii) and (i),

$$\iint_{|x-y|<3r} \frac{|a(h_{x_0,r}(x) - h_{x_0,r}(y))|^p}{|x-y|^{\beta+p\alpha}} d\mu(x) d\mu(y)
\leq c_1 |a|^p r^{-p} \int_{|x-x_0|<4r} d\mu(x) \int_{|x-y|<3r} |x-y|^{-\beta-p\alpha+p} d\mu(y)
\leq c_2 |a|^p r^{-p} (3r)^{p-p\alpha} (4r)^{\beta} = c_3 |a|^p r^{\beta-p\alpha}$$

and

$$\iint_{|x-y|\geq 3r} \frac{|a(h_{x_0,r}(x)-h_{x_0,r}(y))|^p}{|x-y|^{\beta+p\alpha}} d\mu(x) d\mu(y)
\leq c_4 |a|^p \int_{|x-x_0|< r} d\mu(x) \int_{|x-y|\geq 3r} \frac{1}{|x-y|^{\beta+p\alpha}} d\mu(y)
+ c_4 |a|^p \int_{|y-x_0|< r} d\mu(y) \int_{|x-y|\geq 3r} \frac{1}{|x-y|^{\beta+p\alpha}} d\mu(x)
\leq c_5 |a|^p (3r)^{-p\alpha} r^{\beta} = c_6 |a|^p r^{\beta-p\alpha}.$$

From these we deduce

$$I_1 \le c_7 |a|^p r^{\beta - p\alpha}.$$

Similarly we also have

$$I_2 < c_8 b|^p r^{\beta - p\alpha}.$$

Thus we have (2.2).

We next prove (2.3). Noting that $p - p\alpha - d + \beta > 0$ and using Lemma 2.3, we have

$$\iint_{\{|x-y|<3r\}\cap(D\times D)} \frac{|a(h_{x_0,r}(x)-h_{x_0,r}(y))|^p}{|x-y|^{d+p\alpha+d-\beta}} dxdy
\leq c_9|a|^p r^{-p} \int_{\{|x-x_0|<4r\}\cap D} dx \int_{\{|x-y|<3r\}\cap D} |x-y|^{-d-p\alpha-d+\beta+p} dy
\leq c_{10}a|^p r^{-p}(3r)^{p-p\alpha-d+\beta}(4r)^d = c_{11}|a|^p r^{\beta-p\alpha}.$$

We also have

$$\iint_{\{|x-y|\geq 3r\}\cap D} \frac{|a(h_{x_0,r}(x)-h_{x_0,r}(y))|^p}{|x-y|^{d+p\alpha+d-\beta}} dx dy
\leq c_{12}|a|^p \int_{\{|x-x_0|< r\}\cap D} dx \int_{\{|x-y|\geq 3r\}\cap D} \frac{1}{|x-y|^{d+p\alpha+d-\beta}} dy
+ c_{12}|a|^p \int_{\{|y-x_0|< r\}\cap D} dy \int_{\{|x-y|\geq 3r\}\cap D} \frac{1}{|x-y|^{d+p\alpha+d-\beta}} dx
\leq c_{13}|a|^p (3r)^{-p\alpha-d+\beta} r^d = c_{14}|a|^p r^{\beta-p\alpha}.$$

Thus we have (2.3).

LEMMA 2.5. Let $0 < r \le a \le R$ and $z \in \partial D$. Set

$$F_r = \{ y \in D; \frac{r}{2} \left(\frac{s_1}{s_2} \right)^{1/(d-\beta)} \le \delta(y) < r \}.$$

Then

6

$$|B(z,a) \cap F_r| \ge s_1(1-2^{\beta-d})a^{\beta}r^{d-\beta}$$
 and $|B(z,a) \cap F_r| \le s_2(1-(\frac{s_1}{s_2})^22^{\beta-d})a^{\beta}r^{d-\beta}$.

PROOF. With the aid of Lemma A we have

$$|B(z,a) \cap F_r|$$

$$= |B(z,a) \cap \{y \in D; \delta(y) < r\}| - |B(z,a) \cap \{y \in D; \delta(y) < \frac{r}{2} \left(\frac{s_1}{s_2}\right)^{1/(d-\beta)}\}|$$

$$\geq s_1 a^{\beta} r^{d-\beta} - s_1 a^{\beta} 2^{\beta-d} r^{d-\beta} = s_1 (1 - 2^{\beta-d}) a^{\beta} r^{d-\beta}$$

and

$$|B(z,a) \cap F_r| \le s_2 a^{\beta} r^{d-\beta} - 2^{\beta-d} s_1^2 s_2^{-1} a^{\beta} r^{d-\beta} = s_2 \left(1 - \left(\frac{s_1}{s_2}\right)^2 2^{\beta-d}\right) a^{\beta} r^{d-\beta}.$$

Thus we have the conclusion.

We denote by diam D the diameter of the set D and set

(2.4)
$$t_1 = \max\{1, \frac{2}{3} \left(\frac{2b_2}{b_1}\right)^{1/\beta}, \frac{2}{3} \left(\frac{2(2^{d-\beta}s_2^2 - s_1^2)}{s_1 s_2 (2^{d-\beta} - 1)}\right)^{1/\beta}\},$$

where b_1 , b_2 and s_1 , s_2 are constants in (1.1) and Lemma A, respectively. Then we have

LEMMA 2.6. Let diam $D/(4t_1) \ge r > 0$, $a, b \in \mathbf{R}$, $z, w \in \partial D$ and $|z - w| \ge 4rt_1$ Then (i)

(2.5)
$$\int_{F_r} \int_{F_r} \frac{|a\chi_{B(z,r)}(x) - b\chi_{B(w,r)}(y)|^p}{|x - y|^{d + p\alpha + d - \beta}} dx dy \ge cr^{\beta - p\alpha}.$$

(ii)

(2.6)
$$\int_{\partial D} \int_{\partial D} \frac{|a\chi_{B(z,r)}(x) - b\chi_{B(w,r)}(y)|^p}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y) \ge cr^{\beta - p\alpha}.$$

Here c is constants independent of z and r.

PROOF. (i) Note that

$$\int_{F_{r}} dy \int_{F_{r}} \frac{|a\chi_{B(z,r)}(x) - b\chi_{B(w,r)}(y)|^{p}}{|x - y|^{d + p\alpha + d - \beta}} dx dy$$

$$\geq |a|^{p} \int_{F_{r}} \chi_{B(z,r)}(x) dx \int_{F_{r} \cap \{|w - y| > r\}} \frac{1}{|x - y|^{d + p\alpha + d - \beta}} dy$$

$$+ |b|^{p} \int_{F_{r}} \chi_{B(w,r)}(y) dy \int_{F_{r} \cap \{|z - x| > r\}} \frac{1}{|x - y|^{d + p\alpha + d - \beta}} dx \equiv I_{11} + I_{12}.$$

Since $x \in B(z,r)$ and $2r < |z-y| < 3rt_1$ imply $|w-y| > rt_1 \ge r$ and |x-y| < 3/2|z-y|, we have, by Lemma A,

$$I_{11} \ge |a|^p \int_{F_r} \chi_{B(z,r)}(x) dx \int_{F_r \cap \{2r < |z-y| < 3rt_1\}} \left(\frac{2}{3}\right)^{d+p\alpha+d-\beta} \frac{1}{|y-z|^{d+p\alpha+d-\beta}} dy$$

$$\ge \left(\frac{2}{3}\right)^{d+p\alpha+d-\beta} (2r)^{-d-p\alpha-d+\beta} |B(z,r) \cap F_r| |F_r \cap (B(z,3rt_1) \setminus B(z,2r))|.$$

Lemma 2.5 yields

$$|B(z,r) \cap F_r| \ge s_1(1 - 2^{\beta - d})r^{\beta}r^{d - \beta}.$$

Noting that t_1 is defined by (2.4), we have, by Lemma 2.5,

$$|B(z,3rt_1) \cap F_r| - |B(z,2r) \cap F_r|$$

$$\geq s_1 (3rt_1)^{\beta} r^{d-\beta} (1 - 2^{\beta-d}) - (2r)^{\beta} r^{d-\beta} (s_2 - 2^{\beta-d} s_1^2 s_2^{-1}) \geq (s_2 - 2^{\beta-d} s_1^2 s_2^{-1}) 2^{\beta} r^d.$$

Therefore we have

$$I_{11} \ge c_1 |a|^p r^{\beta - p\alpha}.$$

The same estimate is obtained for I_{12} . Thus we see that (2.5) holds.

(ii) Similarly we write

$$\int_{\partial D} \int_{\partial D} \frac{|a\chi_{B(z,r)}(x) - b\chi_{B(w,r)}(y)|^{p}}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y)$$

$$\geq |a|^{p} \int_{\partial D} \chi_{B(z,r)}(x) d\mu(x) \int_{\partial D \cap \{|x - y| > r\}} |x - y|^{-\beta - p\alpha} d\mu(y)$$

$$+ |b|^{p} \int_{\partial D} \chi_{B(w,r)}(y) d\mu(y) \int_{\partial D \cap \{|z - x| > r\}} |x - y|^{-\beta - p\alpha} d\mu(x) \equiv I_{21} + I_{22}.$$

Using Lemma A and Lemma 2.1, we have

$$I_{21} \geq c_{2}|a|^{p} \int_{\partial D} \chi_{B(z,r)}(x) d\mu(x) \int_{\partial D \cap \{2r < |z-y| < 3rt_{1}\}} \left(\frac{2}{3}\right)^{\beta + p\alpha} |z-y|^{-\beta - p\alpha} d\mu(y)$$

$$\geq c_{3}|a|^{p} r^{\beta} (2r)^{-\beta - p\alpha} \mu(B(z, 3rt_{1}) \setminus B(z, 2r)).$$

Since

$$\mu(B(z, 3rt_1) \setminus B(z, 2r)) \ge b_1(3rt_1)^{\beta} - b_2(2r)^{\beta} \ge b_2 2^{\beta} r^{\beta},$$

we have

$$I_{21} \ge c_4 |a|^p r^{\beta - p\alpha}.$$

We also have the same estimate for I_{22} . Thus we have (2.6).

3. Proofs of Theorem 1 and Theorem 2

In this section we shall prove Theorem 1 and Theorem 2.

PROOF of THEOREM 1. We first prove the second inequality of (1.3). Suppose that f is nonnegative and continuous on \overline{D} . Since f is uniformly continuous on \overline{D} , there is, for each $\epsilon > 0$, a positive real number $\delta > 0$ such that $|x-y| < \delta$ implies $|f(x)-f(y)| < \epsilon$. We consider any positive real number t satisfying $t < \delta/(10a)$. Since

$$\partial D \cup \overline{A_t} \subset \cup_{z \in \partial D} B(z, at)$$

and $\partial D \cup \overline{A_t}$ is compact, there is a subfamily of $\{B(z,at)\}_{z \in \partial D}$ which covers $\partial D \cup \overline{A_t}$ and consists of finitely many elements. Using Vitali's covering theorem, we can find, $z_1, z_2, \dots, z_m \in \partial D$ such that $\{B(z_j,at)\}_{j=1}^m$ is a subfamily of $\{B(z,at)\}_{z \in \partial D}$ and $\{B(z_j,at)\}_{j=1}^m$ are mutually disjoint and

$$\partial D \cup \overline{A_t} \subset \bigcup_{j=1}^m B(z_j, 5at).$$

Then

$$\int_{\partial D} f(z)d\mu(z) \leq \sum_{j=1}^{m} \int_{B(z_{j},5at)\cap\partial D} f(z)d\mu(z)$$

$$\leq c_{1} \sum_{j=1}^{m} \max\{f(z); z \in \overline{B(z_{j},5at)} \cap \partial D\}(5at)^{\beta}$$

$$\leq c_{2}t^{\beta-d} \sum_{j=1}^{m} \left(\min\{f(y); y \in \overline{B(z_{j},at)} \cap \overline{A_{t}}\} + \epsilon\right)t^{d}.$$

Since, by Lemma 2.5,

$$|B(z_j, at) \cap A_t| \ge c_3 t^d$$

and $\{B(z_j, at)\}_{j=1}^m$ are mutually disjoint, we have

(3.1)
$$\int_{\partial D} f(z) d\mu(z) \le c_4 t^{\beta - d} \int_{A_t} (f(y) + \epsilon) dy.$$

On the other hand we have, by Lemma A,

$$\int_{A_{\bullet}} dy \le |B(z_0, R) \cap A_t| \le c_5 t^{d-\beta} R^{\beta},$$

where z_0 is a fixed point on ∂D . This and (3.1) yield

$$\int_{\partial D} f(z) d\mu(z) \le c_6 (t^{\beta - d} \int_{A_{\epsilon}} f(y) dy + \epsilon).$$

Thus we have the second inequality of (1.3).

We next prove the first inequality of (1.3). Using the above covering, we have, by (1.1),

$$t^{\beta-d} \int_{A_{t}} f(y) \leq t^{\beta-d} \sum_{j=1}^{m} \int_{B(z_{j},5at) \cap A_{t}} f(y) dy$$

$$\leq c_{7} t^{\beta-d} \sum_{j=1}^{m} \max\{f(y); y \in \overline{B(z_{j},5at)} \cap \overline{A_{t}}\} (5at)^{d}$$

$$\leq c_{8} \sum_{j=1}^{m} \left(\min\{f(z); z \in \overline{B(z_{j},at)} \cap \partial D\} + \epsilon\right) (at)^{\beta}$$

$$\leq c_{9} \int_{\partial D} (f(z) + \epsilon) d\mu(z) = c_{9} \left(\int_{\partial D} f(z) d\mu(z) + \epsilon \mu(\partial D)\right).$$

This leads the first inequality of (1.3).

We next prove Theorem 2.

PROOF of THEOREM 2. Choose $\eta > 0$ satisfying $(d - \beta)/p + \alpha < \eta < \lambda$ and $\epsilon > 0$. Since f is λ -Hölder continuous on \overline{D} , we can find $t_0 > 0$ such that

$$|x-y| < t_0 \text{ implies } \frac{|f(x)-f(y)|}{|x-y|^{\eta}} < \epsilon$$

and $t_0 \leq \text{diam } D$.

Consider any positive real number t satisfying $t < t_0/(80at_1)$, where t_1 is the positive real number defined by (2.4). Put r = at and cover

$$\partial D \subset \cup_{z \in \partial D} B(z, r).$$

Using Vitali's covering theorem, we can find a countable subfamily $\{B(z_j, r)\}$ of $\{B(z, r)\}_{z \in \partial D}$ such that $\{B(z_j, r)\}$ are mutually disjoint and

$$\partial D \subset \cup_i B(z_i, 5r).$$

Using the family, we define functions $\{v_{i,j}\}$ on $\mathbf{R}^d \times \mathbf{R}^d$ as follows. If $B(z_i, 20rt_1) \cap B(z_j, 20rt_1) \neq \emptyset$, then $v_{i,j}(x,y) \equiv 0$. If $B(z_i, 20rt_1) \cap B(z_j, 20rt_1) = \emptyset$, then we define

$$v_{i,j}(x,y) = f(z_i)(h_{z_i,10r}(x) - h_{z_i,10r}(y)) + f(z_j)(h_{z_j,10r}(x) - h_{z_j,10r}(y)).$$

Let $(x,y) \in (B(z_i,5r) \cap \overline{D}) \times (B(z_j,5r) \cap \overline{D})$. If $B(z_i,20rt_1) \cap B(z_j,20rt_1) = \emptyset$, we have

$$|v_{i,j}(x,y) - (f(x) - f(y))| \le |f(z_i)h_{z_i,10r}(x) - f(x)| + |f(z_j)h_{z_j,10r}(y) - f(y)|$$

$$= |f(z_i) - f(x)| + |f(z_j) - f(y)|$$

$$< \epsilon |z_i - x|^{\eta} + \epsilon |z_j - y|^{\eta} \le 2\epsilon (5r)^{\eta} \le 2\epsilon |x - y|^{\eta}.$$

If $B(z_i, 20rt_1) \cap B(z_j, 20rt_1) \neq \emptyset$, then

$$|v_{i,i}(x,y) - (f(x) - f(y))| = |f(x) - f(y)| < \epsilon |x - y|^{\eta}$$

We also define functions $\{w_{i,j}\}$ on $\mathbf{R}^d \times \mathbf{R}^d$ as follows. If $B(z_i, 2rt_1) \cap B(z_j, 2rt_1) \neq \emptyset$, then $w_{i,j}(x,y) \equiv 0$. If $B(z_i, 2rt_1) \cap B(z_j, 2rt_1) = \emptyset$, we define

$$w_{i,j}(x,y) = f(z_i)\chi_{B(z_i,r)}(x) - f(z_j)\chi_{B(z_i,r)}(y).$$

Then we can also estimete

$$|w_{i,j}(x,y) - (f(x) - f(y))| < c_1 \epsilon |x - y|^{\eta}$$

for each pair $(x,y) \in (B(z_i,r) \cap \overline{D}) \times (B(z_j,r) \cap \overline{D})$. Note that each $x \in \overline{D}$ belongs to at most N many numbers of $\{B(z_i,5r)\}$, where N is a constant depending only on d. Hence

$$I_{1} \equiv \iint \frac{|f(x) - f(y)|^{p}}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y)$$

$$\leq \sum_{i,j} \int_{B(z_{i},5r)\cap\partial D} \int_{B(z_{j},5r)\cap\partial D} \frac{|f(x) - f(y)|^{p}}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y)$$

$$\leq \sum_{i,j} \iint \frac{|v_{i,j}(x,y)|^{p}}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y) + c_{2}\epsilon^{p} \iint |x - y|^{-\beta - p\alpha + p\eta} d\mu(x) d\mu(y)$$

$$\leq \sum_{i,j} \iint \frac{|v_{i,j}(x,y)|^{p}}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y) + c_{3}\epsilon^{p}.$$

Using Lemma 2.4, we have

(3.2)
$$I_1 \le c_4 \sum_{i,j}' (|f(z_i)|^p + |f(z_j)|^p) r^{\beta - p\alpha} + c_4 \epsilon^p,$$

where $\sum_{i,j}'$ stands for the sum for (i,j) satisfying $|z_i - z_j| \ge 40rt_1$. On the other hand using Lemma 2.6 and noting that $p\eta - p\alpha - d + \beta > 0$ and $A_t = F_r$, we have

(3.3)
$$\int_{A_{t}} \int_{A_{t}} \frac{|f(x) - f(y)|^{p}}{|x - y|^{d+p\alpha+d-\beta}} dx dy$$

$$\geq \sum_{i,j} \int_{F_{r}} \int_{F_{r}} \frac{|w_{i,j}(x,y)|^{p}}{|x - y|^{d+p\alpha+d-\beta}} dx dy - c_{5} \epsilon^{p} \int_{D} \int_{D} |x - y|^{-d-p\alpha-d+\beta+p\eta} dx dy$$

$$\geq c_{6} \sum_{i,j}^{"} (|f(z_{i})|^{p} + |f(z_{j})|^{p}) r^{\beta-p\alpha} - c_{6} \epsilon^{p},$$

where $\sum_{i,j}''$ stands for the sum for (i,j) satisfying $|z_i - z_j| \ge 4rt_1$. Combining (3.2) with (3.3), we have the second inequality of (1.4).

We next show the first inequality of (1.4). Since

$$\begin{split} I_2 &\equiv \int_D \int_D \frac{|f(x) - f(y)|^p}{|x - y|^{d + p\alpha + d - \beta}} dx dy \\ &\leq \sum_{i,j} \int_D \int_D \frac{|v_{i,j}(x,y)|^p}{|x - y|^{d + p\alpha + d - \beta}} dx dy + c_7 \epsilon^p \int_D \int_D |x - y|^{-d - p\alpha + d + \beta + p\eta} dx dy, \end{split}$$

we have, by Lemma 2.4,

$$I_2 \le c_8 \sum_{i,j}' \left(|f(z_i)|^p + |f(z_j)|^p \right) r^{\beta - p\alpha} + c_8 \epsilon^p.$$

On the other hand Lemma 2.6 yields

$$\int_{\partial D} \int_{\partial D} \frac{|f(x) - f(y)|^{p}}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y) \ge c_{9} \sum_{i,j} \int_{\partial D} \int_{\partial D} \frac{|w_{i,j}(x,y)|^{p}}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y) - c_{9} \epsilon^{p} \\
\ge c_{10} \sum_{i,j} (|f(z_{i})|^{p} + |f(z_{j})|^{p}) r^{\beta - p\alpha} - c_{10} \epsilon^{p}.$$

Thus we also have the first inequality of (1.4).

References

- J. E. Hutchinson, Fractals and selfsimilarity, Indiana Univ. Math. J. 30 (1981), 713-747.
- [JW1] A. Jonsson and H. Wallin, A Whitney extension theorem in L_p and Besov spaces, Ann. Inst. Fourier, Grenoble 28, 1 (1978), 139–192.
- [JW2] A. Jonsson and H. Wallin, Function spaces on subsets of \mathbb{R}^d , Harwood Academic Publishers, London-Paris-New York, 1984.
- H. Watanabe, Besov spaces on fractal sets, Josai Math. Monograph 1 (1999), 121-134. [W]