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Abstract

For a p”-state linear cellular automaton L, we give a systematic set which has one-to-one, onto corre-
spondence with the set {0,1,2,... ,p" — 1}. This set may play an important role in examing the limit
set of space-time patterns as a Z,--valued upper semi continuous function.

1 Introduction

Cellular automata are discrete dynamical systems with simple construction. We define a cellular automa-
ton as follows.

Put Z, ={0,1,... ,n— 1} for n € N. Let p be a prime number, r a natural number and P the set of
all configurations w : Z — Z,- with compact support. Let a linear transition rule L : P — Z,- be defined
as follows:

Lw(z) = Z cw(z+k) (modp") forwé€ P, (1.1)
keG

where the set G is a finite subset of Z with §G > 2 and ¢ € N.

Patterns of linear cellular automata were studied by some people. Existence of the limit of a series
of space-time patterns is proved [1, 3, 5, 6]. E. Jen showed that a series {L‘w(z)|t € N} is aperiodic
for some L with p =2 in [2]. In [5], S. Takahashi considered the case where L is p"-state linear cellular
automata with the initial state & which is 1 at the origin and 0 at others. He examined the limit set
with respect to each non-zero state, by using the fact that every state appears in the set {L'do(—(t —
1)ry —r2) |t =1,...,p"t1}. However, when we consider the limit set as a multi-valued function, the set
{LtSo(—(t = )ry —r2) |t =1,... ,p '} does not work well. Hence we need another set which includes
every state and plays a useful role in examing the limit set. So we give a systematic set which has
one-to-one, onto correspondence with the set {0,1,2,...,p" — 1}. This set may play an important role
in examing the limit set of space-time patterns as a Z,--valued upper semi continuous function [4].

2 The result

We deal with the specified transition rule, which L satisfies some condition. We say that L satisfies the
condition (A) if there exists r1,7; € G satisfying

(I) Cry /Pv Crz/p ¢ N,
(II) r; is an either maximum or minimum element of the set G,
(III) 7y is extreme or ry = ZkeG’r#k Bk with 0 < 3 < 1 such that Zke(;:r#k Br=1and p 13 ¢ N,
/

(IV) if ry is maximum [resp. minimum], then for s € {1,2,... ,p— 1} 1€ {1,2,... ,|r; —ra| — 1} there
does not exist a path from —rys(p” —p"~!) +1 [resp. —r1s(p” — p"~!) ~ ] to the origin, that is,
we have

=Yk ¢ {-ris(p" —p" )+ 1T € {12, | =g} - 1})
keG
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[resp. — Z ok ¢ {-ris(p" = p" ) =111 €{1,2,... ,|r1 — 2| = 1}}].
keG ’

for the set {ax}reg C NU {0} such that 3, . ar = s(p” —p"!) with s € {1,2,... ,p — 1}.
keG

Here, an element k € G is exztreme if an element k is not expressed as a convex linear combination of
other elements of G. We note that a maximum or minimum element of the set G is extreme.

T

00000000000000000000100000000000000000000
00000000000000000005030000000000000000000
00000000000000000010601000000000000000000
00000000000000000501070300000000000000000
00000000000000001040604010000000000000000
00000000000000050702060103000000000000000
00000000000000102070407020100000000000000
00000000000005050101070703030000000000000
00000000000010004000600040001000000000000
00000000000503040406020404050300000000000
00000000001060500020402000506010000000000
00000000050103070202060601050703000000000
00000000104020407000400070402040100000000
00000005070602070504040301060201030000000
00000010203040106030003060104030201000000
00000505050501010101070707070303030300000
00001000000040000000600000004000000010000
00050300000404000006020000040400000503000
00106010004000400060406000400040001060100
05010703040404040606020204040404050107030
t 110406040500000002000400020000000504060401

Figure 1: Space-time pattern of L3do(z) = 30p(z — 1) + 5p(x + 1) (mod 2%)
By using ry, 72 € G which satisfy (I),(II),(III) and (IV), put
t(r.j) = j(p" - p"") . (2.1)

and

l(TJ) = _(t(rvj‘) “pr_l)rl _pr_lTZ (22)
for j € N. We define ég € P as

w-{3 132

We shall prove that the set {L*"9)§,(i(r,5))|1 < j < p'} has one-to-one, onto correspondence with the
set {0,1,2,...,p" —1}. We shall call the set {a, |n = 1,... ,k} a k-set, if the set has one-to-one, onto
correspondence with the set {0,1,... ,k—1}.

We need the following lemmas later.

Lemma 1. [5] Suppose L is defined as (1.1). For j,l € N, we have

Pt g (z) = L”’Nldo(y) if there exists y such that p'y =z
T 0 otherwise '

Lemma 2. Let g€ {1,2,... ,p—1} and t = jp"  withj € N. Ifv=plgfor 1 (0<{<r - 2), then
t—v =plq for some ¢’ € N such that ¢'/p ¢ N.
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Proof We have t — v = p'(jp"™"! —¢). Put ¢ = jp"~""! —¢. So we obtain ¢'/p ¢ N by ¢q €
(1,2,...,p—1}. 0

- Lemma 3. Let L be defined as (1.1) and satisfy the condition (A). Suppose r € N, r > 2 and j €
{1,2,...,p"}. Let ri,r2 € G satisfy (I),(I1),(III) and (IV) of the condition (A). Then the following

assertions hold:

(i) LUD&(i(r,1))/p ¢ N.

(i) The set {nL*3N4(i(1,1)) mod p|1 < n < p} s a p-set.
(iii) Suppose |ry — 12| > 2. If ry > rafresp. vy <), then

LD §o(=t(r, j)ry + 1)
[resp. Lt(r’j)t;o(-t(rsj)"l -1)

o
=2 @
—_—
)
)
N’

holds for 1 € {1,2,... ,|r1 — r2| —1} and

L'(r’s”r—l)%(—t(r,spr"])rl+l) = 0
[resp. Lt(r"‘"p_l)ﬁo(-t(r,sp"_l)-rl—l) = 0]

holds for 1 € {1,2,...,p" Yry ~r2| —1} and s € {1,2,... .p—1}.
Proof. (i) For a,b € N put 444Cs = (a + b)!/(alb!). We have

r—1

LD Eo(i(r, 1)) = propret Cpr_xclr’:‘f‘l—p cg;q (mod p")

by (II) and (III) of the condition (A). Since

(pr _pr—l)(pr _ pr—l _ 1) . (pr . prwl - pr—l + 1)
prvlg

pr _pr—l Cp""] -

b

p does not divide pr_,r-1Cpr-1 by Lemma 2. Then p does not divide LD 4o(i(r, 1)) by (1) of the
condition (A).

(i) We shall show that n L« 8(i(1,1))#0 (mod p) holds for all n € {1,2,... ,p—1}. The proof is by
contradiction. Assume that there exists ng € {1,2,...,p — 1} such that ng L**&(i(1,1)) = sop
holds with some so € N. Then we have L*11§,(i(1,1)) = sop/no. Since no < p— 1, so/no € N
holds. Therefore p divide L**1)§,(i(1,1)), which contradicts assumption.

(iii) We only show the case where ry > ry. Since 1 <1 < ry—ry—1, there does not gxist the path from the
origin to the point —#(r, j)r1+1 by (IV) of the condition (A). So we have L") §o(~t(r, j}r1 +1) = 0.

Since t(r,sp" 1) = p"t(r, s), we have
Lt("”’r‘l)lgo(—t(ﬂ SPNI)H) = L'(r’s)(so(_t("y s)r1)
LU gy (—t(rysp" ey + 9" = ))) = LNG(—t(r,s)ry + (1 — 72))
Lt(r””hl)tso(—t(r, sp"Hr+l) = 0
forle{1,2,...,p" Y (ry —ry) — 1} and s € {1,2,... ,p— 1} by Lemma 1 and the equation (2.3).

In case r; < ry, we can prove it in the same way as above.

O
Lemma 4. Suppose r > 2 and L satisfies the condition (A). Then

LD go(i(r, 5)) = L™ 6o (i(r,m)) + s Dg(i(r,pr™))  (mod p")

holds for j = sp™ ' +m with s € {0,1,... ,p—1} and m € {1,2,... ,p""'}.
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Proof. Let r1,7 € G satisfy (I),(II),(III) and (IV) of the condition (A). We first consider the case where
r1 > ro. We compute L") 6, (i(r, j)) from the values at time t(r,j — 1). By the property of L there
exists B(r,k) € Nfor k € {1,2,...,p""'(r; — ry) — 1} such that B(r, k) does not depend on j and

r=1 _r-1
cf
re

L D8o(i(r,5)) = propr-1Cproach ~22
P T (r —ra)—1

+ Y. B(rkb(rj-1,k)

k=1
+ e 7P LIS (i(r = 1)) (mod p),

where b(r, j, k) = L") 8(—t(r, j)r1 + k) for k € {1,2,... ,p7"H(r; — ry) — 1}. Put

P T r—r2)-1

di)=" Y B(rkb(r k),

k=1
and we rewrite the equation above as follows:
L Dbo(i(rg)) = LW6o(i(r,1)) +d(j — 1) + LD (i(r,§ - 1))

j—1

FLDo(i(r, 1)) + Y d(l)  (mod p7)
I=1

il

from Euler’s theorem (n‘"r"’r~l =1 (mod p")).
We have b(r,sp"~",k) = 0 for all k € {1,2,... ,p" " !(r, — rz) — 1} and all s € {1,2,... ,p— 1} by
Lemma 3(iii) and LX"2" ") do(—t(r, sp™1)ry) = 1 (mod p"). Since B(r, k) does not depend j, we have

d(m + sp™™') = d(m) (mod p") (2.4)
form € {1,2,... .p""'} and s € {1,2,... ,p — 1} by (II) of the condition (A).
For j=sp™ ' +mwithm € {1,2,... ,p" '} and 5 € {0,1,... ,p—1}
LU D6o(i(r, ) = GLVdo(i(r, 1)) + Y d(l)
I=1
pru-l'_l m—1
= sp" LY (i(r 1)+ Y d(l) +mI T Y8(i(r, 1)) + Y d()

=1 =1
= LU™g(i(r,m)) + sLt("‘pr-1)5o(i(r, p"')) (mod p")

by (2.4). In case ry < rg, putting b(r, j, k) = L*")§(—t(r,j)r — k), we can prove in the same way. O
Put
a(r, j) = L9 o(i(r, 5)) (2.5)

for convenience. We will prove the set {a(r,j)|1 < j < p"} is a p"-set. In order to prove the following
lemma, we define a map £ : P — N as follows:

Luw(z) = Z cxw(z + k), ' (2.6)

keG

where the set G and ¢k are as in the definition of L. We note that there exists k(r, j) € N such that

Ct(r’j)tso (z(r,])) = k(r’j)pr + a(raj)‘ ' (27)
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i(r,4) r,3) (r,2) i(r71)

Figure 2: The relation among #(r, j),i(r,j) and a(r, j).

13

Lemma 5. Suppose a(r,j) is defined as (2.5) and the set {a(r,j)|1 < j < p"} is a p"-set. Then the

following assertions hold:
(i) a(r+1,5) # a(r + 1,1) holds for j,l € {1,2,...,p"} with j #1.
(i) There ezists ko € N(0 < ko < p— 1) such that a(r,p"™') = p"ko.

(iii) a(r + 1,5)Ea(r + 1,1) + ka(r + 1,p") (mod p"t') holds for any k € {1,2,... ,p— 1} and j,l €

{1,2,...,p"} with j #£1.

(iv) a(r+1,j)+kia(r+1,p"Ea(r+1,5)+kea(r+1,p") (mod p™t') holds for any ki, k; € {1,2,... ,p—1}

with ky # ky and j € {1,2,...,p"}.

Proof. We have
a(r,§) = LD (i(r, 7)) = LTI 8(i(r +1,5))  (mod p")
for j € {1,2,...,p"} by Lemma 4, since
LR D so(pi(r, 7)) = LD (i(r + 1, 5))
by Lemma 1 and
LD (i(r,3)) = L7V bo(pi(r, ) (mod p).
Therefore by (2.8) there exists k'(r,j) € Nfor j € {1,2,... ,p"} such that
LOTIDEo(i(r +1,5)) = K (r, j)p" + a(r, ).

So we obtain by (2.7) and (2.11)

kr+ 1,00 +alr+1.5) = K(ri)p" +a(r.j)
k(r+1,0p" M +a(r +1,1) = K'(r,)p" + a(r,1).

for 5,0 € {1,2,... ,p"}.

(2.10)

(2.11)

(2.12)
(2.13)

(i) Assume a(r + 1,j) = a(r 4+ 1,1) holds for 5,1 € {1,2,...,p"} with j # [. By (2.12) and (2.13)
a(ryj)—a(r, 1) = (k(r+1,7)—k(r+1,0))p " —(k'(r, j)=K'(r,1))p", which contradicts the assumption.
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Figure 3: Example of L3do(z) = 3do(x — 1) + 5dp(x + 1) (mod 2%). The values in the dotted regions are

a(3,1), a(3,2),

oy a(3,5).

(ii) We will prove it by induction on r.

(a) In case r = 1, it is clear by definition.

b) In case r > 1, assume that it is true for r = r'. Then we have a(r’,p") = pa(r',p" !
p p

pp” ko = p ko (mod pr’) by Lemma 4 aI}d the assumption of induction. So there exists
ko € N(0 < kg < p —1) such that a(r' +1,p" ) = p" k{, by (2.12).

(iii) The proof is by contradiction. Assume that there exists k; € N such that a(r +1,7) = a(r +1,1) +
kya(r+1,p") (mod p™1). Then there exists so € N such that o(r+1, ) —a(r+1,1)~kya(r+1,p") =

sop"T!. There exists ko € {0,1,...

the equations (2.12) and (2.13), we have

a(r,j) —a(r,1) = (k(r +1,7) = k(r + L,O))p"*! = (K'(r,5) = ¥'(r,1))p"

+a(r+1,5) —a(r+1,1)
= (k(r+1,5) = k(r + L)) = (K'(r,5) = K'(r,1))p"
+ Soprﬂ + kok1p”

,p — 1} such that a(r 4+ 1,p") = p"ko by the assertion (ii). By

=p{(k(r+1,5) = k(r + 1,1))p — (K'(r, 5) = K'(r,1)) + sop + kok1},

which contradicts a(r, j) # a(r,{) by 0 < a(r,j) —a(r,l) <p" - 1.

(iv) It is clear by the property of modulus.

O

Proposition. Suppose r € N. If the set {a(r,j)|1 < j < p"} is a p"-set, then the set {a(r +1,5)|1 <
J<p ™t} is aptl-set.

Proof. We obtain the conclusion by the assertion (i), (iii) and (iv) of Lemma 4 and Lemma 5.

O
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Theorem. For a prime number p andr € N, let L be defined as (1.1) and satisfy the condition (A). Put
t(r,5) = j(p" —p"") and i(r,j) = —(t(r,j) — p" " )ri — p""lry, where ri,r2 € G satisfy (1),(I1),(1I1) and
(IV) of the condition (A).

Then the set {L'")8o(i(r,5)) |1 < j < p"} is a p"-set.

Proof. The proof is by induction on r.

(i) In case r =1, from Lemma 3(iii),

L'OD6(i(1,) = wayCpeV Her, + D LIID6(i(1, 5 ~ 1))
= L'WY (i1, 1)) + LI D8(i(1,5 — 1))
FL V8451, 1)) (mod p)

1l

for 1 < j < p by Euler’s theorem (n?" """ =1 (mod p") for any r € N) and L'0:18y(i(1,1))
,(1!1)Cpcf‘(ll’l)_lcr2 (mod p). So the assertion holds for r = 1 from Lemma 3(ii).

(i) In case r > 2, we get the conclusion by the proposition above and the assumption of induction.
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