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Abstract

A unique cyclic phosphatidic acid (cPA), named PHYLPA, which was originally isolated from
myxoamoebae of a true slime mold, Physarum polycephalum, and composed of cyclic phosphate and
cyclopropane-containing hexadecanoic acid (1-3), was shown to stimulate the Gq protein-coupled signal
transduction system and activity of protein kinase C (PKC) in vitro. When fibroblast cells were treated with
PHYLPA, phosphoinositide hydrolysis and Ca®" mobilization were immediately occurred, and a specific PKC
substrate, MARKS, was markedly phosphorylated. Some derivatives of PHYLPA synthesized chemically also
showed the obvious stimulatory effects on MARKS phosphorylation. These results show that cPA may act on
a cell surface, specific receptor which activates Gq protein, a member of trimeric G protein, and
phosphoinositide breakdown and PKC activation occur subsequently.

While, cPA obviously stimulated purified PKC activity, and the extent of activation was much higher
than that by usual lysophosphatidic acid (LPA) or diacylglycerol (DG). This indicates the possibility that the
cPA may be generated by the lipolytic action from plasma membrane and activates PKC directly in the cell.

¢PA activated both conventional PKC (cPKC) and novel PKC (nPKC), former of which has
Ca2+~regulatory domain, and latter one has not, at different extents. One of the sterecisomers of natural
PHYLPA, assigned as sodium 3-0-(9'S,10’R)-9’,10’-methanohexadecanoyl]-sr-glycerol 1,2-cyclic phosphate,
showed an apparently high stimulatory activity on these enzymes.

Introduction
A unique Physarum lysophosphatidic acid, PHYLPA, has been isolated as a specific inhibitor of DNA
polymerase (1). PHYLPA, composed of cyclic phosphate and cyclopropane-containing hexadecanoic acid, and
its derivatives which are generally refferred to as a cyclic phosphatidic acid (cPA) selectively inhibit a family
of DNA polymerase a, e.g. DNA polymerase o, & and € (3). Inhibition of the enzyme is largely the result of
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competition between the lipid and the template DNA (1). .

We tested the effects of PHYLPA on cultured cells. It inhibits proliferation of human fibroblasts in a
reversible manner, and an increase in intracellular cAMP is considered to be critical for the antiproliferative
action by PHYLPA (4).

A usual LPA which has a common fatty acid at C-1 and a phosphate at C-3 position of glycerol
backbone shows further low or no effects on DNA polymerases (1,3). LPA elicits a variety of cellular
responses in various types of cells (5-8), and it acts as a hormone-like lipid mediator that induces mitogenic
resposes in the cells through a pertussis toxin-sensitive signaling pathway (9-14). LPA is proved to be
produced in activated platelets from phosphatidylinositol (PI) and phosphatidic acid (PA) during blood
clotting (15-17) and in growth factor-stimulated fibroblasts (18). And it is considered to play an essential
role in wound healing and tissue regeneration in the minute environment (7).

These differences in the effects by cPA and LPA on cell proliferation were demonstrated to depend on the
structure composed of cyclic phosphate or non-cyclic phosphate (manuscript in preparation). They may bind to
different receptors and activate different types of G-protein. But, both ¢cPA and LPA elicit phosphatidylinositol
turnover in the same manner, suggesting the phospholipase C (PLC)-PKC pathway is not necessary for
evoking a proliferative, or antiproliferative response caused by these lipids in the cell. PLC-PKC pathway is
considered not to be involved in the proliferative process that is regulated by LPA and cPA.

Although the biological significance of activation of PKC by both LPA and cPA is not clear but the
activation mechanism of PKC by these substances is to be clarified. In this report, we demonstrated that cPA
activate PLC-PKC-pathway in vivo, and it also apparently elicits the activity of purified protein kinase, cPKC
and nPKC, in vitro.

Materials and Methods

Chemicals. Fatty acid-free bovine serum albumin (FA-free BSA), DNase-free BSA, 1:palmitoyl or 1-oleoyl
lysophosphatidic acid (LPA), diacylglycerol (DG), 2-O-tetradecanoylphorbol 13-acetate (TPA) were
purchased from Sigma, phosphatidylserine (PS) was from Avanti, and [y-32 PJATP was a product of
Dupont-New England Nuclear. Oligopeptide substrate for PKC assay was MBP,,, (QKRPSQRSKYL),
corresponding to the amino acid sequence 4-14 of myelin basic protein (19) was synthesized using a peptide
synthesizer (model 430A, Applied Biosystems).

Chemical synthesis of PHYLPA and its derivatives. PHYLPA and its derivatives shown in Fig.1 were
synthesized according to the procedure reported before (20).

Determination of myo-inosfto] 1,4,5-tris-phosphate (IP,). Cells in logarithmic phase were labeled with
{* H] myo-inositol (4mCi/ml) for 48 hrs. After the cells reached the late-log phase, they were treated with
10mM PHYLPA with 10mM LiCl. The reaction was stopped by addition of ice-cold 10% TCA and
centrifuged. The supernatants were washed with diethylether and were neutralized with Tris. Then, IP, was
separated by HPLC and determined according to Tilly et al(21).

Expression and purification of cPKC and nPKC. Expression and purification of the enzymes expressed in
COS1 cells were carried out as previously described (22-26).

Protein kinase assay. The standard PKC assay was performed as described (21). The enzyme was
incubated at 0C for 60 min in 40 pl of the assay mixture containing 20mM Tris-HCI (pH 7.5), 5mM
magnesium diacetate, 50mM CaCl,, 50pg/ml MBP,,, 10mg/ml leupeptin, with or without 10pg/ml PS,
25ng/ml TPA or 4-20ug/m! lipid. Added 10ul of ATP solution containing 20mM ATP and 0.5mCi of ly
-32P]ATP, the mixture was incubated at 30T for 10 min. Aliquots (40pl) were spotted onto 20-mm squares
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Fig.1l.Chemically synthesized derivatives of
PHYLPA-5 ' CPA, PHYLPA-1 and Pal-cPA are naturally
(Pal-cPA) occurring cPA(1,34)

of phosphocellulose paper (Whatman P81), washed, dried, and radioactivities were measured.

Phosphorylation of 80 kD protein. Procedure was basically according to van Corven et al (11). Human
fibroblasts, TIG-3 cells were routinely cultured in a serum-free medium, MCDB-104, supplemented with
25ng/ml bFGF, insulin (5pg/ml), transferrin (5ug/ml) and dexamethasone (10ng/ml) (27). They were
transferred into phosphate-free MCDB-104 medium as above and containing 0.5mCi/ml of ZPi, then
incubated at 37 C  for 60 min. Lipid or TPA was added and incubated further for 15 min. Cells were
washed and lysed in 100ml of SDS sample buffer and heated at 100 Tfor 5 min. Then two-dimensional
electrophoresis was performed by the procedure of O'Farrell (28). In the first dimension, isoelectric focusing in
4% ampholytes pH 3.5-5.0 plus 1% ampholytes pH 3.5-10.0 was used and in the second dimension,
SDS-polyacrylamide gel electrophoresis (10% gel) was performed. And the spot of 80 kD protein was cut and
the radioactivity was measured in toluene-based liquid scintilation fluid.

Results
Stimulation of Gq protein-coupled, phosphoinositide (PI) /Ca’*/PKC pathway. We examined the possible
correlation of PI/Ca®'/PKC signaling pathway in PHYLPA-induced antiproliferative effect on the fibroblast
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Fig.2. IP,formation caused by
PHYLPA-1 in TIG-3cells.

[H’) Inositol-prelabeled cells
were incubated with 10pM PHYLPA-1

- for various periods and IP, was

determined.

Fig.3. Ca* mobilization caused
by PHYLPA-1 in TIG-3 cells.
Cells were stimulated with 10pM
PHYLPA-1 as indicated (arrow),

and fluorescence was monitored.

Fig.4. Stimulation of
phosphorylation of 80kD protein.
TIG-3 cells were labeled with
*pi in the presence or absence
of test substances, and 80kD
protein was sep'arated and
analyzed as described in the
text.
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and we demonstrated that PHYLPA-1 elicits an increase in cellular [P, just after the addition of PHYLPA-1,
and the response to PHYLPA is dose-dependent with a half maximal effect at about bpg/ml (approx.10pM)
(Fig.2). And PHYLPA-1 immediately rised in intracellular free Ca®" concentration (Fig.3). So, PHYLPA-1
may activate phospholipase C through Gq protein, then PKC may be activated.

In order to determine whether PHYLPA activates PKC in vivo, the phosphorylation of an 80kD cellular
protein which is a specific substrate of PKC (29) was examined. PHYLPA-1 stimulated the phosphorylation
of the 80kD cellular protein in a few minutes as shown in Fig.4, then PHYLPA is proved to induce in vivo
PKC activation. Ordinal LPAs also stimulate the phosphorylation of this protein in the same extent like the
phorbol ester TPA (11).

Stimulation of PKC activity in vitro. PHYLPA and known LPAs obviously stimulated purified PKC like
an in vivo stimulation. We tested the effects of PHYLPA on conventional PKC (cPKC) which has
Ca”"regulatory domain (Fig.5) and on novel PKC (nPKC) which has no Ca2+-regulatory domain (Fig.6).
When PHYLPA or LPA alone was added to the reaction mixture, a dose-dependent stimulation was observed.
When PS or/and TPA were added moreover, additive stimulation was observed as shown in Figs.b and 6.

Some derivatives shown in Fig. 1 were chemically synthesized and their effects on PKCs were compared
to reveal the relationship of stimulatory activity and molecular structure (Figs.7 and 8). At a low
concentration (4ug/ml), PHYLPA-2, assigned as sodium 3-O-((9°S,10'R)-9',10’- methanohexa-decanoyl}
smglycerol 1,2-cyclic phosphate, showed an apparently high stimulatory activity. At 4pg/ml of PHYLPA-2
alone,8-times activation for ¢PKC and 27-times activation for nPKC were observed. At the same
concentration, DG which is known as a potent activator of PKC showed 4-times activation for ¢PKC, and
7-times for nPKC. So, PHYLPA-2 is strong stimulator for PKCs, especially for nPKC. At 20png/ml, PHYLPA
derivatives showed almost the same extents of stimulation: 8-14 times stimulation for ¢cPKC, and 34-39 times
stimulation for nPKC. But at 20 pg/ml, relatively low stimulation was observed (3.5-times for ¢cPKC, and
7-times for nPKC).

These results show that the cyclic phosphate is effective for the strong stimulation of PKCs, and
stereochemistry of fatty acid moiety is also important but not necessary for the enzyme stimulation.

To know the mechanism of signal transduction underlying the antiproliferative activation of ¢PA, in this
study we examined the effect of cPA on PI/Ca®*/PKC pathway. cPA caused an activation of this pathway
which is mediated by Gq protein (Fig.9). PI/Ca®"/PKC pathway is also stimulated by known LPA (7,9, 11,

12) which is known as a potent mitogen of the fibroblast cells. These findings suggest that the PI/ Ca’'/PKC ‘

pathway is not necessary for evoking a proliferative, or antiproliferative response caused by these lipids in
the cell.

Discussion

In this report, we showed the activation of PI/ Ca®'/PKC pathway by cPA derivatives and also show the
direct activation of PKC by these lipids. PKC is thought to play pivotal roles in cellular signal transduction,
coupled with receptor-mediated lipid metabolism (30-32), and is dependent on Ca”*, phospholipid and
diacylglycerol. PKC is also activated by tumor-promoting phorbol esters which mimic various cellular
functions (30,31).

The PKC family is now classified into two categories, the conventional (¢cPKC) and the novel (nPKC), on
the basis of their domain structures (24-26). The major difference between these groups is the presence or
absence of the putative Ca2+-regulatory domain designated as C2. ¢cPKC group (o, p I, BII, y) contains the
C2 domain and is activated in the presence of Ca”’, phospholipids and DG or phorbol ester. nPKC group (0,
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e,{,7)doesn’t contain the C2 domain and thus is expected to have Ca’"independent activity. These enzymes
have been considered to act as a key enzyme at an essential step of regulation of cell proliferation. But from
the results that the activation and inhibition of cell proliferation caused by LPA and cPA, respectively, rather
adenylate cyclase than PKC is supposed to play an critical role in the regulation of cell proliferation.

cPA stimulates PI/Ca®"/PKC pathway in the cell, and also stimulates the purified PKC activity. cPA or
LPA may reacts with the specific receptor exist on the cell surface and activate coupled G-protein (33). On the
other hand, cPA or LPA may be produced by hydrolysis of membrane lipids with some enzyme and released
into cytoplasm. So, they may also act directly to PKC like DG released from phosphoinositide by PLC.
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