Note on the Schur multiplier of a certain semidirect product

Mitsuko Horie

Department of Mathematics, Ochanomizu University (Received September, 5, 1994)

Let G, N and T be finite groups such that G is the semidirect product of N by T:

$$G \triangleright N$$
, $G = NT$, $N \cap T = \{1\}$.

Let Z denote the additive group of the rational integers, and let Q denote the rational number field. The additive group of Q will also be denoted by Q.

In this paper, we shall make simple remarks on the Schur multiplier of G, namely the second cohomology group $H^2(G, \mathbf{Q}/\mathbf{Z})$, under certain conditions on the structure of G. It is of course understood here that G acts trivially on the additive group \mathbf{Q}/\mathbf{Z} . In the last part of the paper, we shall explain briefly how our result is related to the Hasse norm principle, over \mathbf{Q} , for an unramified abelian extension of a quadratic field in the narrow sense.

§ 1. Results and proofs.

We first prove the following

LEMMA. Let A be a G-module on which N acts trivivally and let I denote the subgroup of $\operatorname{Hom}(N,A)$ such that $\tau(h(\nu)) = h(\tau \nu \tau^{-1})$ for every $\tau \in T$ and every $\nu \in N$. Then

$$H^1(G, A) \cong H^1(T, A) \oplus I$$
.

PROOF. For each subgroup S of G, we denote by Z_S the additive group of maps $z: S \rightarrow A$ satisfying

$$\sigma_1(z(\sigma_2)) - z(\sigma_1\sigma_2) + z(\sigma_1) = 0, \quad \sigma_1, \sigma_2 \in S$$
.

Given any $f \in Z_G$, the restrictions f|T and f|N clearly belong to Z_T and Z_N , respectively. It then follows from G = NT that the map $\iota: Z_G \to Z_T \oplus Z_N$ defined by $\iota(f) = (f|T, f|N)$ is an injective homomorphism. Since N acts trivially on A, we also have

$$f(\nu_1\nu_2) = \nu_1(f(\nu_2)) + f(\nu_1) = f(\nu_1) + f(\nu_2), \quad \nu_1, \nu_2 \in N.$$

Furthermore, for each $\nu \in N$ and each $\tau \in T$,

$$\begin{aligned} \tau(f(\nu)) &= f(\tau \nu) - f(\tau) = f(\tau \nu \tau^{-1} \tau) - f(\tau) \\ &= \tau \nu \tau^{-1}(f(\tau)) + f(\tau \nu \tau^{-1}) - f(\tau) = f(\tau \nu \tau^{-1}) . \end{aligned}$$

Thus, f|N belongs to I.

Take next any $g \in Z_T$ and any $h \in I$. Noting that $T \cap N = \{1\}$, define the map $F: G \rightarrow A$ by

$$F(\nu\tau) = g(\tau) + h(\nu)$$
, $\nu \in \mathbb{N}$, $\tau \in T$.

Then, for any ν_1 , $\nu_2 \in N$ and any τ_1 , $\tau_2 \in T$,

$$\begin{split} &\nu_1\tau_1(F(\nu_2\tau_2)) - F(\nu_1\tau_1\nu_2\tau_2) + F(\nu_1\tau_1) \\ &= \nu_1\tau_1(g(\tau_2) + h(\nu_2)) - g(\tau_1\tau_2) - h(\nu_1\tau_1\nu_2\tau_1^{-1}) + g(\tau_1) + h(\nu_1) \\ &= \tau_1(g(\tau_2)) + \tau_1(h(\nu_2)) - g(\tau_1\tau_2) - \nu_1(h(\tau_1\nu_2\tau_1^{-1})) - h(\nu_1) + g(\tau_1) + h(\nu_1) \\ &= \tau_1(h(\nu_2)) - h(\tau_1\nu_2\tau_1^{-1}) = 0 \; . \end{split}$$

Since F|T=g and F|N=h, it follows that $\operatorname{Im} \iota = Z_T \oplus I$. Now, for each subgroup S of G, we let B_S denote the additive group of maps $b: S \to A$ such that

$$b(\sigma) = \sigma a - a$$
, $\sigma \in S$,

with some $a \in A$. By this definition, $B_s \subset Z_s$, $H^1(S, A) = Z_s/B_s$, and we easily see that

$$\iota(B_G) = B_T \oplus B_N$$
, $B_N = \{0\}$.

Consequently, ι induces an isomorphism from $H^1(G, A)$ onto $H^1(T, A) \oplus I$. For each subgroup S of G, we let

$$S^* = H^1(S, \mathbf{Q}/\mathbf{Z}) = \text{Hom}(S, \mathbf{Q}/\mathbf{Z})$$
.

PROPOSITION 1. Assume that N is the direct product of its r cyclic subgroups N_1, \dots, N_r $(r \ge 1)$ and that, for each $\tau \in T$, there exists an integer t such that $\tau \nu \tau^{-1} = \nu^t$ for every $\nu \in N$. Then

$$H^2(G, \mathbf{Q}/\mathbf{Z}) \cong H^2(T, \mathbf{Q}/\mathbf{Z}) \oplus (N \wedge N) \oplus \bigoplus_{i=1}^r H^1(T, N_i^*)$$
.

Here the action of T on each N_i^* is defined by

$$(\tau f)(\nu) = f(\tau \nu \tau^{-1}), \quad \tau \in T, \ f \in N_i^*, \ \nu \in N_i,$$

and $N \wedge N$ denotes as usual the exterior product of N.

PROOF. Let us prove the proposition by induction on r. Let s be any

positive integer. Assuming that the proposition holds if r < s, we consider the case r = s. Let $N' = N_1 \cdots N_{s-1}$ so that G is the semidirect product of N_s by TN'. Let R be the restriction map $H^2(G, \mathbf{Q}/\mathbf{Z}) \rightarrow H^2(TN', \mathbf{Q}/\mathbf{Z})$. Then, by Theorem 2 of [2],

$$H^2(G, \mathbf{Q}/\mathbf{Z}) \cong H^2(TN', \mathbf{Q}/\mathbf{Z}) \oplus \operatorname{Ker} R$$

and there exists an exact sequence

$$0 \longrightarrow H^1(TN', N_s^*) \longrightarrow \operatorname{Ker} R \longrightarrow H^2(N_s, \mathbf{Q}/\mathbf{Z}),$$

where the action of TN' on N_s^* is of course defined by

$$(\sigma f)(\mu) = f(\sigma \mu \sigma^{-1}), \quad \sigma \in TN', f \in N_s^*, \mu \in N_s$$

However, $H^2(N_s, \mathbf{Q}/\mathbf{Z}) \cong N_s \wedge N_s = \{1\}$ since N_s is a cyclic group. Thus

(1)
$$H^{2}(G, \mathbf{Q}/\mathbf{Z}) \cong H^{2}(TN', \mathbf{Q}/\mathbf{Z}) \oplus H^{1}(TN^{1}, N_{s}^{*}).$$

It further follows from our hypothesis of induction that

(2)
$$H^2(TN', \boldsymbol{Q}/\boldsymbol{Z}) \cong H^2(T, \boldsymbol{Q}/\boldsymbol{Z}) \oplus (N' \wedge N') \oplus \bigoplus_{i=1}^{s-1} H^1(T, N_i^*).$$

Take arbitrarily $h \in \text{Hom}(N', N_s^*)$, $\tau \in T$, $\nu \in N'$, and $\mu \in N_s$. The assumption of the proposition then implies that

$$\tau \mu \tau^{-1} = \mu^t$$
, $\tau \nu \tau^{-1} = \nu^t$ for some $t \in \mathbf{Z}$.

Hence

$$(\tau(h(\nu))(\mu) = (h(\nu))(\tau \mu \tau^{-1}) = (h(\nu))(\mu^{t})$$
$$= t(h(\nu)(\mu)) = (th(\nu))(\mu) = (h(\tau \nu \tau^{-1}))(\mu) .$$

Therefore, $\tau(h(\nu)) = h(\tau \nu \tau^{-1})$ so that, by the lemma,

$$H^{1}(TN', N_{s}^{*}) = H^{1}(T, N_{s}^{*}) \oplus \text{Hom}(N', N_{s}^{*})$$
.

Since $\operatorname{Hom}(N', N_s^*) \cong \bigoplus_{i=1}^{s-1} \operatorname{Hom}(N_i, N_s^*) \cong \bigoplus_{i=1}^{s-1} (N_i \otimes N_s)$, it follows from (1) and (2) that

$$H^2(G, \boldsymbol{Q}/\boldsymbol{Z})$$

$$\cong H^2(T, \mathbf{Q}/\mathbf{Z}) \oplus (N' \wedge N') \oplus \left(\bigoplus_{i=1}^{s-1} H^1(T, N_i^*) \right) \oplus H^1(T, N_s^*) \oplus \bigoplus_{i=1}^{s-1} (N_i \otimes N_s)$$

$$\cong H^2(T, \mathbf{Q}/\mathbf{Z}) \oplus (N \wedge N) \oplus \bigoplus_{i=1}^{s} H^1(T, N_i^*) .$$

The proposition is therefore proved.

REMARK. Since N is abelian, $N \wedge N \cong H^2(N, \mathbb{Q}/\mathbb{Z})$ as is well known.

PROPOSITION 2. Assume that N is abelian, |T|=2, and $\tau_0 \nu \tau_0^{-1} = \nu^{-1}$ for every $\nu \in N$, τ_0 being the non-trivial element of T. Then

$$H^2(G, \mathbf{Q}/\mathbf{Z}) \cong (N \wedge N) \oplus (\mathbf{Z}/2\mathbf{Z})^{\rho}$$

where ρ is the 2-rank of N.

PROOF. As T is cyclic, we first obtain $H^2(T, \mathbf{Q}/\mathbf{Z}) = 0$. Next, given any subgroup S of N, we have, by the assumption on τ_0 ,

$$\tau_0 f = -f$$
 for every $f \in S^*$.

Hence $H^1(T, S^*) \cong S^*/2S^*$. The proof is now completed by Proposition 1.

§ 2. Relation to number theory.

Let k be a quadratic field and L an unramified abelian extension over k in the narrow sense. Then, by class field theory, L is a Galois extension over Q, $\operatorname{Gal}(L/Q)$ is the semidirect product of the abelian group $\operatorname{Gal}(L/k)$ by J, an inertia group for L/Q of a prime ideal of L dividing a rational prime ramified in k, and $xyx^{-1}=y^{-1}$ holds for every $y\in\operatorname{Gal}(L/k)$, with the non-trivial element x of the group J of order 2. It therefore follows from Proposition 2 that

(3)
$$H^2(\operatorname{Gal}(L/\mathbf{Q}), \mathbf{Q}/\mathbf{Z}) \cong (\operatorname{Gal}(L/k) \wedge \operatorname{Gal}(L/k)) \oplus (\mathbf{Z}/2\mathbf{Z})^{\lambda}$$

where λ is the 2-rank of $\operatorname{Gal}(L/k)$. Now let g denote the number of rational primes ramified in k, so that $\lambda \leq g-1$. Using (3), we can see that g does not exceed 3 if the Hasse norm principle holds for L/Q, namely, if a rational number which is a norm for L/Q of some idele of L is always a norm for L/Q of some algebraic number in L. Furthermore, it follows from (3) (combined with classical results) that, in the case $g \leq 2$, the Hasse norm principle holds for L/Q if and only if L is a cyclic extension over k (for the case where g=1 and L is the Hilbert class field over k in the narrow sense, see [1]).

The details of this section will be published elsewhere.

References

- [1] M. Morishita, On the Hasse norm principle for certain generalized dihedral extensions over Q, Proc. Japan. Acad. Ser. A 66 (1990), 321-324.
- [2] K. Tahara, On the second cohomology groups of semidirect products. Math. Z. 129 (1972), 365-379.

DEPARTMENT OF MATHEMATICS OCHANOMIZU UNIVERSITY OTSUKA, BUNKYO-KU, TOKYO 112 JAPAN