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Abstract
We construct the commuting squares of finite dimensional von Neumann algebras based on a pair of
cospectral finte graphs. And we have a new doubly-indexed squence of the indices of irreducible subfactors
of the hyperfinite factor of type II; which are greater than 4.

0. Introduction

The subfactor theory was initiated by V. Jones in [J], since then the theory of subfactors has been
related to many fields of mathematics and physics. Especially, the connections between lattice models
in statistical mechanics, a knot theory of low dimensional topology and subfactor theory of operator
algebras were soonly established by many researchers after his work.

The classification of subfactors of the hyperfinite factor is one of the most important and exciting
problems in the theory of operator algebras. In the classification, one of the most interesting cases of
subfactors is in the case of irreducible subfactors, those for which the relative commutant is reduced
to the scalars. V. Jones proved in [J] that any subfactor with an index less than 4 is automatically
irreducible. However, his example of subfactor with index greater than 4 is not irreducible. The problem
of characterizing the values of indices of irreducible subfactors which are greater than 4, still remains
open in the case of hyperfinite.

The concept of a commuting square of finite von Neumann algebras was first considered in [Pol] by
S. Popa as an orthogonal pair of subalgebras, and was largely used in [PP]. It plays an important role
in subfactor theory as seen from [Po2], [Po3] etc. For example, by using suitable commuting squares
of finite dimensional von Neumann algebras, several authors have constructed irreducible subfactors
of the hyperfinite factor of type II; [GHJ],[HS],[Sc],(Sul],[Su2],[Y] etc. U. Haagerup and J. Schou in
[HS] established a criterion for the existance of symmetric commuting squares of finite dimensional von
Neumann algebras, which is deeply related to the axioms of Ocneanu’s biunitary connections on the pair
of bipartite graphs.

The tower of higher relative commutants is a very useful invariant for the classification of subfactors of
the hyperfinite factor of type II;. A, Ocneanu introduced paragroups [Ocl] which is a certain quantization
of finite groups, for analyzing this invariant. A paragroup is a pair of bipartite graphs with a certain
complex-valued function defined on squares constituted from four edges of the graphs, which is called
connection. Moreover in the study of paragroups, finite graphs are regarded as discrete compact manifolds
and the above complex-valued function on squares can be regarded as an analogue of a connection. The
key notion of Ocneanu’s theory is the flatness of this connection. From another point of view, a connection
resembles the Boltzmann weights of an IRF model of statistical mechanics. The axioms of Ocneanu’s
biunitary connections correspond to the basic relations of Boltzmann weights [DWA] and the flatness of
a connection is related to the requirement of Yang-Baxter equation [EK].

A. Ocneanu announced the complete classfication, up to conjugacy, for subfactors of indices less than
4 in the terms of Dynkin diagrams [Ocl]. However his proof has been unavailable. But S. Popa gave the
proof for stronger form in [Po3] and also gave the classification table for subfactor with index 4 [Pod4].
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The discrete version of the famous open question, ” Can one hear the shape of a drum?” [Kac] can
be considered as an inverse problem between the spectra of graphs and the structure of graphs. And
in the graph theory, we have many negative examples of topologically non-isomorphic cospectral graphs
for this question . Here the term cospectral means that all the eigenvalues of the Laplacians ( the
adjacency matrices ) of the graphs coincide including the multiplicities. In this paper, we use such a pair
of cospectral bipartite graphs as underlying graphs for our biunitary connections. And we give a new
doubly-indexed sequence of the indices of irreducible subfactors of the hyperfinite factor of type II; by
constructing biunitary connections, that is by constructing the commuting squares of finite dimensional
von Neumann algebras which are based on the cospectral graphs. :

The contents of each section are as follows. In the first section, we recall the notions and terminology
of commuting squares and Ocneanu’s biunitary connections of graphs. And the resemblance between
Ocneanu’s biunitary connections and the Boltzmann weights of an IRF model is also described. In the
subsequent section, the description of the pair of the cospectral graphs on which we construct a biunitary
connection, will be given. In the final section, we examplify the construction of a biunitary connection
on the pair of the cospectral graphs and list the values of the indices of our irreducible subfactors.

Acknowledgements. The author is thankful to professors H. Hosoya and U. Nagashima for their fruitful
disscusions on cospectral graphs.

1. Commuting squares, biunitary connections and Boltzmann weights

Let H be a Hilbert space, we denote by B(H) the *—algebra of all bounded operators on H, with
z* the adjoint of the operator £ € B(H). A von Neumann algebra acting on H is a weakly closed x—
subalgebra of B(H) which contains the identity.

A factor is a von Neumann algebra M with the center Z(M) reduced to the scalar multiples of the
identity. The factor has been classified into types I, ITy, I, and III by its projections. Among these
types, a factor of type II; M can be characterized as infinite dimensional factor which admits the unique
normalized trace 7 such that

T(zy) = 7(yz) forz,ye M,
T(z*z) >0 forz e M.

A finite factor is a von Neumann algebra which is either a factor of type II;, or isomorphic to B(H) for
some H of finite dimension.

Let M be a finite factor and let N be a subfactor of M. V. Jones introduced the index [M,N]
associated with the inclusion N C M in [J]. V. Jones proved that the possible values of the index must
be in the set {4cos? Z : n > 3} U[4,00] and that each of these values can be realized in the case of
the hyperfinite factor of type II; which is approximated by ascending squence of finite dimensional *—
subalgebras. A subfactor called irreducible if the relative commutant N’ N M is reduced to the scalars.
V. Jones showed that any subfactor with an index smaller than 4 is automatically irreducible. It remains
open to characterize the possible values greater than 4 of the indices of irreducible subfactors in the case
of the hyperfinite factor of type II;.

In the analysis of the structure of von Neumann algebras, the conditional expectation plays a very
important role. Let M be a finite von Neumann algebra with faithful normal normalized trace 7 and

let N be a von Neumann subalgebra of M. Then there is the 7— preserving conitional expectatlon
En : M — N defined by the relation /

T(En(z)y) = 7(2y) forze M andy € N.
The map E is normal and has the following algebraic properties:
En(azb) = aEn(z)b forx e M,a,b €N
En(z") = En(z)" forze M
En(z")En(z) < En(zxz) and En(z*z)=0 implies z = 0.
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Of course, this conditional expectation map corresponds to the condtional expectation for a sub o— field
in the probability theory defined by the Radon - Nikodym derivative.

The concept of a commuting square of finite von Neumann algebras has first been introduced in [Pol}
and [Po2] by Popa as an orthogonal pair of algebras, which corresponds to the independence of two o—
fields in the probability theory. It was later generalized and largely used in [PP]. Here, we recall the
notions of a commuting square of finite von Neumann algebras.

A commuting square is a quadruple (A, B,C, D) of finite von Neumann algebras with the following
inclusion relations

ACBCD and ACCCD,

together with a faithful normal trace 7 on the largest algebra D, such that the 7 - preserving conditional
expectations E4, Ep and Ec of D on A, B and C, respectively, satisfy the conditions,

Es=FEpEc = EcFEg.

Equivalent definitions for a commuting square are found in [GHJ, Chap. IV]. A finite dimensional von
Neumann algebra, which is clearly finite von Neumann algebra, is *— isomorphic to a finite direct sum
of matrix algebras (multimatrix algebras). And an inclusion of finite dimensional von Neumann algebras
can be given by the inclusion matrix which has non-negative integer entries, and also can be described
diagramatically [GHJ].

Thus, if the algebras A, B,C and D are finite dimensional von Neumann algebras in above then the
four inclusions A C B, BC D, ACC and C C D are given by the inclusion matrices G, L, K and
H | respectively.

c-2.Dp

K}‘ ‘ TL
A—— B
G

And then these matrices must satisfy the condition
GL=KH.

In [HS], a commuting square (A, B,C, D) of finite dimensional von Neumann algebras with inclusion
matrices G, L, K and H, given above, is called a symmetric commuting square, if the inclusion matrices
satisfy the additional condition,

(‘G)K = L(*H).

In generally, given a non-negative integer entried n x m matrix X = (z;;), we denote by I'x the oriented
bipartite graph (the vertices are divided into even and odd ones), which has (n 4 m) many vertices, say
@y, a3, ,ayn,by, by, -+ by, and z;; many oriented edges from a; to b;. The bipartite graph T'+x), (the
graph corresponding to the transposed matrix *X) has the same figure as I'x, but each edge of it has the
reversed orientation.

The criterion for the existence of a commuting square of finite dimensional von Neumann algebras
with inclusions described by the given matrices, was obtained in [HS] and reformulated in [Sul, §2].

We write the criterion here again. Given the non-negative integer-entried n x m matrix G, m X ¢
matrix L, n x p matrix K, and p x ¢ matrix H, with GL = KH and (*G)K = L(*H), we consider the
inclusion diagram

c—2.p

0

A— B

G
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of finite dimensional von Neumann algebras, where n,m,p and ¢ are the dimensions of the centers of
algebras A, B,C and D, respectively. We take bipartite graphs I'g, 'z, I'x and T'g as mentioned before,
and we relabel the vertices of these graphs as follows.

The vertices of I'g :  ay1,as, -+ ,a,,b1,b2, -+ by .
The vertices of I'p 1 b1,by,--+ by, di,dy, - ,d, .
The vertices of 'k :  ay,as,--+ ,an,¢1,¢2,-+ ,¢p
The vertices of I'yy :  ¢1,¢9,-++ ,¢p,d1,d2,- - ydg .

In the above situation, the criterion can be written as follows.

Proposition 1.1. ( [HS}, [Sul] )  In order to become a symmetric commuting square with inclusion
matrices G,L,K and H, as above,

CLD

g T

A—— B
G

it is necessary and sufficient that the following conditions are satisfied.
(1)  There exist positive-entried vectors

a= (u(ai))izlﬂ,w n b= (”(bj))j=l,2,“‘ m
c= (l‘(cl))z=1,z,m pr and d= (#(dk))kzl,z,.-v 4
satisfying .
‘ 1 1 1
a=—Gb=—-Ke¢, b=—Id and c¢=——Hd.
G| IIK] IIZ]] 1A

(2) Foreacha; (1<i<n)anddy (1<k< q), there exists a unitary matrix UC*) of size (GL)i k)
with rows indexed by paths (a; — b; — d), where b; is arbitrary, and columns indexed by paths
(ai — 1 — di), where ¢; is arbitrary. Of course, the edges (a; — b;), (b;j — di), (@i — ¢;) and
(et — di) arein T'g, I, Tk and Ty, respectively. And the (i, k) - th entries of the matrices GL and
K H are the same by assumption.

(3) For each b;j (1 < j < m)ande (1 <1< p), there exists a unitary matrix VU of size
((’G)K)(j’,) with rows indexed by paths (bj — a; — ¢;), where a; is arbitrary, and columns indexed
by paths (b; — di — ¢;), where dy is arbitrary. Of course, the edges (bj — a;), (ai — a), (bj — di)
and (dy — ¢;) are in L), Tk, 'L and T'(+gy, respectively. And the (j,1) - th entries of the matrices
(*G)K and L(*H) are the same by assumption.

(4)  The matrics UC*) V0D are related by the requirement that
Dp(dy) (UG
Vilaud (VD)
= b, yun
VaOe) (VO

The conditions in Proposition 1.1 are closely related to the axioms of Ocneanu’s biunitary connections
for a pair of graphs. Condition (1) corresponds to the Perron-Frobenius eigenvectors. Conditions (2) and
(3) are called the biunitarity. And condition (4) is nothing but the renormalization rule. Moreover, this
biunitary connection resembles the Boltzmann weights of the IRF (Interaction Round a Face) model in
statistical mechanics.
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First, let us fix the notation and terminology about connections used in this paper. Let G and H be
finite bipartite graphs with vertices G(®) and H(®, and edges G1) and H(Y), respectively. We assume
that these graphs have the same Perron - Frobenius eigenvalues of the adjacency matrices, and that even

vertices of the graphs coincide.
For an edge £ € G UHWD let 5(€) and r(€) €
We denote ¢ the edge with the reversed orientation.

Commuting Squares from a Pair of Cospectral Graphs

G© UHO denote its source and range, respectively.

Consider a diagram

N
E\ /‘64

where the ¢;’s satisfy one of the following conditions,

and a = 5(&1) = s(&2), b =r(&2) = s(€3), ¢ = r(&1) = (),
We call such a diagram an admissible cell.
number to any admissible cell. For each cell, we write the complex number assigned by W,

6eGW g egW g3eHM g,eHWV) or
& € g(1)’£2 € 7'[(1),53 € H(l),& € g(l), or
g1 enM 6 e HW &€ 6W 6,€6W, or
& enHM 6 e6M 63e6W, & e HW,

d=r(€3) = r(és).

€2 3
w / \ € C,

E\ /54

and call it a cell weight. The map W requires the following properties.

(1) Rotation symmetry.

fz 3 2 a 1
A N A
1\ /‘e., 3\ /54
( €4 &3 4 13
W ¥ ’\ —w / '\
\ f\ /sa f\ »/Ee
(2) Renormalization rule.
€ € YN
e oo, (80N
f\. /‘E., p(a)p(d) \ 5,\,6/5
c -
_ [6®s@ s
#a)u(d) \ AN ’

where p(-) denotes an entry of the Perron - Frobenius eigenvector of the adjacency matrix of each graph.

A connection W is a map which associates a complex
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(3) Biunitarity
For each fixed pairs of vertices (a,d) and (b, ¢), both matrices

* b
w a/ \'d and W */ \*
NS NS
* C
are unitary. That is,
fz/b\ﬁs rn/c\ns
Y Wla d|wWla d | =6¢,02665.50b.c)
e,€1,€4 51\18/‘64 51\16/&

A CAN VAN
Z Wia d

e | W € :65 ,711654,71460#'
e 54\‘ \/53 714\‘ l/fa '
1£2v£3 c c

Compairing Proposition 1.1 and the axioms of a biunitary connection given above, the criterion for
symmetric commuting squares can be written in the terms of connections as follows.

If a pair of graphs (G,H) admits a connection then there exists a symmetric commuting square of the
form

C——H—>D

o =,

A—— B
G

where the inclusion matrices G and H is given in the correspondence G = I'g and H = I'g, respectively.

Remark 1.2.  If the graphs G and H are the same, the contragredient map is trivial which means that
the inclusion matrices G and H are mutually transposed (that is the graphs G and H are glued up in
the mirror image), the graph has a triple point and has no square cycles, and the norm of the graph (the
Perron-Frobenius eigenvalue) is bigger than 2 then there are no connections on such a pair [Oc2]. This
fact would be called the triple point obstruction.

The connection on the pair of graphs is closely related to the Boltzmann weights for the IRF model
[DWA], [B] as we mentioned before. However, in our case, we have no spectral parameters. The biunitary
conditions (3) of a connection correspond to inversion relations. The crossing symmetry of the IRF model
is interpreted to the renormalization rule (2) of a connection. And the rotation symmetry corresponds
to the reflection symmetry of the IRF medel. The charge (or spin) conservation condition in the IRF
model corresponds to the admissible cell. That is the cell weight values zero except on the admissible
cells. The crossing multipliers in an IRF model can be regarded as the Perron-Frobenius eigen-weights
at the vertices of the graphs.

Once we get a symmetric commuting square of finite dimensional von Neumann algebras, we would
obtain the pair of the hyperfinite factor and subfactor of type II; by iterating the fundamental construc-
tions.

This procedure is called the path model or the string algebra construction. And if the initial symmetric
commuting square has the certain condition as describled in the next proposition, we can obtain the
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irreducible pair of the hyperfinite factor and subfactor of type II; and can determine the value of index
for this pair.

Proposition 1.3. ([HS]) Let

A—— B

be a symmetric commuting square of finite dimensional von Neumann algebras. Assume that I'g, I, s
and T'y are connected graphs, and T'g or T'y has a vertex which is connected to only one other vertex of
the graph. Then there exists an irreducible subfactor N of the hyperfinite factor of type II; R with index

[R: N]=|IG|I* = ||H|I".

We use the criterion for symmetric commuting squares in a connection version on the special pair of
graphs. Thus we try to construct connections on it. The method of constructing connections is also
found in [Sc], [Y], [Oc2] and [IK] etc. And for more details about biunitary connections, see [Ocl], [EK],
[Oc2} and [Kaw].

2. The pair of cospectral graphs

In this paper, we will use some special pairs of graphs, called cospectral, as the underlying graphs
G and M for biunitary connections. And we would obtain the new series for the indices of irreducible
subfactors.

Definition 2.1.  Let G; and G, be topologically non-isomorphic graphs. And let Pg, (t) and Pg,(t) be
the characteristic polynomials of the adjacency matrices, Laplacians of the graphs G; and Gy, respectively.
If P, (1) = Pg,(t) then the graphs G, and G, are called cospectral.

Several examples of the cospectral graphs can be found in [CDS]. Especially, we can find the following
pairs of graphs among them :

If G1,G2,G3 and G4 are arbitary graphs then the graphs in Fig. 2.1 are cospectral.

Fig. 2.1

Then we shall give a description of the graphs used in this paper which are the special cases of Fig. 2.1,
and note some properties about them.
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Definition 2.2. For n,m € NU {0} with n > m, let G(n, m) be the bipartite graph of the form

Pn-1 Pn-2 P2 D

Fig. 2.2
and H(n, m) be the bipartite graph of the form

Um—) Uy

q qQ Gn-2 Gn-1Gn hl?
—e—

Fig. 2.3

that is, the graph H(n,m) is obtained by exchanging the right line graph ( A, part) and the left line
graph (A, part) of the graph G(n, m).

Clearlly the graphs G(n,m) and H(n,m) are the special case of Fig.2.1 obtained by putting A, and
Am as G and Gjg, respectively, and letting Gy and G4 be empty. For a moment, we lable the virtices
of the graphs as in Fig.2.2 and Fig.2.3. Of course, the graphs G(n,m) and H(n, m) are cospectral so the
characteristic polynomials of them are the same.

Here let us recall the procedures which enable characteristic polynomials to be determined by simple
calculation.

Lemma 2.3. ( [GHJ], [CDS] etc )  Let z, be a vertex of degree 1 in the graph G and let xy be the
vertex adjacent to z,. Let Gy be the induced subgraph obtained from G by deleting the vertex z,. If z,
and r, are deleted, the induced graph G, is obtained. Then we have

(2.1) Pg(t) = tPg,(t) — Pg,(t)

More generally, let G be the graph obtained by joining the vertex z of the graph Gy to the vertex y of
the graph Gy by an edge. Let G| and G; be the induced subgraph of G| and Gy obtained by deleting the
vertex z and y from G, and G,, respectively. Then we have

(2.2) Fg(t) = Pg, (t)Pg, (t) — Pg; () Pgy (t)

Having in mind the equality (2.1), we introduce the sequence of polynomials which is rather well-known,
for describing our characteristic polynomial.

Definition 2.4. We define polynomials R,(t) (n = 0,1,2,---) recursively in the following manner

Ro(t) =1, Ry(t)=t and
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(2.3) Rpy2(t) = tRut1(t) — Ra(t) (for n>0).

This series of the polynomials {R,(t)} has the following properties.

Propostion 2.5. ([Sc])

(i) Form>1,n>0andr>2, _Rn_(r_)__. has the following properties :

Ryym(7)
R,(7)

(1) ———~ is decreasing in 7.

Roym(T)
Ru(7)

(2) ———— Is increasing in n and decreasing in m.

Rypm(T)
(ii) For T > 2, if we put r = 2coshz (z > 0) then we have

__sinh(n + D)z

Rn(T)"‘ (n:0)1127"'):

sinh z

and hence

hm M_ = e_mw'
n—00 Rnim(7)

The following facts about the graphs G(n,m) and H(n,m), Lemma 2.6 and Lemma 2.7, might be
obtained from the definition of eigensystem of the adjacency matrices of the graphs. And it is easy to
check them by direct calculation from Lemma 2.3 so we should like to omite the details.

Lemma 2.6.  The characteristic polynomial P(t) for the ajacency matrices of the graphs G(n,m) and
H(n,m) can be written in the form

P(t) =t2(t* = 2) [{(t* = ) Rm+3(t) = (* = 2)Rm11(t)} Ras3(t)

2.4
(24) —{(#? = 2)Rmy3(t) — szm+1(t)}Rn+l(t)]

or equivalently,

P(t) =t3(t% = 2) [{(? = ) Rasa(t) — (¢ = 2)Rus1 (1)} Rmpalt)

(25) 2 ;
—{(* = 2)Rny3(t) = t* Ruy1 ()} Rna (1)]

where {R,,(t)} is the sequence of polynomials defined in Definition 2.4.

Since the graphs G(n,m) and H(n,m) are connected, their adjacency matrices are primitive and the
Perron - Frobenius eigenvalue X is the largest root of the polynomial equation P(t) = 0. On the other
hand, it is clear that the Perron - Frobentus eigenvalue A which coincides with the norm of the adjacency
matrices, is greater than 2. Thus we can assert that the Perron - Frobenius eigenvalue A might be the
largest root of the polynomial equation

{(t* = ) Rmy3(t) — (t* = 2) Rmt1(t)} Rny3(?)

(2~6) - {(tz - Q)Rm+3(t) - t2Rm+1(t)}Rﬂ+1(t) =0,
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and hence A satisfies the equality,

4BRm43(M) Rnts(d) = 2Rm+3(A) Rat1(A) = 2Rm41(A) Ruys(A)

2
(2.7) AT = (Rm43(A) = R 1(A) (Ra3(A) = Rup1 (M)

We denote by p(x) the entry of the Perron - Frobenius eigenvector corresponding to the vertex z and
call it the Perron - Frobenius wight at the vertex z. Of course, the Perron - Frobenius eigenvector is
determined only up to a positive scalar multiple, however in our applications, these multiples appear on
denominators and numerators at the same time. Hence it does not matter how we may normalize it.

Lemma 2.7.  The Perron - Frobenius wights on each vertex of the graphs G(n, m) and H(n,m) are as
follows.

On the graph G(n, m) :

p(pi) =Ri-a(A)  (i=1,2,--,n),
p(uj) =kR;-1(}) (G=12,---,m),
#(g1) =Rn(A),

p(g2) =Rny1(A),

(

#(9) Z"Rn+1(’\)

(o) =§;(Rn+3(x) - Fans() = 25 (Rmta() = Rmsa (),
(98) =5 (Rats() = Rus(N),

H(38) =3 B (),

H(om) =3 (Rass(X) = Fas (V)

(95) =55 (Ruts) = Bass () = 5 (Remas() = Remas V)

(g8) =55 (0% = )Ry (3) = (O = DRas ()} = o (Bmss(d) + Brna(V),
#(g10) =f€Rm+1( )s

H(911) =55 (0% = ) Rass(d) = (= DRuss()} = 2= (Bmgald) + B i (V)
B(g12) =KRm(}).

On the graph H(n,m) :

W) =Ri1(d)  (i=1,2,---,n),
u(vj) =kR;-1(2) (G =1,2,---,m),
p(h1) =kRm(}),

p(h2) =k Rmy1(A),

u(hs) =3 Rt (V)
(he) =5 (Ronss(3) = Rems () = 53 (Rnss(Y) = Rusa (A),

(hs) =5 (Rass(X) ~ Rua (V)
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(k) = 2 (R s3) = R (1) = 55 (Ragal() = B (M),

(k) =502 = B RimsN) = (¥ = DRmis () = 5 (RewaD) + Brsa (V)
p(h10) =Rn41(),

(ki) = (0 = Do) = (O = DRmis (V) = 35 (Rasald) + R (),
(h1z) =Ra(3),

Remark 2.8.  We have normalized the Perron-Frobenius weights in Lemma 2.7 so that the smallest
weights in each graph equal to 1. There are many other equivalent expressions for each weight, for

example %(Rn+3(/\) — Ru41())) can be represented as %Rn+2(/\) and so on. However, in the previous

Lemma, we have managed to use Rm4+3()), Rm+1(}), Rn3(A) and Rpy1()) as far as we could. Moreover,
in the expressions of the weights u(gs), #(g11), #(hs) and p(h1)), we have used the equality (2.7).

Next we shall glue up the two bipartite graphs G(n,m) and H(n,m) for a biunitary connection. For
the biunitary axiom, the number of paths for making rows and columns are equal, and the Perron -
Frobenius weights must match at common vertices. According to Lemma 2.7, we shall fold up the graphs
G(n,m) and H(n,m) as shown in Fig. 2.4, so that the Perron-Frobenius weights on the middle lines

coincide.

g1 g3 96 94 gs 99 gn 912

(7)) 95 g1 g10

hiy hiy  he hs. ha he hs h

Fig. 2.4

Of course, the vertices remained on the graphs ( the vertices on A, and A, parts) are fold up in order.
Then identify the vertices on the middle lines, and we gule up the two graphs and relabel the vertices
around the central hexagon as illustrated in Fig. 2.5.
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a) ag as as ag ar as

<
N4

Cy Co C3 C4 Cs Co Cr Cg

Fig. 2.5

Remark 2.9.  In the case of m = n, the two graphs G(n, n) and H(n, n) are the same one. And then
there are two way for gluing, one way is in the 7 - rotation image which we have just done in above, the
other one is in the mirror image. However if we glue up them in the mirror image then the triple point
obstruction will not allow us to construct any biunitary connection on this system as we mentioned in

Remark 1.2.

At the end of this section, we will list again the Perron - Frobenius weights of the vertices labeled as in
Fig. 2.5, for our later convenience.

(@) =Ra(3),

H(a2) =5 Rsa(3),

H(as) =5 Rass(),

(@) =55 (Russ(N) = Rus(0) = 25 (Rrnys(d) = Brgs (1),

(08) =55 (Ruts(N) = Baa(N) = 25 By (3) = Rma (1),

ie) =53 {02 = ) Rars(3) = 02 = DRus(V) = 25 Rmsa() + Rrnys (A),
par) =500 = ) Rara() = 2 = DRuss0)} = 25 (BrmalD) + Rona (),
(as) =R Rm(Y),

p(br) =R (),

(bs) =5 (Rss(3) = Roa (1),

(bs) =3 (Rns3(}) ~ Raps(A),

(be) =5 B (N),

Her) =Ra(),

Hez) =07 = 8)Rmaad) = (F = DRmia(N)) = 5 (BagolA) + Ruga(V),
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(e) =02 = D Rmssh) = (¥ = DRV} = 55 (Resa() + Brsa (V)

(ed) = (Ront() = R i(0) = 75 (Ragal() = Rrn )
p(cs) =§%(Rm+3(/\) = Rmy1(})) = %(RMS(/\) = Rn1(3)),

u(es) =3 Rmta(2),
p(cr) =§Rm+1(,\),
(es) =KRm(N),

Rny3(A) = Ray1(X)
Rm43(A) — Rmy1(A)

where £ =

3. Connections on cospectral graphs

In this section, we construct a biunitary connection on the pair of the cospectral graphs that we have
introduced in the previous section.

Here, let us concentrate our interests upon the cell weights around the central hexagon illustrated in
Fig 2.5. Because the cell weights at the vertices on the line (Dynkin A— type) graphs are determined by
the routine argument (See [Y], [Oc2], [IK] and [Kaw] etc).

At the vertex b, in Fig. 2.5, we get 9 weights of the cells,

a;
7N\
w | b |, i=1,23 j=123.
/
¢

The absolute values of each weight of them can be determined as follows.
There is the only one path from a; to ¢; which passes through the vertex by. This implies that

as a2
w bl/ \bl =1 because the weight W bl\ b; | forms a 1 x 1 unitary. And then using
(] 91
renormalization rule, we have
as az
W b/ \b _ Viap(e) |ty 7 \b _ Vu(a2)p(cr)
1 1 || =75 1 1| =
/ p(b1) NS p(b1)
C1 Cy
By the same reason, we obtain that
as ( as \
w e S || 2 Velead(er) . TR /I CATIC
1 V| =7 1 1 || = —F 5
N/ p(b1) N/ p(b1)
Co C3
a; \ a \
wl b 2N | RV/ICATICY) wl b 7N || 2 Velas(es)
1 1 || =—F5 1 V|| =—F
NS p(b1) N/ p(b1)
C9 / \ Cc3
AN | e
wileb b _ VAas)e)
N/ u(br)
c1
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By the way, we can determine the weights of the cells on the line graphs one by one from the end point
until we encounter the triple poit. And in this proocedure, we can find a suitable starting gauge which'
makes that
2N
1 .
bl b 1

1 _ ———

W

o1
1

. Next we shall see the
N(b1)

for any given 8 € [0,27). Hence the absolute value of this cell weight is

as

N\

absolute value of the weight W | b, b1 |. There are two paths from a3 to ¢3. One way is via the

C2
vertex b; and the other path is via the vertex b;. By the biunitary axiom, we have the 2 x 2 matrix made
az

from the wights W */ * | such that
N

C2
as ( as \
7 N\ <\
W b1 b1 W bl b2
NS NS )
(3.1) Ca €2
BN N
W | by b, Wl by b,
\ N N/ }
b cz 62 -
S
Since the weight W bz\ /bl forms a 1 x 1 unitary, the absolute value of the weight
)
as
v . -
W bl\ by | can be determined by the remormalization rule that
C2
/N 7N
wl b, by || = 208 | ) by || =, [ BUA(b2)
NS p(as)p(cs) N/ (az)p(cz)
Cy C2

Then the unitarity of the 2 x 2 matrix (3.1) implies that

as
bl/ \bl L Hb1)n(ba)

Ve B p(az)u(ca)

€2

and the renormalization rule leads us that

as
7N Viaadules) [ plb)p(b)
L NP | e m e om row

(4]
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Replace ¢y and by by c3 and b respectively, and we obtain that

N || Ve[| peut)
' 1 u(b1) u(as)p(cs)

€3

by the same argument.
From these observatons, we can say that what we would like to have is a 3 x 3 unitary matrix U = (u;;)
satisfing the following norm conditions such that

\/M(M)#(CS)\/I _ p(b1)u(bs) \/H(az)ﬂ(cs) \/ﬂ(al)#(ca)
u(by) #(as)u(cs) #(b1) nu(by)
) = eney) (b)u(b2) Vi{az)p(e2) Vi(a1)p(ea)
(3.2) (Juii]) = (1) \/l - L a(b1) u(t1)
V p(as)p(c) v #(a2)p(er) 1
I #(ba) (1) u(br)
*
which will ensure the unitarity of the matrix constituted from the weights W | &, by | of the cells
*

at the vertex by in Fig. 2.5.

For this purpose, we first introduce the lemma which is very useful to assert the existance of a unitary
matrix satisfying the some norm conditions. And it is found in [Sc, Lemma 1.2.11] and also the same
arguments can be found in [Oc2, Section IV.2].

Lemma 3.1. ([Sc]) Let the 3 x 3 matrix

diy dig di3
D= | dy dyp dos
dsy dsy ds3

be doizbly stochastic and we put
a = diidy, B =diadza, v =dizdas.

Then there exists a unitary matrix U = (u;;) with |u;j|? = dij (1,5 = 1,2,3,) if and only if \/a, VB and
/7 satisfy the triangle inequality. The last condition is equivalent to

o 4+ B2+ 9% — 228 — 2By — 2ya < 0.

Remark 3.2. If such a unitry exists, we can take it to be of the form

Vdi Vdiz o Vdis
Va1 Vdye®'  V/dp3e'
Vs Vdsse®>  V/daze®s

for some 0; (j = 1,2,3,4).

Applying the above Lemma, let us show the existance of the unitary matrix U/ with the norm conditions
(3.2).
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Proposition 3.3.  Let pu(-) ’s be the Perron-Frobenius weights listed in the previous section. Then the
3 x 3 matrix of the form

#(as)p(cs) (1 p(b )#(bs)) plag)p(cs)  pla)p(cs)
p(b1)? p(az)p(cs) p(by)? p(b1)?
p=| #as)p(c) (1 p(by )#(bz)> pag)u(ca)  plar)p(ce)
p(b1)? p(as)p(es) u(b1)? p(b1)?
p(as)p(er) p(az)p(e1r) 1
| ab)? p(b1)? p(b1)?

is doubly stochastic and there exists a unitary U = (uj;) such that |u;;|* = d;;, where d;; denotes the
(4,7)—th entry of the matrix D.

Proof.  First we shall see the doubly stochastic property of the matrix D. From the definition of the
Perron-Frobenius eigenvector, we obtain the relations Au(b1) = p(a1) + p(az) + p(as) and Au(cs) =
p(b1) + p(b3). Using these relations, we have that

plaz)u(es) (o p(bi)p(bs)\ | plaz)p(es) | plar)p(es)
u(o,)? (l u(a )#(63))+ POV Oy
+

- ﬁ {(n(aa) + p(az) + p(ar))p(es) — p(br)pu(bs)}

—— (Au(ea) — p(bs)) = 1,

1
ey
as the sum of the entries of the first row. It is checked in the same way that the sum of the entries of the
second row equals to 1. And on the third row, the sum of the entries would be

pas)p(er) | plag)u(er) 1
wb)? T al)? T A

:@(u(aa)p(ﬁ) + p(az)p(er) + 1)

(3.3)

{(u(as) + p(az) + p(a1))p(er) — p(ar)p(er) + 1}

7 (Au(b)p(cr) — plan)p(er) + 1).

By substituting the weights listed in the previous section, the rightest hand of (3.3) equals to

(3.4)

1
2 )-
Rny
From now on, we abbreviate Ry ()) as Ry, for simplicity provided that there is no confusion. On the other

hand, the recursive relations for the series of polynomials {R,(z)} and the definition of the eigenvalue
imply the relations

(3.5) 1=R,> ~ R,_1Roy; (n=1,2,-").

So the expression (3.4) would be

A Rpi1) =
Rn+1 5(ARat1Rn ~ Ry-1Rny1) = n+12

{Ra41(ARn — Rpo1)} =
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It can be checked by similar way which we have done on the rows, that the sum of the entries of each
column equals to 1.

Next we shall see the existance of a unitary matrix U = (u;;) satisfying the conditions |u;; > =d;;. To
this end, we would apply Lemma 3.1, so we put

(= Haau(es) (| pu)u(bs) ) plas)ule) (| plbr)p(ba)
T p(h)? (1 u(as)u(Cs)) p(b1)? (1 u(as)u(02)>

T (bl‘a? {n(as)ples) - p(br)u(bs) Hp(aa)p(es) — p(br)n(b2)},

as)p(c az)p(c2 ! 2
p= u(uzzi‘)(Z : ”(u(’))/:)(z : - M(b1)4“(a2) ulea)u(ca),

= H(al)}l(03) u(al)y(CQ) —_ a1 )ul(e C;
\7 - li(bl)2 ”(b1)2 - /“(bl)‘iy( 1) ﬂ( 2)/1( 3),

Then all that we have to do is to check the inequality
(3.6) a?+ %+ 9% — 208 — 2By - 2ya < 0.

We can cancel the common factor ———— (b 7 > 0 in order to check the inequality (3.6). By substituting the
H#01
Perron-Frobenius weights in the previous section, and we have

1
o= ZXZ{Rn+3(Rn+3 + Ro41) = A’ Rny1(Rnys = Rng1)},

B = 5 Rnt1’(Rn4a + Roy1)?,

1
4/\4
v = 4/\2Rn (Rn+3+Rn+1) .

By multiplying 4A\* > 0, we may assume that
@ = {Rn43(Rat+3 + Rnt1) — N Rot1(Rats — Rng1)},
g = R721+1(Rn+3 + Rn+1)2)
y = AR} (Roy3 + Ruy1)’

in order to show the inequality (3.6). And by direct computations, we obtain that

(3.7) o+ 8%+ 42 - 208 — 287 — 2y«
= {(ARa(Rn3+ Rug1) = N2 Rn41(Rnts — Rag1) + (Raps + Ray1)’} X
{ARp(Rn43 + Rn41) + A2 Rny1(Rnts — Rat1) — (Rags + Rny1)?}x
{ARn(Rat3 + Rat1) = A2 Rnt1(Rnsa — Ray1) + (Rngs® — Rng1?)}x
{ARn(Ra43 + Rat1) + A2Rnt1(Rats — Rag1) — (Rogs® — Rag1®)}.

The equalities (3.5), R2 — Rp1Rny1 =1 (n=1,2,--+), lead that

{ ARn(Rn43 + Ray1) = A RpRaya = A2(Rppa® — 1),

(Rut43 + Rat1)? = A2 Rag2” = A2(1 4 Roy1 Rnga).
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Using these relations, we can obtain the followings for each factor of (3.7). On the first factor, we have

(3.8) AR, (Rn43+ Rng1) — A Rng1(Rnts = Rag1) + (Rt + Ragr)?
=2 {(Rat1> = 1) = Ra41Rny3 + Rngr® + (14 Rog3Rota)}
=2/\2Rn+12 > 0.

On the second factor,

(3.9) ARn(Rny3+ Rny1) + A Rog1(Rnts — Rot1) = (Ruys — Rugi1)?
=A{(Ra41® = 1) + Rot1Rnt3 — Rop12 — (1 + RuysRnp1))
=222 <.

On the third factor,

(3.10) ARn(Rnt3 + Ruy1) = A’ Ruy1(Rogs — Rag1) + (Rogs® — Royr?)
= (The 1st factor) — 2R, 3Rn41 — 2Rnp1?
=20’ Rp41% — 2Rn41(Raya + Roy1)
=2)Rn11® = 2ARnt1Rny2
=2ARn41(ARn41 — Rog2) = 2ARu41 R, > 0,

and on the fourth factor, we obtain that

(3.11) ARn(Rn43 + Rat1) + A’ Rog1(Rnys — Rot1) = (Raga® — Ragi?)
= (The 2nd factor) + 2R,13Rn11 + 2Rp41?
== 20+ 2R 11(Rnt3 + Ray1)

== 222+ 2ARnq1Rnt2 = 2X(Rpt1Raya — A) > 0.

Combine the equality (3.7) and the inequalities (3.8) to (3.11), and we get the inequality (3.6) which
completes the proof.
a

By the similar argument that we have explained at the beginning of this section, it can be said that
the next proposition will ensure the unitarity of the matrix constituted from the weights of the form

*
bz/ \62
NS

*

Proposition 3.4.  Let u(-) ’s be the Perron-Frobenius weights listed in the previous section. Then the
3 x 3 matrix of the form

p(as)p(cs) (1 _ #(bz)#(b3)) plas)pu(cs)  p(as)p(cs) (1 B u(bz)#(b4)>
H(b2)? n(az)p(cs) p(bz)? p(b2)? H(as)p(cs)
p = | #as)ulca) plaa)p(cs)  plas)u(ca)
p(b2)? p(b2)? p(b2)?
#(as)p(cs) (1 B H(bl)ﬂ(b2)) plag)p(ca)  plas)p(c)
| u(b)? p(az)p(cs) p(b2)? p(b2)? ]
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is doubly stochastic and there exists a unitary U = (u;;) such that |u;;|* = d;;, where d;; denotes the
(2,7)— th entry of the matrix D.

Proof. Tt is not so hard to check that the matrix D is doubly stochastic by using the relations obtained
from the definition of the Perron-Frobenius eigenvector. So we shall concentrate our interesting upon the
existance of a unitary matrix U = (u;;) satisfying the conditions |u;;|? = dij. We put

(= Haa)u(es) (1 _ #(bz)#(b3)> p(as)p(ca)
p(bo)? wlas)u(es) ) p(be)?

:(( ))4 {#(as)(y(a;;)p({)ﬁ) ll(b2)/1 bB))}

- D M) e

= E_gﬁ_ﬁ_)_/‘l_(ﬁ_)_ (1 ,U(b2)l,t(c4)) P(as)ﬂ(b4)

A

p(b2)? ~ mas)u(es))  wu(b2)?
= L85 {uas)(u(oa)u(ce) = (o0}

According to Lemma 3.1, all that we have to do is to show the inequality that
(3.12) o®+ 8%+ —2a8 - 287 —27a < 0.

p(ca)
p(b2)*

> 0 is the common factor, we can assume that

Since

o = p(as) (u(as)p(cs) — p(ba)p(bs)),
B = p(aq)’p(cs),
v = p(as) (n(as)n(cs) — p(b2)p(bs))

in order to show the inequality (3.12).
If we substitute the Perron-Frobenius weights listed in the previous section into these o, 8 and v then
we have

( 1
@ = —=Rn43{4kRmi3Rnt3 — A’(Rn43 — Ray1)?}

4)\3 "
4/\3 +3 {4Rm43Rnt3 — A(Rm43 — Rmy1)(Rnt3 — Ray1)}

G198 = 5 Rmta(Rats = Rart)?,

Yy = & {/\2(Rn+3 —Ru41) —3Rny3+ Rn+1} X
y {A2(Rm+3 — Rm+1)(Rn43 — Rnt1) — 3Rm43Rnys + RmysRnsr} .

We can cancel the common factor m > 0 again in these @, # and 7. Using the equality,
4Rpmy3Rn43 ~ 2Rmy3Rnyr — 2Rm+1Rn+3

2=
(Rm43 — Rm41)(Rn43 — Rng1)
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we can rewrite (3.13) as followings.

(@ = Roy3 {4Rm43Rats — A2(Rmts — Rmt1)(Rnts — Ru41)}
= 2R, 43(Rm43Rns1 + Rmy1Rnya),

B = Rmts(Rots — Rny1)?,

(3.14)
¥ ={>(Ra43— Rny1) = 3Rnys + Rn+1} X
{A2(Rm43 — Rm41)(Rn43 — Rnt1) — 3RmysRnys + RmysRag}
\ = k(Rm43 + Rm41)(Rm43Rny3 — Rmi3Rnty1 — 2Rmi1 Rngs)
where k = Rnts() = Fny1(3)

Rmt3(A) = Rm41(A)
We use @, § and v in (3.14) on the subsquent calculation. By direct but just a little complicated
computations, we obtain that

(3.15) |
o + 8%+ 9% - 208 - 28y - 2ya
4
= + Rmy1Rng3)X
(Romrs — Bone1)? (Bm+3Rnt +1Rn43)
(2Rm+3Rn+3 - Rm+3Rn+1 - Rm+1Rn+3)X
(2Rm43°Rat1Rnys + 2Ry 1 RmyaRoys” — Rmya’ Roys’
~ 2Rm43Rmt1RusaRost — Rmg1? Rupa?)
= 26(Rm43Rnt1 + Rny1Rnys)x
(2Rm+3Rn+3 - Rm+3Rn+l - Rm+1 Rn+3)x

{(/\2 —4)(Rmy3Ras1 + Rny1Rny3) — 2(Rmngs — Rng1)(Rnys — Rn+1)} .

Here we have applied equality (2.7) for the last equality in the above expression. Since we know that
Riys > Rgy1 >0 forany &£2>0,
it is obvious from Proposition 2.5 that

2Rm43Rnys — Rmy3Rat1 — Rmy1Rnys

3.16
(3.16) = (Rm+3 = Rm41)Ray3 + (Roys — Rng1)Rmes > 0.

From the equalities (3.15) and (3.16), it is enough to show the inequality that

(3.17) (A = 4)(Rm+3Rnt1 + Rnt1Rnts) — 2(Rmys — Rmy1)(Rnts — Rog1)
= A(Rm43Rn41 + Rmy1Rnts) — 2(Rmt3 + Rmg1)(Rots + Rog1) <0,

for the inequality (3.12). The above inequality (3.17) is eqvivalent to

(Rm+3 + Rm1)(Rays + Rayy)
(Rm+3Rn+1 + Rmy1Rn43)

If we denote A,, , the left hand of the inequality (3.18) then we have

(3.18)

/\2
> -,
- 2

_ (t+zm)(+2n)

Amn = ;
T + Tp
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where we set that
_ R

= <1
Ryys

Tk

Since zj is increasing in k as we said in Proposition 2.5, it follows that Am n is decreasing both in m and
n. Indeed, for fixed n, we can rewrite
1

Amn :(1+xn)+(l—mn2)x o

Since 1 — 2,2 > 0 and {z,,} is positive increasing sequence, we can conclude that A, , is decreasing in
m. Similary A, is also decreasing in n. Moreover from Proposition 2.5, we have klim zr = e~ % where
Sl

A = et + e~t. Therefore we have

_ (1+6~'2t)2 _ (et +€—t)2 B /\2

2¢e-2t 2 2

Amn> lim Ap,
n

,M =00

Now the inequality (3.18) has been proved and it makes the proof be complete.

Proposition 3.5.  Let pu(-) s be the Perron-Frobenius weights listed in the previous section. Then the
3 x 3 matrix of the form

I :
p(as)p(cs) (1 B ﬂ(bz)u(b:a)) p(as)p(cs)  p(ar)p(cs) (1 B ﬂ(ba)#(b4))
p(bs)? p(as)p(cs) p(bs)? p(bs)? p(az)p(cs)
p = | #las)u(cs) plas)u(es)  plar)p(cs)
p(bs)? p(bs)? p(bs)?
p(as)p(cs) (1 3 ﬂ(bl)ﬂ(ba)> p(as)p(es)  plaz)n(cs)
p(bs)? p(as)u(cs) p(bs)? p(b3)? ]

is doubly stochastic and there exists a unitary U = (u;;) such that luij|? = dij, where d;; denotes the
(i,7)— th entry of the matrix D.

From the table of the Perron-Frobenius weights, it follows that p(as) = p(as), p(as) = p(az), p(b2) =
p(bs), p(cs) = p(cz) and p(es) = p(cs) . So the matrix D in this proposition is the same one in Proposition
3.4, so we do not need a proof.

Switching m and n, the next proposition can be proved by the similar way of Proposition 3.3. Thus
we can skip the details of the proof.

Proposition 3.6.  Let p(-) ’s be the Perron-Frobenius weights listed in the previous section. Then the
3 x 3 matrix of the form

p(cs)p(as) (1 _ u(b4)u(bz)) pler)ulas)  plcs)n(ae)
p(bs)? p(cs)u(as) p(ba)? p(ba)?
p=| Hcsular) (1 _ ﬂ(b4)#(b3)) pler)p(az)  p(es)p(ar)
p(ba)? p(cs)n(ar) p1(ba)? p(ba)?
p(cs)p(as) p(er)p(as) 1
| b p(ba)? pba)? |
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is doubly stochastic and there exists a unitary U = (uyj) such that |u;;|* = d;;, where di; denotes the

(4, 7)—th entry of the matrix D.

Next we shall determine each the cell weight satisfying the biunitary condition. From Propositions 3.3
to 3.6 and Remark 3.2, we have the following four unitary matrices by taking suitable gauges e’

s(as)p(es) s(by)p(bs) s(az)u(es) fu(a1)p(es)
\/ #be)23 (1 - u(a;)u(cz)) u?bx)’3 ;zlb;)23
U, = u(a 2#%6 ) p(b )u%b ; /u(azzugc ) .6 fu(a1)p(c2) ig,
' \/ u361 * (1— u(a:)u cz ) (b et ulbx) e
#ﬁ;abyj%n) /#Sz:b!fgﬁleiﬂg, = %’1 ez’G,
#(aa)u(ce) #(b2)p(bs) fu(as)p(cs) #(ae)p(cs) B(b2)p(ba)
\/ M?bz)’s (1 - u(az)n(Ci)) #252)2 \/ ;4(1'2)7‘s (1 - u(a:)u(c:))
U2 = #{z:sblil'[gcql lﬂ(zEblil};a !ews /Miz‘éb)ggcaleies
#(as)p(ca) (1 _ u(bl)u(be)) /ugaa)u(cz)ew, B(as)u(ea) ,ifs
u(b3)? u(as)u(cs) u(b2)? (b2
#(as)p(cs) B(ba)p(bs) u(as)p(e s(ar)u(cs) B(b3)p(be)
\/ el (1 nearca) RV O \/ szl (1 shgultal)
Us = u(;abzitgzcs! I-‘!:sb!sﬂ)ﬂgcsleiﬂg /”ifgf)!f”e””
(aa)p(es) by)u(b 5 ] (ar)ples) i
\/u el (- aegety) el feen o,
L -
- -
#(ce)p(as) #(ba)n(ba) uler)p(as) (cs)p(as)
\/ g (1- i) K07 V aty
Uy = #(es)p(ar) ba)u(bs) i9 ) i
: S (1-sges) e e
#gf‘(sb):t)gaa} \/u— (;7(17 );:) (as) b5 u_(}):;eiaw

Remainding the above unitaries U; to Uy, we put the weights of the admissible cells of the form

a;

7\

W b b
/

G

as follows :
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ag

'

N
Then the weights of the form W | * /* make the matrix

C2

\/ T \/u(bl)u(bz)
p(as)p(c2) p(as)p(cz)

; \/u(bl)y(b» \/1_ plba)p(b2)
plas)p(cz) paz)p(cz)

L B

and this matrix is obviously unitary. Similarly, it is clear that the 2 x 2 matrices constituted from

N N /N /N
the weights of the form W | * x|, W | x|, W]+ x | and W[ = *
/ NS N/ N/
c3 Cg Ce Ce
a;
. ‘ 7N L .
are all unitary. Of course, the weights of the from W | = * | remained in the above list, except
]
/N AN
Wb by | and W | by by | , might be 1 x 1 unitaries.
N/ N/
91 cg

Next we see the other unitarity of the weights. Applying the renormalization rule, we can easyly
check the unitarity of the matrix constituted from the weights of the admissible cells of the form

bk/ \b

w 1 |. For instance, renormalization rule implies that
*
7N 2N
w | & b | = #(az)p(cr) wl b b | = /‘(az)l‘(cl)ew;.
N/ p(b1) NS p(b1)
C1 C1
Apply the renormalization rule to other cells and then we have the unitary matrices U, (k =1,2,3,4)
*
. . 7N\ . :
as the matrices of the weights W bk\ /bk (k = 1,2,3,4) , respectively. And all the weights of
*
*
VRN o o . . .
the form W | by by (k # 1) equal to imaginary unit ¢ which are trivially 1 x 1 unitary matrices.
*

Here we can assert our theorem.

Theorem 3.7.  The pair of graphs G(n,m) and H(n, m) has a biunitary connection. And we have
irreducible subfactors of the hyperfinite factor of type I1; with the indices ||G(n,m)||? (= |[H(n,m)||?) .

At the end of this section, we give the table of the values of the indices, the square values ||G(n, m)||?
of the graph norms ( see table 3.1 ).



26

Finally we would like to make a comment on the possibility of the pairs of cospectral graphs. As we
sald in section 2, we can obtain the pair of the cospectral graphs by taking any other graphs as the graphs
Gi (i = 1,2,3,4) in Fig. 2.1. And the auther believes that there are many possibilities for biunitary
connections on such a pairs of the cospectral graphs. However we can see that if we put line (Dynkin A—
type) graph as G or G4 then we can not construct any connections in the way that we have demonstrated

in this paper.

H. YOSHIDA

The table of the indicies, ||G(n, m)]|?

0

3

5.56155281
9.60519839
5.61803399
5.62185035
5.62299297
5.62333617
5.62343938
5.62347044
5.62347978
5.62348260

O 0O OO R WO S

limit  5.62348381

m 5
n
5 5.67833133
6 5.67841666
7 5.67844188
8 5.67844933
9

5.67845153

limit  5.67845246

1

5.64575131
5.65757513
5.66105201
5.66208047
5.66238553
5.66247612
5.66250303
5.66251103
5.66251340

5.66251441
6

5.67850195
5.67852716
5.67853461
5.67853681

9.67853773

2

5.66907909
5.67245146
5.67344557
5.67373938
5.67382631
5.67385204
5.67385966
9.67386191

5.67386286
7

5.67855236
5.67855981
5.67856201

5.67856294

Table 3.1

3

5.67579031
5.67677356
5.67706385
5.67714965
5.67717502
5.67718252
5.67718474

5.67718567
8

5.67856726
5.67856946

- 5.67857038

NSR. 0.U.,, Vol. 47

5.67775332
5.67804251
5.67812795
5.67815320
5.67816067
5.67816287

5.67816380
9

5.67857166

5.67857259

Remark 3.8.  Using the eigenvalue equation in Lemma 2.6, we get the following facts.

(1) In the above table, for fixed m, the limit lim ||G(n,m)||? is given by
n—o0o
2
(um + u_> , where vy, is the largest root of the polynomial equation

r2m+12 _ 3x2m+10 _ z,2m+8 _ x2m+6

() lim [IG(n,m)|[* < lIG(m + 1,m + 1)|]°

(3) The smallest value is ||G(0, 0)||*> =

(4) 1lG(o0,00)|* ~ 5.67857351

2

T+V1T

+£6-z4+x2~1:0.
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