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ABSTRACT. For a bounded domain D with fractal boundary we consider a Besov space on D, with respect
to a measure corresponding to the fractal dimension of dD. We define double layer potentials of functions
in the Besov space and discuss the existence of nontangential limits of the double layer potentials, with an
exceptional set, and estimate the size of the exceptional set by using a Hausdorff measure depending on
the order of the Besov space.

1. Introduction

Let D be a bounded smooth domain in R (d > 2). The double layer potential ®g of g € LP(8D)
is defined by :

(L1) Bg(z) = — /8 (VNG = 9)m)a(u)doa),

where N(z — y) is the Newton kernel if d > 3 and the logarithmic kernel if d = 2, n, is the unit outer
normal to 8D and o is the surface measure on D. The function @ f is harmonic in R?\ 8D and has
a nontangential limit at o-almost every boundary point.

If D is a domain with fractal boundary, then n, and o can not be considered and (1.1) is not
defined. But in [W1] and [W3] we introduced the double layer potentials on such a domain..

More precisely, let D be a bounded domain in R¢ such that 8D is a B-set (d —1 < 8 < d), i.e,
there exist a positive Radon measure g on 8D and positive real numbers 3, 7o, by, b2 such that

(1.2) bir? < w(B(z,7) NAD) < byr?

for all z € 8D and all r < ro, where B(z,r) stands for the open ball with center z and radius r in R%.
Such a measure is called a S-measure. Fix a S-measure g on dD. Since D-is a bounded, we choose
R > 1 satisfying D C B(0, R/2).
By the same method as in [JW] we constructed in [W3] an extension operator £ from LP(u) to
LP(R?) such that £(f) = f on 8D, supp £(f) C B(0,2R) and £(f) is a C>-function in R*\ 8D.
Using the extension operator £, we define the double layer potential ®f of f € LP(u) by

(13) 2@ = [, (VEN, TN~ )y
for z € D and
(1.4) f(z) = - /D (VoEH)®), VyN(z — y)dy
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for z € R%\ D, where

e ifd >3
Nz —y) = { sy 02

— 3R jog L2l ifd=2

and wy stands for the surface area of the unit ball in R?.
But the integrals of the right-hand side in (1.3) and (1.4) don’t necessarily converge for any f €
LP(p). So we consider the Besov space of functions on 0D. Let 0 < o < 1. We define,

420D) = {1 € s [ [ LRI du)duty) < o)

+pa

with norm

0= ( [ Ifl"du)l/p +(f Mdu(m)du(y))l/p-

o — gl

fpB-(d~1) <a<1land f € A2(OD), then we saw in [W3] that & is well-defined and harmonic
in R4\ 0D. .

Furthermore let z € D and 7 be a positive real number. We define nontangential approach regions
in D and in R?\ D as follows:

(1.5) I(z)={zx€D:|lz—z <(1+71)d(z)}
and
(1.6) Ie(z) ={z € R*\D: |z - 2| < (1 + 7)6(z)},

where §(x) stands for the distance of z from 8D.
Let 7 > 0 and r; > 0. We consider the following conditions:

(L.7) B(z,r) N I:(z) # 0,

for all z € 8D and all r < ry;

(1.8) B(z,r) N IE(z) # 0

for all z € D and all » < 7y.
In [W3] we proved the following theorem.

Theorem A. Assume that D is a bounded domain in R* (d > 2) such that the boundary of D is a
B-set (d—1 < B < d). Furthermore assume that there are 7 > 0 and r1 > 0 such that D (resp.R%\D)
satisfies (1.7) (resp. (1.8)). If p>1,1>a > —(d—1) and f € AE(OD), then

lim )‘I’f(fv) =K1 f(2)

z—rz,x€l, (2
<T€Sp. J:——)z,lmilenfj(z) (I)f(Z) - K2f(z>)

at p-almost every boundary point z, where K1 and Ko are operators defined by

1.9) K, f(z) = { ng\ﬁ(VE(f)(y), VyN(z —y))dy if it is well-defined

otherwise
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and

— [p(VE) (W), VyN(z —y))dy if it is well-defined
0 otherwise.

(1.10) Kaf(2) = {

In this paper we shall study more precise boundary behavior of the double layer potentials. To do
so, we define

N-g(z) = sup{lg(z)|; = € I}(2) N B(z,71)}
for a function g on D and z € 0D, and
N7g(z) = sup{lg(z)];z € I7(2) N B(z,1)}

for a function g on R%\ D and z € D, where r; is the positive real number satisfying (1.7) and (1.8),
respectively. In §2 we shall prove the following theorem.

Theorem 1. Let D be a bounded domain in R? such that 0D is a B-set (d —1 < 3 < d).
Furthermore assume that there are T > 0 and r; > 0 such that D (resp.R%\ D) satisfies (1.7) (resp.
(1.8)). Letp>1,8—(d-1)<a<land f—pa>0. If\ > B —pa and v is a positive Borel measure
on 8D satisfying

v(B(z,r)) < cr*  for every z € D and for every r < 3R,

then there exists a constant ¢ such that, for every f € AR (9D),

(L) [ @nyar <clfly. and /(KlwaScnfn;,a

(1.12) (p [ove@nyan <y, md | (Kzf)pdVSCHfll,’i,a) :

Using Theorem 1, we shall prove the following theorem in §4.

Theorem 2. Suppose D (resp. R%\ D) satisfies the same assumptions as in Theorem 1.

(i) If B — pa > 0, then, for every A > 8 — pa and every f € AR(OD), there exists a subset E of
D such that H*(E) = 0 and, for every z € D \ E, the integral of the right-hand side of (1.9) (resp.
(1.10)) is well-defined and finite, and

(1.13) lim ®f(z)=FKif(2)

c—rz,x€l (2

(resp. lim &f(z) = Kgf(z)> ,
z—z,x0€lg(z)
where H* stands for the A-dimensional Hausdorff measure.
(ii) If B — pa < 0, then, for every f € A2(OD) and for every z € 8D, the integral of the right-hand
side of (1.9) (resp. (1.10)) is well-defined and finite, and

lim Dq)f(z) = K1 f(2)

T—z,xE€

z—z,z€ERI\D

(resp. lim  ®f(z) = Kgf(Z)) .
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2. Some lemmas and proof of Theorem 1

Hereafter we assume that D is a bounded domain in R? such that the boundary is a -set satisfying
d—1< B <d. Fix a f-measure p on D and a positive number R satisfying D C B(0, R/2) (R>1).
We may assume that

bsr? < w(B(z,7) N OD) < byrP

for all z € 9D and all r < 4R.
Using the Whitney decomposition of R?\ 8D, we contructed an extension operator £ with the
following properties in [W3].

Lemma B. Letp >1and—(d—1) <a <1, A€ R and f € A2(8D). Ifpla—1)+d—B+pA >0
and pA+d — 3 >0, then

VEDWIPEwdy) <l
(/ )

where ¢ is a constant independent of f.

In [W1] we gave the following lemmas.

Lemma C. Let A, k be positive numbers satisfyingd — 8 —A >0 andd —X—k > 0. Then

/ 5(u) My — 2| *dy < rtA—*

)

for every z € D and 0 < r < 3R.

Lemma D. Under the same assumptions as in Lemma C, the function

T - 6(y) My — z|*dy
B(0,2R)

is bounded on R4.
It is easy to see that the following lemma holds.
Lemma 2.1. Let 0 < A < S8 and v be a Borel measure on 8D satisfying
v(B(z,1)) < er* for z € OD and for all r < 3R.
(i) If n+ X >0, then
/| < lz — z|"dv(z) < crmt?

for allr < 3R and z € 6D.
(ii) If n + A < 0, then

/ lz — z|"dv(z) < er™™*
le—z|>r

for allr < 3R and z € 6D.
Here c is a constant independent of z and r.

We are now ready to prove Theorem 1.
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Proof of Theorem 1. Set ¢ = p/(p—1). Since the support of £(f) is included in B(0,2R), we have

(2.1) K1 f(2)] < / IV, )ll2 — y—tdy

B(0,2R)\D

for every z € 0D.
Let us estimate N, (®f). To do so, let z € D and z € I'.(z) N B(z,71), and set

={y € B(0,2R)\ D;|y ~ 2| < 2]z =2}, B={y € B(0,2R)\ D;ly — 2| > 2|z — z|}.

Ify e A, then
lz—2| _ ly—2|
— >4 > > .
o=yl 28(x) 2 T > 50775

If y € B, then
eyl 2y~ 2 LA

Therefore we have

wi@l<e [ IVEOWIe -y

<o / IVED Wz — ' dy,
B(0,2R)\D

3

whence

(2.2) N (2f)(2) < ¢ /B( ‘R)\ﬁIVS(f)(y)IIZ —yl'dy.

Set

16)= [ IVEN Wl - v~
R4\D
From (2.1) and (2.2) we deduce that it suffices to show
(23) [ 1@rave) < ..

To do so, let g be a function in L?(v) such that ||g|[ze(,) < 1, where ¢ = p/(p — 1). Since
A > B — pa > 0, we choose € > 0 such that A —2pe > 8 —paand a —e > —d+ 1. We write

= | / 2)dv(z)|

1/p

1/q
» / / §(y) 90— @=B) /POy _ fa=dt/2=O quap(s) |
B(0,2R)\D

Note that —g(1 —a—(d—B)/p+€) +ql —d+A/p—€ +d = q(A\/p—2e+a—8/p) > 0 and
d—B—-qg(l—a—-(d—PB)/p+e =gla—~1+d— 3 ~¢€) >0. Using Lemma C, we can show that the
last integral is dominated by constant times of ||g||e(,). From this we deduce

J < callgllzagwy

1/p
x ( / IVE() @) PE(y)Pre- Bty / v~ zr*mdu(z)) .
B(0,2R\D
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On account of Lemma 2.1 we have

1/p
7 < eslgllzno) ( [ |5(f)(y)lpfs(y)p_p“‘dw*”fdy) ,

whence, by Lemma B,

(/ I(Z)pdV(Z))l/p <cs </B(o,m)\5 |5(f)(y)Ipé(y)”_”a'”ﬁ“‘dy)

< crllfllp,a-

Thus we see that (1.11) holds. Similarly we can show (1.12).

3. Approximation by Lipschitz functions

NSR. O. U, Vol 50

We next approximate f € A (9D) by Lipschitz functions on 8D. To do so we use the C*-function

in R* such that
0<¢<1, supp¢CBO,1), ¢=1onB(0,1/2).
For each t > 0 and each z € 8D, define

gi(z) =

_ [olz-y)/t)
z) —/T(x)—f(y)d,u(y)-

We note that g;(z) > ct? for every z € 8D and H,1 =1 on 8D.

and for f € A2 (OD)

Lemma 3.1. Let f € A2(0D). Then H,f is a Lipschitz function on 0D and
|Hef = fllpo = 0 ast— 0.
Proof. First we show that H,;f is a Lipschitz function. Since
1
3.1) |9:(2) = ge(2)] < sup |V (w)| 2]z - 2|u(0D),
w

we have

¢z —y)/t) _ oz —-y)/t)

o) 0(2)
@~/ - o=/ | 2=y 0l2) - glx)
<| (@) ) i Dat) |

< a1 ey sup Vo)l = 21 + 2400 sup V6w .

Hence we see that H,f is a Lipschitz fuction on 8D.
We next define

f)duly) — f(x)
/ i "“"" / ” (F@) — £(@))du(y).

/ ¢(($ - y)/t)
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Noting that |z — y| > t implies ¢((z — y)/t) = 0, we have

v 2025 (VO ) ([ 5

p 1/p
< cat™ ( [f(y) - ( )| dﬂ(y)) ’

|y — z|tpe

(/ |J<z)|?du(z>)l/p < et f lp

Therefore we see that ||Hyf — f||, = 0ast — 0.
Next, to see that ||H¢f — fllp.a = 0, we assume that [z — z| < ¢t and write
(3.2) |Hef(z) — f(z) — Hef(2) + f(2)]
oz —y)/t) oz —y)/t)
<1/ e o)
M=)
o1 [ HE B 1) - peauy)
= _[1 + Ig.

Yy ) .

whence

) (F) - F(2)) du)]

If |z — y| <t, then |z — y| < 2¢. Using the mean-value theorem, we have

(33) Y - o) < B2 sup V@) nean )

and
|g¢(2) — g:(2)] < est® |z — 2|

Hence
lz — 2|
I <cg—— fly) — f(x)|d
1< g !w_y‘sztl (y) — f()ldp(y)
<ct——,@/q+a—lx_z/ lf(y) = f(z )l 1y
- | ||Vm9tw—ﬂW”“ )
1/p
_ fly) — f(=@)
<cgt* Yz -2 / I——du y .
= €8 | |< le—y|<2t |y—$|ﬁ+pa ( )
Using Lemma 2.1 for v = pu, we obtain
_n
3.4 /d z z
(3.4) w(z) it [T 2P du(z)
) - f@)F 1-
< cot™~ l/dum/ u(y z — 2P0 gy (s
° (@) o= y[<2t |y-$|ﬁ+p“ au(w) |m—z|gt| | =)

|f(y) — f(@)IP
<C1o/du ./[m i<zt |y —z|Pree aly)-

Furthermore we have
154
(35) Jaar | md’“”

f(2)|”
<Cllzﬁ—p/d/~4 /lz <t |:1:——z|ﬁ+P°“ (/¢ dﬂ(y)>

<en fau) [ HESIE 0

z—z|<t |
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The inequalities (3.2), (3.4) and (3.5) show that

C |Hf(@) = f(2) = Hf (2) - f(2)]P
//Iw-zlgt - lmx— z|Btpa 2 du(z)dp(z) — 0
ast — 0.

We next assume that |z — z| > ¢. Set

_ [z —y)/t)
Jy = / PSR - 1@)dutw).

Then
t'B/P"I-a I ( ) z)|
< epa 1fy) - f@=)]
e 0 /|m yl<t ly — z|B/pte du(y)
1/p
If(y) — f(z)?
) ( lay|<t |y —z|PTPe 1(y)
whence

Ji
/d,ll(l‘) /lx-—z|>t Iz — z|,3+apdl‘(z)
< C15tpa/du(a;)/| - Mdu(g) du(z)

ly — z|P+pe |z —z|>t |z — z|Ptpa’

Therefore we have, by Lemma 2.1,

//Jm z|>t Iil) - z|ﬁ+0‘pd (z)dﬂ($) < cig /du(z) - %—% u(y).
Similarly we set
J2 = / o /t) ———(f(y) — f(2))du(y)

and also have

//,z 2>t |z_z|a+a,,du(z)du z) < c17/du(z) /l e W dp(y),

|Hef(z) = [(x) ~ Hef(2) = FP .
//lw —z[>t |z — z|ﬂ+pa du(z)du(z) =0

as t — 0. Thus we have the conclusion. O

whence

4. Proof of Theorem 2

In this section we shall prove Theorem 2.

Proof of Theorem 2 (i) Let f € A (OD) and denote by G the set of all z € 8D such that the integral
of right-hand side of (1.9) is not well-defined or K; f(z) = Zoco or the indicated limit does not exist
or lim,_,; zer, (z) f(x)(z) # K1 f(2). We assume that H*(G) > 0 and get a contradiction.

We shall first show that G is a Borel measurable set. To see this, let r be a positive real number
satisfying r < r; and set

M:.(®f)(2) = sup{@f(x);z € I+(2) N B(z,7)}.
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To see that M. .(®f) is lower semicontinuous on 9D, let b € R and M, ,(®f)(2) > b. Then there is
zo € I, (20) N B(20,7) such that ®f(zo) > b. Choose € > 0 satisfying :

|zo — 20| + € < (L4 7)d0(xo) and |zo — 20| +€ < 7.

Then, = € I, (2)NB(z,r) for each z € dDNB(z,,€) and hence M, ,.(®f)(z) > b. Therefore M, .(®f)
is lower semicontinuous on 8D.
Similarly -the function
‘ 2+ inf{®f(z);z € [-(2) N B(z,7)}

is upper semicontinuous on 9D. So we see that the set

{z € 8D; limsup ®f(z)# liminf &f(z)}
z—z,2€l,(z) z—z,2€l(2)

is Borel measurable. Since the function z — K f(z) is Borel measurable, the set G is Borel measurable.
Since we assumed that H*(G) > 0, there is a compact subset F of G such that H*(F) > 0.
Using Frostman’s lemma, we can find a Borel measure v supported on F' such that v(F) > 0, and
v(B(a,r)) < 1 for every a € R* and 7 > 0 (cf. [C, Theorem 1 in Chapter 2]).
We claim that

im — ®f(z) = K1f(2)

z—z,2€l,(2)

for all z € 0D with the exception of a set E with v(E) = 0. To see this, denote by Ey the set of all
z € D such that the integral of the right-hand side of (1.9) is not well-defined or K; f(2) = £oo. By
(2.3) we see that v(FEy) = 0. ’

For each € > 0 we put

E.={2€ 08D\ Ey; limsup |®f(z) - K;f(z)| > €}.
z—z,2€l(z)

We show that v(E,) > 0. To do so, we choose a sequence {f,} of Lipschits functions such that
|fo — fllp.a — 0. This choice is possible by Lemma 3.1. In [W2, Lemma 3.3 and Theorem 1] we saw
that if g is a Lipschitz function on 8D, then

(4.1) lim ®g(z) = Ki1g(z) for every z € 8D.

z—z,0€D

Let z € E.. Then, by (4.1),

e < limsup |®f(z)— K1f(2)]
z—rz,2€l (2)

< limzl;p( ) |®f(x) — @fn(z)| + [K1fa(2) — K1 f(2)],

whence

1< S (N (f = F)() + Kalf = J2)(2)F) on E.
This and Theorem 1 yield
v(E) <L ( [ 85 = eran) + [ Kt - £)e )Pdv(z))
S E;”f - fn”p,a'

As n — 00, we see that v(E.) = 0 and the claim is true. This yields the desired contradiction.
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(i) Let f € AZ(AD). Since pa — B > 0, we choose ¢ > 0 satisfying pa — 3 — 2pe > 0 and
a—e>fF—(d—1). Let x € D and z € 8D. Then

1= [ KVENW), VN ~y) - VyN( — p)ldy
RI\D
cslz — 2|6 z — y|t—d—e
<ale-o [ VOB -y
vole=o [ VENWI -y = h4 g
RI\D

By Holder’s inequality we have

1/p
I < sl ~ 2| ( / |VS(f><y)|P6(y)?“ﬂa*d+ﬁ+pedy>
RI\D

1/q
x / §(y) 90— (d=0)/pte) |5 _ y1ai-d—e) g, .
B(0,2R)

Noting that —g(1 —a — (d—8)/p+¢€)+q(1 —d—¢€) +d = g(a — 2¢ — 3/p) > 0 and using Lemmas D,
B, we obtain

1/p
I < cylz — 2 (/ _ IVS(f)(y)I”(5(y)””“““"“’edy) < eslz — 2| fllp,a-
RAD

Similarly we have the same estimate for I, and hence
(4.2) I <colz — 2| fllp,a-

Since ®f(z) is finite, we see, by (4.2), that the integral of the right-hand side of (1.9) is well-defined
at each z € 9D. We also see that I - 0 as z — z in D. .

Since we can prove similarly the assertions related to the set R%\ D and K, f, we have the conclusion.
0
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