BROKLFAREFEBEBARABNERSE $48% B15
Natural Science Report, Ochanomizu University, Vol. 48, No. 1 (1997)

Julia sets of 2% + ¢ and laminations

Mai MATSUT' and Fukiko TAKEO?

! Doctoral Research Course in Human Culture, Ochanomizu University
2 Department of Information Sciences, Ochanomizu University
(Received April 30, 1997)

Abstract

We introduce an o - invariant equivalence relation on {0,1}* with a € {0,1}* and
construct a lamination S using this relation (s € {0,1}>). We shall give a condition for &
and s that S corresponds to a Julia set.

1. Introduction

Julia sets play an important role on a complex dynamical system. Concerning these sets there are
some researches of representation to study their locally connected property or to analyze the structure of
self similarity. For instance, W.P.Thurston introduced “invariant lamination” on a circle. A.Bandt and
K.Keller showed the relationship between Thurston’s invariant lamination and the symbolic dynamics
represented by “itineraries” ( infinite sequences of {0,1,*} ), and they got an interesting result involving
the correspondence of the dynamics of Julia sets to double-angle motions on a circle [1,2]. Here an
invariant lamination is mainly determined by an invariant equivalence relation. So if we define an invariant
equivalence relation, we can get the lamination by binding some points on a circle with some chords, where
the points belong to the same equivalence class. (Fig.2)

- In this paper, we introduce the concept of a-invariance and construct an a-invariant lamination
corresponding to a locally connected Julia set without using itineraries. Moreover we give a necessary
condition for the lamination to correspond to a Julia set.

In the section 2, we show the existence of a function which makes a correspondece of the binary
sequences obtained by the Jordan curve to the point on a Julia set (Theorem 1), and we prove it by using
Caratheodory’s theorem. Since the correspondence of the binary sequences to the point on a Julia set is
not one-to-one, we define an equivalence relation on {0, 1} such that if two different binary sequences
correspond to the same point on a Julia set, the two sequences belong to the same equivalence class.
Theorem 2 shows the property of the equivalence relation.

In the section 3, we shall show a construction of a-invariant lamination Sg. The first step is to
define an a-invariance without using itineraries such that it satisfies (i) ~ (iii) in Theorem 2. Next we
define an a-invariant lamination. The construction of laminations using itineraries in references [1,2]
is easier in a non-periodic case than in a periodic case. So in this paper we shall treat the case of s
being periodic. The examples of a Julia set and of a corresponding a-invariant lamination are shown in
Fig.1 and Fig.2 respectively. Moreover we introduce an equivalence relation ~¢ such that all points on
a lamination connecting by chords belong to the same equivalence class. Theorem 3 shows a one-to-one
correspondence of the quotient space T'/~a (T = S') to the a-invariant lamination S§. Theorem 4
describes a neccessary condition for @ and s when a lamination S corresponds to a Julia set.
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Fig.1 An example of Julia set Fig.2 An example of Lamination

2. locally connected Julia sets and binary sequences

We recall the definition of Julia sets of ge(z) = 22 + ¢. Let Oq(2) = {z,9c(2),92(2),- -} denote
the forward orbit of z for ¢,z € C, and call K, = {z € C | Oc(2) is bounded} the filled-in Julia set.
The boundery J, of K. is said to be the Julia set of g.. Ko = D is the unit disk. The set M =
{ce C | J.is connected} is said to be the Mandelbrot set, and it is known that it is equal to the set
{ce C | 0.(0)is bounded} [3]. If J. is locally connected, then ¢ € M and therefore ¢ € K. by the
definitions of M and K. Hearafter we shall consider the case of locally connected Julia sets J.. Let I
denote the closed set [0, 1].

Definition 1.

h(0) = h(1)
deof h(I) is a differentiable Jordan closed curve surrounding Je
o E.={heC},1] 1 1
M) = —h(+3) (0<t<3)

g.(h(I)) encloses h(I)
o For h € E,, define 8, € C[0,1] satisfying h(t) —c = r(t)e®®) and -7 < 6(0) < .
and define fo, fi : Ec = C[0,1] by using 8,7 as follows:
{ fo-h(t)= r(t)7-e
fu-h(t) = —r(t)
Define S : E, = E. by using fo, fi defined above as follows.

oy = | Fo e O<t<y)
hon@-1) G<i<)

p—

2
Remark. (i) For0<t< 1, (Sh(t))? = h(2t) — c holds and for 3 <t <1, (Sh(t))’ = h(2t — 1) — ¢ holds.
(ii) 7 and 6 defined above satisfy r(0) = r(1) and |8(0) — 6(1)| = 2 since ¢ € K. and h(I) surrounds J..

Lemma 1. h € E, implies Sh € E,.

Proof. For h € E, and r,0 € C[0, 1] we shall define functions #,6,h € C(R) and an operator f C(R) -
C(R) as follows. Fort € R, put #(t) = r(t—[t]), 0(t) = 0(t—[t]) +[t](8(1)—0(0)), h(t)—c= #(t)-€*Y, and
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foh(t) = #(t )2 ¢ Then Sh(t) = f-h(2t) holds. Since f-h(0) = f-h(2) and f-h(2t) = —f-h(2t 1)
(for 0 <t < 1) hold, it follows that Sh(0) = Sh(1), Sh(t) = —Sh(t + ) ( f 5 < 1) and Sh(I)is
a differentiable Jordan closed curve. , : :
By simple calculations, we obtain h(I) = ge(Sh(I)) and gc(Sh(I)) surrounds Je. So Sh(I) surrounds J,
since J, and: K, are g.-invariant. : .

By the above considerations and h(I) = g.(Sh(I)), g. maps the interior and exterior of the closed
curve Sh(I) into the interior and exterior of the closed curve h(I) respectively. Since ge(h(I)) is the
exterior of h(I), h(I) is also the exterior of Sh(I), that is, gC(Sh( )) is the exterior of Sh(I), which
means g.(Sh(I)) surrounds Sh(I). So Sh € E. holds. o

The next Lemma 2 will be used in proving Theorem 1.

Lemma 2. For 0 <t <1 €I and h € E,, Sg.Sh(t) = g.SSh(t) = Sh(2t) holds.
Fori <t<1€l and he E,, Sg:.Sh(t) = g.SSh(t) = Sh(2t — 1) holds.

Proof. By simple calculations, we obtain the following:

(fo- B2 +e 0<i<y)

chh(t) = , 1
(fi-h(2t-1)"+c (§5t51)

So the next follows.

SgoSh(t) = (L)

Since the definition of Sh(t), it follows:
fo- Sh(2t) 0<t<

S%h(t) =
¢ | fi-Sh(2t—1) (

. 1 1
(r1(2¢) . #1(20))2 0Lt 5)
1
3

—(r(2t=1)- ei91(2t—1))

|
|
|
|

where 8,7, € C[0,1] satisfy Sh(t)—c = ri(t)e #1(t) | So the following holds.

. 1
ri(2t) - €®) +c (0<t<3)
gcszh(t) = . : 1
3 )

(L2)
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By (L1) and (L2), we obtain the conclusion. i

We recall the next well-known fact. If J, is locally connected, there is a unique conformal isomor-
phism & : C\ K. — C\ D with lim,_,o ®.(2)/z = 1 satisfying ®.g.P.' = go. Let define field lines
Be={z€ C\ K. | arg(®.(z)) = 2r3}. The next theorems are important in proving the following
theorem 1.

Caratheodory’s theorem [1] Each field line Bc has a continuous extension to a unique point zg of
Je, and each point of J. is obtained if and only if J, is locally connected.

Based on the theorem, we consider the correspondence of locally connected Julia sets to binary se-
quences. The next theorem is proved by using the above theorem, and we use them to prove Theorem 1.

Theorem A ( Keller, Bandt [1] ) J. (c € C) is locally connected if and only if the functional equa-
tions

0(28)=p(B)*+c and —p(B)=p(B+1), BER (1)
have a continuous periodic solution. In this case, J. = p(R). Moreover, every continuous solution of (1)
with minimal period 1 coincides with either ¢} or ¢ where ¥ (8) = 2gmod1 and ¢ (8) = ¢F (-B)
for BER.

Theorem 1. Concerning a locally connected Julia set J. and the operator S™ defined at Definition 1,
the following holds.

(i) Fort =32 % €I and h € E, S*h(t) = fo, - fo, -+~ fr - (T2, 552) holds.

(ii) If J. is locally connected, there exists ¢ € E, depended on c (EC is the closure of E, with sup norm)
such that lim,_,oc S"h(t) = ¢(t) (t € I) for any h € E. and ¢(t) € J..

Moreover if ¢ £ J,, there exists T4, 84 € C[0, 1] such that ¢(t) — ¢ = r4(t)e®®) with —m < 6,4(0) < 7.

Proof. (i) The equation will be shown by induction.
(i) Since the functions fy, f; make the radius and the argument in half, there exists the limit of
S™h(t) = fi, « fr, -+ fro - M(EZ, %), So put $(t) = limuyeo S”h(t). Then by induction it holds
that S™h(t) = —$™h(t + }) for all n, which implies
B(t) = ~(t + 1), (T1)
By Lemma 2, for 0 <t < % we have
#(2t) = lim, o S™h(2t)
= lim,, o S™(gSh(t))
= glim, o, S"T1h(t)
= go(t)
=¢(t) +c (T2)
By Theorem A, ¢ coincides with ¢ or ¢~, and by Caratheodory’s theorem, ¢(t) is in J. and ¢ is uniquely
determined.

We define rgnp(t), Osnn(t) satisfying S?h(t) — ¢ = rsap(t)e?®s*»(®). Then there exists ry(t) =
My, 500 7snn(t) and 84(t) = lim,_,e Osnp(t). Hence ¢(t) — ¢ = ry(t)e®®*™® holds. Since S™h(t) con-
verges to a point of J., r4(t) belongs C[0,1]. If ¢ £ J, then c is inside of J;, so ¢ —c # 0 for any ¢t € I,
that is r4(t) # 0 and 8,(t) € C[0,1]. m]

By the equation ¢(t) = limp—oo fo, ft, *+« frn -M(EZ, t';,"‘ ), we can consider a correspondence of points
of J, to binary sequences t;t, - - - t,. But the correspondence is not one to one, so we introduce an equi-
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valence relation such that the same points in the Julia set are in the same equivalence class.

Deﬁnltlon 2. Let ¢ € C be fixed. Using ¢ obtained in Theorem 1, we shall consider the map
{0 1}* = J. by ¢(z) = ¢(£52, %) with z = 2125+, and define an equivalence relation & on

{0 1} as follows.

Forz =x2y--+, y=1t1ya--- € {0,1}, let

2~y € (@) = Y
For a € {0,1}°°, we define the function 7, as follows:

21 {0,117 > {0,1}
Ta(8) < { ?i :Eég E :%; for s€{0,1}*

where k(s) = X952, 52 with s = 8152

The next Theorem 2 shows the property of the equivalence relation =.

Theorem 2. The equivalence relation =, due to a locally connected Julia set J. with ¢ £ J., defined at
Definition 2 satisfies the following.

(i) e~y implies ox~oy (o(z122--7) = T2m3- ).

(i) z~y implies zioz~yjoy (¢)=1-z1,91=1-n).

(iii) There emists a € {0,1}> such that z~y implies To(z) = Ta(y)-

(iv) pruy~afey implies (bz),k(w) N (Ky), kw)) = ¢ (cmply set) or

( (k

k(2), k(w) D (k(y): k() or (K(z),k(w) C (k(y),k :)), while (k(*),k(*)) is an interval set.

Before proving Theorem 2 we show the following lemma.

Lemma 3. For a,b,c,d € I, suppose that it holds the relations a <b, c<d, a<c, ¢(a)= #(b),
d(c) = ¢(d) and ¢(a) # ¢(c). Then the case a < ¢ <b < d doesn’t occur.

Proof. Suppose a < ¢ < b < d. By ¢(a) # ¢(c), we put d = |¢(a) — ¢(c)| > 0. Then there exists ny

such that |S"h(w) — p(w)] < ¢ (w = a,b,c,d) for n > ny. Let Dy be the interior of S™h(I) and let

Line(S™h(a), S"h(b)) be the line connecting S™h(a) and S™h(b). Since for any n, S™h(I) is a Jordan

closed curve surrounding locally connected set J., either of the following cases occurs. (See Fig.3)

(the case 1) D¢ (the complement of D,,) N Line(S™h(a), S"h(b)) # ¢ for n > n, or

(the case 2) DS N Line(S™h(c), S™h(d)) # ¢ for n > ny. :
In the case 1, if Line(S™h(a), ¢(a)) N DS, # ¢, then there exists € > 0 such that |S™h(a) — #(a)| > e

for any n > ng, which contradicts lim,_, S™h(a) = ¢(a). In other cases, it will be shown in a similar

way. 0.

S"h(@ S*hic)
S"hic) N th(a)
Line(S"h(a),S"h(b)) Line(S"h(c),S"h(d»
( In the case 1) ( In the case 2 )

Fig.3 Some examples of S™h(I)
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Proof of Theorem 2. (1) z ~ y implies $(I32,%2) = ¢(B52,%2). So #(Z52,32)> +¢ =

n=12n n=19n =12n
$(E32, ¥2)% + ¢ holds. By using (T2), ¢(2532, 22) = ¢(2532, ¥2) holds, which implies oz ~ oy.

(i) 2~y implies (T3, 38) = G(S3L, ). By using (T1), ~6(S3, 28 +1) = —0(S, 2 + )
holds, which implies zj0z = yj0y.

(i) Put b(a) = sup {k(z) | F(y) > k(@) ; Ba(b(y)) — Oglk(z))| = 27,2 ~ y} where b is deter-
mined in Theorem 1. z =~ y and |§(k(y)) — 6(k(z))| = 27 means that the sets :
{(r) | k(z) < k(r) < k(y)} is a closed curve surrounding c. Since 1) is the limit of a simple Jordan curve,
the relations k(z) < k(y), k(a) < k(b), z = y, a = b, and |8(k(y))—0(k(z))| = |8(k(b)) —0(k(a))| = 2 im-
ply either k(z) < k(a) < k(b) < k(y) or k(a) < k(z) < k(y) < k(b). So if z ~ y with k(z) < k(y) < k(a)
[resp. k(@) < k(z) < k(y)] then 0(k(z)) = 8(k(y)), which implies (0z) = ¥(0y) [resp. ¥(1z) = y(1y)
], that is 7,(z) & 74(y). If z = y with k(z) < k(a) < k(y), then 8(k(y)) — 8(k(z)) = 27, which implies
$(0z) = (1y), that is 7a(z) & Ta(y)- B -

(iv) follows from Lemma 3. a

3. The construction of o - invariant lamination

In this section we shall define an « - invariant equivalence relation satisfying (i) ~ (iii) in Theorem 2
and construct laminations by using this relation. We also give the conditions for « and s that a lamina-
tion S corresponds to a Julia set. If s = @ with w € {0,1}", we call the sequence s to be n-periodic.

Definition 3. Let @ = ajay--- be an element of {0,1}* .

An equivalence relation ~ on {0,1} is called to be a-invariant if it satisfies the following (i) and (ii).

(i) Fors, t€{0,1}, s~¢t implies o(s)~a(t)  where o(s15g: ) = 5983

(i) Fors, t€{0,1}*, s~t implies 74(s) ~7a(t) and 74/(s) ~ 7a'(2),
w [ 0s it k(s) < k(a) w15 i k()< k()

where 7a(s) = { 1s it ok(s) > k@) P4 T ()= 0s if k(s) >k

Let ~g be the smallest 0 - invariant equivalence relation satisfying 0 ~ 1. Let T = R/Z. It is easy
to show {0,1}°/ ~5 =~ T. So let & be the isomorphism from {0,1}*/ ~5 onto T. For a,b € {0,1}*,
let C,p be a chord connecting d(a) and d(b) on T such that its Poincare metric is minimum.

Definition 4. For o € {0,1}*, and periodic s € {0, 1}, the equivalence relation ~¢ is defined as the
smallest closed a-invariant equivalence relation on {0,1}>/ ~j, satisfying s ~ o(s). Let Sg be the
closure of the collection of the chords

{Crinrn@rnanlote) | Aj € {0:7as7a’}n € NU{0}},
which we call a-invariant lamination.

Then the « - invariant lamination S¢ ( some examples are showm in Fig.4 ) is considered as the quotient
space of T where points connected by a chord belong to the same class and we have the following theorem.

Theorem 3. There is a one-to-one correspondence of elements of the quotient space T/ ~a to those of
the a - invariant lamination ST.

Proof. It is obvious that the element of the quotient space corresponds to that of S5 by the construction
of 5¢. O
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a = 01111000, s = 00001111
Fig4 Some examples of 57

If s is p-periodic, k(s) = 575 (¢ € N) holds. Though the equivalence relation ~ induced from
Julia sets satisfies (i) ~ (iv) in Theorem 2, the « - invariant equivalence relation ~' satisfies (i) ~ (iii) in
Theorem 2 but not necessarily (iv). So for an arbitrary g, there doesn’t necessarily exist a € {0,1}* such
that S¢ corresponds to a Julia set. Hence we examine the condition for a and s that S corresponds to
a Julia set and get the following Theorem 4. First we define the equivalent class of s and the minimum
of the equivalent class.

Definition 5. For s € {0,1}*, let Qs be the equivalence class of s with the equivalence relation ~.

Theorem 4. Let s € {0,1}° be p-periodic such that k(s) < k(o7 (s)) for any j > 0, and suppose
Qs ={s,0(s),+, 0P (s)}. ’

Then k(s) = 5757 (g € N) holds. As for the correspondence of a Julia set to a lamination, we have the
following, according to the value of q.

(i) Suppose there exists j > 1 and ky > 1 such that 21?;012“1' =qand p=jk +1.

If the lamination 8¢ correspondes to a Julia set, then a satisfies the following

k(o7 (s)) < k(a) < k(o (s))-

(ii) Suppose there ezists j > 1 and ky > 1 such that 1+ nk gt =g and p= (j + k2 + 5.
If the lamination S& corresponds to o Julia set, then a satisfies the following

k(olt1E2(5)) < k(a) < k(o(s))-

Proof. (i) Let u=0---01 € {0,1)’ and w = 0u---u € {0,1}"*""". Then 5 = .
e 4
The next inequality ’
k() < k(®1Dit1(5)) < B(o®1727 1 (g)) < - < k(07+)(s)) < k(o ())
< k(oth1-D542(g)) < Ko =27+2(g)) < --- < k(o7 (s)) < k(o (s))
< k(oM (8)) < B(e®1~Vi(s)) < --- < k(0% () < k(o7 (s))
holds. .
Suppose k(a) < k(o7t1(s)). If k(s) < k(a) < k(071! (s)) holds, 5 ~ oit1(s) implies 0s ~ 1o7t1(s)
and 15 ~ 0oit1(s). By the assumption, 1s = o?~!(s) holds, but 007t1(s) is different from any elements
of Qs since the p-th character of o7%!(s) is 1. So 0citl(s) & Qs holds and it contradicts the assumption.
If k() < k(s) < k(o7t1(s))(< k(oP7*(s))) holds, s ~ 0P~ (s) = 1s implies Os ~ Ols and 1s ~ 11s. Then
Cs15 and Co, 1, intersect each other. Hence k(o711 (s)) < k(a) —— — (x1).

" Suppose k(o(s)) < k(a). Since the inequality k(s) < k(o(s)) < k() holds, s ~ o(s) implies
0s ~ 0o (s) and 1s ~ lo(s). By the assumption, 1s = oP1(s) holds, but 107+ (s) is different from
any elemnts of Qs since the p-th character of o(s) is 0. So 10711 (s) § Qs holds and it contradicts the
assumption. Hence k() < k(o(s)) ——— (x2).
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By (x1) and (x2), k(07*(s)) < k(a) < k(o(s)) holds. _

(i) Let u=0---01€ {0,1} and w = 0ulu-- - Ouu € {0,1}**U*V*9. Then s = w. It will be shown

j-1

in a similar way to (i). m]
If s = 5157 §p is p-periodic, then t = 5785 ---s), (s} =1— s7) is also p-periodic. As for t = 5385+ s},
a similar result to Theorem 4 is obtained as follows.
Corollary 1. Let s € {0,1}> be p-periodic such that k(s) > k(o7 (s)) for any j > 0, and suppose
Qs = {s,0(s),"--,0P7 (s)}. Then k(s) = -7 (q € N) holds. As for the correspondence of a Julia set
to a lamination, we have the following, according to the value of q.
(i) Suppose there exists j > 1 and ky > 1 such that (2P — 1) — vhiloni — g and p = jky + 1.

n=0
If the lamination S correspondes to a Julia set, then a satisfies the following

k(o(s)) < k(e) < k(a7 (s)).

(ii) Suppose there exists j > 1 and ky > 1 such that (2P—1)— (1+552 27+ (") = g and p = (j+1)ka+J.
If the lamination S¢ corresponds to a Julia set, then a satisfies the following

k(o(3)) < k(a) < k(aUtDE(g)).

As a special case of Theorem 4 and Corollary 1, we have the following.

1
Corollary 2. (i) Let s be an element of {0,1} satisfying k(s) = 51 with some p > 2 and
Qs =‘{§,a(§), ey op_1(§)}. If the lamination S corresponds to a Julia set, then o satisfies the follow-
ing
1 2
<k .
w1 SH@) <5y

9P
(i) Let s be an element of {0, 1} satisfying k(s) = 1 with some p > 2 and Qs = {s,a(s), - -,077(s)}.
If the lamination S¢ corresponds to a Julia set, then o satisfies the following
o _3 9% _ 2
< .
1 S HY) <3

Acknowledgement. We would like to thank Professor N.Asamoto for many useful suggestions on draw-
ing some figures.

Reference

[1] Bandt,C. and Keller,K., Symbolic dynamics for angle-doubling on the circle,I. Ergodic Theory
and Related Topics III, Springer-Verlag, 1990.

[2] Bandt,C. and Keller K., Symbolic dynamics for angle-doubling on the circle,Il. Nonlinearity 6 (1993),
377-392.

[3] Falconer,K. Fractal Geometry. John Wiley & Sons, 1989.



