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Abstract

We discuss existence of global solutions of infra-exponential growth to a linear partial differential
equation with constant coefficients whose total symbol P(€) has the origin as its only real zero. We show
that such a solution necessarily reduces to an entire infra-exponential function if and only if the complex
zeros of P(() is absent in a strip [Im¢| < 6, |[Re(| > 1/4. This is a generalization of Schwartz’s theorem,
which in turn generalizes the classical Liouville theorem in the theory of functions.
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1. Introduction

In the theory of functions a well known theorem of Liouville asserts that a bounded entire function
reduces to a constant. A more generalized form asserts that an entire function of tempered growth (i.e.
of polynomial growth) is a true polynomial. Schwartz[S] explained this theorem employing the space &'
of tempered distributions and suggested the following generalization:

Theorem 1.1. Let P(D) be a linear partial differential operator with constant coefficients. Assume that
its total symbol P(€) has the origin as its only real zero. Then every classical solution of P(D)u = 0,
defined on the whole space R™ and has tempered growth, reduces to a polynomial. If the solution is bounded,
then it reduces to a constant. v

To illustrate our fundamental argument, we sketch the proof: u can be considered as a global section
of &’. Hence we can apply the Fourier transform and we obtain

P(£)u(§) = 0.

Therefore the support of @ is contained in the real zeros of P(£) which by assumption comprises the single
point {0}. By the structure theorem of distributions supported by one point, we see that

u(€) = Q(De)d(£)

with a polynomial Q. After the inverse Fourier transform we conclude that u(x) = Q(—z) is a polynomial.
The additional assertion follows from the fact that no polynomials other than constants are bounded
on the whole real space. '
We need not limit the solutions to classical ones and treat tempered distribution solutions directly. But
usually we limit so in order to give a classical fragrance to our theorems of such type.

1gupported in part by Grant-in-Aid for Scientific Research(No. 07404003), Ministry of Education, Science and Culture.
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Schwartz’s argument can be generalized without modification to the spaces of non-quasianalytic type
ultradistributions or the classical solutions of the corresponding growth. On the other hand, we encounter
a more complicated situation when we consider the space of quasianalytic type ultradistributions.

In this article, as a prototype of such study we shall discuss the extreme case of quasianalytic ultra-
distributions, namely, hyperfunctions, or the infra-exponential growth condition corresponding to it. The
case of solutions with growth corresponding to general ultradistributions will be treated in our forthcom-
ing paper. Some of our final results might be already known since their appearance is very classical. But
we believe our proof is new even in that case.

Finally the author expresses his hearty gratitude to Dr. Yasunori Okada who read the manuscript and
pointed out mistakes in the first version.

2. Case of operators with no zeros in a strip

As is easily seen by means of the exponential solutions employed in Fundamental Principle, an operator
P(D) whose total symbol has real zeros other than the origin possesses bounded non-constant global
solutions. Therefore we assume hereafter that the total symbol of our operator has only the origin as its
real zero. In spite of this assumption, the matter is not so simple as in the case of S’. This is because we
now have to consider the support at infinity of @(£). In this section we shall show the following

Theorem 2.1. Let P(D) be a linear partial differential operator with constant coefficients. If there ezists
0 > 0 such that P({) has no complex zeros in the strip

Im (| <,

then every classical solution of P(D)u = 0 of infra-exponential growth is trivial. If P(() has only real zero
at the origin and no complex zeros on

Im¢] <4,  [Re¢|>d7Y,
then every classical solution of P(D)u = 0 of infra-exponential growth is in fact an infra-exponential entire
function.

Proof. Infra-exponential growth means the following: for any € > 0 there exists C. > 0 such that
lu(z)| < C.efl®l.

Such u can naturally be considered as a Fourier hyperfunction (see [Kw], or [Kn2], Chapter 8). Then
applying the Fourier transform we obtain P(£)u(€) = 0. At finite points where P(€£) # 0, we can multiply
the real analytic function 1/P(£) to both sides of the above equation. Thus we conclude that %(¢) = 0
outside the origin. Also at a complex neighborhood of the sphere at infinity, in view of the Seidenberg-
Tarski theorem (see e.g. [H], Appendix), we have in this region an estimate of the form

(2.1) [P(O)] = Cl¢|™*,

where ¢ > 0 is a rational number. Therefore 1/P(€) serves as a multiplier to the Fourier hyperfunctions
in this region, and we conclude that ¥ is also zero there. By now the support of % reduces to the origin,
and by the well-known structure theorem for such hyperfunctions, it is of the form J(D¢)8(¢) with an
infra-exponential entire function J(z). Thus we conclude that u(z) = J(—z). If P"has no real zero even
at the origin, we conclude by the same discussion that « =0. O

We can sharpen the first assertion of the above theorem to solutions of exponential growth with expo-
nential type restricted by the distance of the complex zeros of P(¢) from the real axis:

Proposition 2.2. Assume that P(¢) has no complex zeros in the strip

Im | <4.
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Then every classical solution of growth O(e®1l) is identically equal to 0.

Instead of Fourier hyperfunctions, we now employ the space of Fourier ultrahyperfunctions introduced
by Park-Morimoto[PM] and Sargos-Morimoto[SM]: A solution u of indicated growth accepts the Fourier
transform which is interpreted as an element of the space Q(D™ +iBs; {0}) of Fourier ultrahyperfunctions.
Recall first the general notation of Fourier ultrahyperfunctions (we change the notation of [SM] a little in
order to fit better with Sato’s original notation for Fourier hyperfunctions): For two convex sets K, L C R",
we define the space of test functions

P.(D" +iK; L) = | J{p(2) € OB +iK.); p(z)eHIHHeRe 2| < o0},

e>0

This is naturally endowed with the structure of DFS(dual Fréchet-Schwartz)-type topological linear space.
Tts dual, denoted by Q(D" + iK; L), is an FS(Fréchet-Schwartz)-type space and is called the space of
Fourier ultrahyperfunctions of growth e#:(*) and defined on the strip R™ + iK. Hp(z) denotes the
supporting function of L:
‘ Hp(z) = sup(z,§).
geLl

The Fourier transform brings the space P, (D™ +iK; L) isomorphically to P,(D™+iL; —K), hence Q(D" +
iL;K) to Q(D™ —iK; L). What we cited in the above is the special case where K = Bs, L = {0}, since
we have obviously u(z) € Q(D™; Bs), where Bs denotes the closed ¢-ball centered at the origin.

These understood, from P(D)u = 0 via the Fourier transform we have P(¢)u(¢) = 0. Since by the
assumption P(¢) has no zeros on R"™ + iBs and bounded from below as (2.1), we conclude that u(¢) =0
as an element of Q(D" + iBs; {0}), hence u = 0.

The assumption on the complex zeros at infinity is satisfied by any hypoelliptic operator. Hence our
theorem applies e.g. to the heat equation. Thus its classical solutions of infra-exponential growth are
necessarily entire infra-exponential. Notice that for the heat equation, any classical solution of growth
O(esmz) for Ve > 0 becomes entire holomorphic. In fact, by the Tihonov-Técklind uniqueness theorem
applied for any fixed s € R such a solution agrees on t > s with the one given by

1
/E(t — s,z —y)u(s,y)dy, Where E(t,z) = W/_z.e—xz/z;t.j

(The analytic continuation with respect to the space variables can also be shown by the Cauchy-Kowalevsky
Zerner theorem. The analytic continuation with respect to the time variable is a property of analytic
semigroup.) On the other hand, the heat equation obviously has entire solutions of order greater than 1.
(Such can be given e.g. by the integral of the form

/ eEsHEt1E ge )

Thus our theorem asserts that for entire solutions of the heat equation, the infra-exponential growth order
posed on the real axis necessarily extends to the imaginary direction, too. This can be considered as a
kind of Phragmén-Lindelof principle.

3. Case of operators with zeros approaching the real axis

The argument of the preceding section leaves the possibility that if P(¢) has zeros approachlng faster the
real points at infinity, there may be a solution of infra-exponential growth of which the Fourier transform
has support not only at the origin but also at the corresponding real zeros at infinity. In this section we
shall prove that this really takes place.

Theorem 3.1. Let P(D) be a linear partial differential operator with constant coefficients. Assume that
for any 6 > O the region
Im¢| <68, |Re¢|>67t
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contains complex zeros of P(C). Then P(D)u = 0 always admits a C® solution of which all derivatives
are of infra-ezponential growth, but which is not entire infra-exponential.

Proof. We shall first show that there exists a non-trivial Fourier hyperfunction f(€) supported by the
sphere at infinity S and satisfying P(¢)f () = 0. Unfortunately we cannot present concrete examples
of such f(£). But it can be shown in an abstract way by observing that the kernel of the following
multiplication mapping is non-trivial:

(3.1) P(&)- : QIS5 — QIS5 ).

Here Q[S™!] denotes the space of Fourier hyperfunctions with support in $%1. This is an FS-type
space in good duality with the DFS-type space P,(S%!) of real analytic functions of exponential decay
defined in a complex neighborhood of the real set S751. More concretely, in this case, an element ©0(¢) of
P.(S%1) is defined in a complex domain of the form

U= {¢=¢+im; €] > 67Y, [n} < 8}

and there satisfies the estimate |p(¢)| < Ce~%¢! for some § > 0. Let us denote by @° the corresponding
Banach space defined with the natural supremum norm

llell := sup [p(¢)[e%1¢!.
Ceus

The DFS-structure of P, (S%!) is defined by the natural inductive limit of these &° with respect to § > 0.
Hence by Grothendieck’s theorem a bounded set of this space is contained in some of the Banach spaces
®°. Moreover, a bounded closed set of P, (S%!) becomes compact and contained in some &°.

Now consider the mapping dual to (3.1)

(3.2) P(€)- : Pu(S%Y) — P(STY).

The non-triviality of (3.1) is equivalent to the non-denseness of the image 7 of this mapping. Let 7 denote
the sequential closure of Z, that is, the space of elements ¢ € P,(S™1) which can be obtained as the limit
of a sequence from Z. A converging sequence is bounded, hence converges in some @’ by its supremum
norm. Thus any element of Z vanishes on the complex zero set of P(() in the region U? for some & > 0,
which is non-void by the assumption. ‘

Choose any bounded closed, hence compact, subset K of P,(S71). As remarked before, it is compact
and contained in some ¢%, hence in &’ for V6 < §. For such 6 , the topology of the Banach space @°
and the original topology of P.(S7% 1) agree on K. Thus ZN K is closed. Therefore by Krein-Shmulyan’s
theorem T is the true closure of Z. This implies that Z cannot be the total space.

Now we have found an abstract element f(£) € Q[S"!] which satisfies P(¢)f(€) = 0 as Fourier
hyperfunctions. The inverse Fourier transform u of f gives a solution in Fourier hyperfunctions of the
equation P(D)u = 0. ,

But we can say almost nothing about the nature of the inverse Fourier transform of f. We therefore
replace this element by one with better property. Let

N

F(&) =) Fj(€ +iI;0)

=1

be the boundary value representation of the Fourier hyperfunction by infra-exponential defining functions
F;(¢),j =1,...,N on the respective wedges. By the discussion of [Knl], we can find a positive function
x(t) of t > 0 monotone increasing to co and a sequence of constants Cy, such that

Fi(€+in)| < Creld/XUED on1/k <l <6, j=1,... N
J

Then we can find an infra-exponential entire function J(£ + ) with no zeros in |5 < & for some 6 > 0
and satisfying there

(3.3) |J(€ +1in)| > el€l/x(I€N+1g1M/?
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Thus G;(¢) = Fj(¢)/J(), j =1,...,N are of O(|¢|™™) for m = 1,2,... uniformly on 1/k < |Im¢| <
for k =1,2,.... Now the new Fourier hyperfunction g(¢) = f(£)/J(£), or more precisely the one defined
by Gj(¢),j=1,...,N, again has support in 87! and satisfies P(€)g(¢) = 0.

The inverse Fourier transform v of ¢ is a Fourier hyperfunction satisfying P(D)v = 0. Moreover, by
the above estimate for the defining functions of g, v can be directly calculated by the integral

N
(3.4) v(z) =) (2m)" / G;(€ + ien;)eEFem)de,
5=1 R

where n; € Ij, j = 1,...,N are unit vectors. This gives a continuous function of growth eclzl. Since
the integral is independent of the choice of € > 0, v(z) is actually of infra-exponential growth. The same
holds for all finite order derivatives of v. This proves our assertion. [

Remark In the above proof we gave a solution of infra-exponential growth in C* regularity. But
we can always present such a solution in entire analytic functions. To show this, we replace the entire
infra-exponential function J(¢), employed to make g rapidly decreasing, by the entire function e It is
obvious that g(§) = f (5)6_652 has entire function v as its inverse Fourier image, as is seen from formula
(3.4). Tt is also obvious that v satisfies P(D)v = 0. But we have to check that v # 0, or equivalently g #Z 0
as a Fourier hyperfunction. This can be proved by the Phragmén-Lindelof principle as in Palamodov[P].
Here for our purpose it suffices to see that this holds at least for some € > 0, which can be shown more
easily: Set g.(¢§) = f ({)e_652 and assume that these are equal to zero as Fourier hyperfunctions for all
€ > 0. But when ¢ — 0 we have g. — f as Fourier hyperfunctions. In fact, take a test function ¢ € P,.
Then we have

(3.5) (ge, ) = (f0e™%).

Here if ¢ belongs to the Banach space #° by the notation used in the proof of Theorem 3.1, then as ¢ — 0
we have

2
sup |p(¢)(1 —e™5¢)|e®/2I L g,
CeUs/2

hence <p(§)e‘5§2 — ¢ in /2 hence in P,. Thus (3.5) tends to (f,¢). Therefore g — f (weakly, hence
strongly, because Q(D™) is an FS-space). Thus, given that f # 0, some of g, should be non-trivial.

Notice, however, that the growth order of such entire solutions u to the imaginary direction is very
high in general.

One might think that the discussion of Theorem 3.1 together with use of modified Fourier hyperfunctions
would give similar counter-examples for general non-elliptic operators including hypoelliptic ones, with
respect to the zeros at infinity of their symbols. But the inverse Fourier image of a modified Fourier
hyperfunction calculated by the modified version of formula (3.4) need not be of infra-exponential growth
on the real axis.
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