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Abstract

Hypothetical benzenoid tori serve as models for estimating the pro-
perties of graphite because their electronic states are found rapidly to
converge to that of graphite. We present an algorithm for enumeration
of Kekulé structures of these benzenoid tori. The basis for our algorithm
is consideration of those CC connecting lines which convert a 2-dimensional
benzenoid into a torus. By successive selection of such “connecting™ lines
as CC single and CC double bonds we effectively transform a benzenoid
torus into a collection of planar benzenoids, the Kekulé structures of which
are thus enumerated. The number of benzenoids and rump benzenoids
derived by excision of “connecting” bonds and adjacent bonds is governed
by the binomial distribution. The approach is illustrated on benzene and
coronene tori. The results for a few other simple benzenoid torus net-
works are presented including also the result for a torus based on cir-
cumeoronene with over 15,000 Kekulé valence structures.

Introduction

Theoretical calculations on very large systems are necessarily confined
to very simplified approaches. One could almost say that an increase in
the size of a system by an order of magnitude, i.e., by a factor of 10,
requires one to consider an alternative theoretical approach. In Table I
we summarized the present situation with theoretical calculations on ben-
zenoid systems. The interest in large benzenoids is fueled by our interest
in the electronic structure of graphite. It is believed that a model having
some 10° carbon atoms ought to offer a fair insight into the electronic pro-
perties of graphite. However, the 10° number of z-electrons is too large
to be considered by present computational schemes. In additions, one
should be aware that the method as listed in Table I decreases in accuracy
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Table I. Theoretical methods appropriate for modeling
molecular systems of various sizes.

The number of carbon atoms ‘theoretical method
~10-10?% Ab initio method
~10? Resonance theory

Conjugated circuits
~10° Clar sextet model
~10t Hiickel MO

Free Electron medel
~105 ?

and hence reliability. For example, the Resonance Theory of Herndon'
and the Conjugated Circuit model® can be parametrized to simulate SCF
MO calculations such as carried by Dewar and de Llano on smaller ben-
zenoids®, Hence, such calculations can give quite reliable estimates of the
molecular stability (as measured by the molecular resonance energy). The
model is essentially confined to =-electrons as contained in the Pariser-
Parr-Pople approach®® and thus ignores the possible role of the s-electron
frame. However, while in smaller benzenoids ¢-electron network can intro-
duce contributions due to deformations of the regular hexagonal geometry
by the presence of CC bonds of different lengths, this effect is to be
negligible in the case of graphite. Herndon and Hosoya’s method® using
Clar sextets is computationally simpler and appears to give satisfactory
results for smaller benzonoids but its extension to much larger benzenoids
has yet to be independently verified. Also, as has been recently reported’
already construction of Clar structures for large benzenoids is far from
simple, and may present a restriction on unlimited model extension. The
Hiickel method®, which in fact represents a simple graph theoretical model
based on the adjacency relationship of carbon atoms’, can be extended to
large systems but this method fails to give adequate quantitative desecrip-
tion even of small benzenoids, hence at best can offer some qualitative
insight into the electronic structure of graphite.

One way to approximate graphite is to impose cyclic conditions on
smaller benzenoids. Analysis of the r=-electronic structure of infinitely
large networks using cyclic polymers by consecutively joining selected
carbon atoms in the repeating units has been reported. For example,
Hosoya and coworkers reported the analytical expression for the densities
of states of several cyclic polymers such as linear and zigzag polyacene
and polynaphthalene'. Klein and coworkers'' on the other hand applied a
very powerful transfer-matrix method for subgraph enumeration and were
able to speculate the relative resonance energies as a function of the length



December 1994 On Enumeration of Kekulé Structures 103

of the strip of polypyrene. The transfer-matrix method allows finding
the limit for the resonance stabilization as the length of the strips extends
to infinity. When the size of the benzenoid network with different peri-
pheral structure of a finite width is increased to infinity, the difference
in the stability and density of states is found to remain'®>. Thus the elec-
tronic states of these cyclic benzenoids do not converge to that of graphite.
It was found that if such cyclic models are extended to more than a single
direction to form a “torus”, the peripheral dependency eventually disap-
pears and they approach the limit of graphite'®. Not only the HMO but
also the PPP (Pariser-Parr-Pople method) calculations for those networks
are found to converge amazingly rapidly to graphite. Several hypothetical
torus networks only with several hundred carbon atoms are found to give
the same convergence limit of graphite. On the other hand, from reson-
ance theoretic standpoint, almost nothing has been discussed on the peri-
pheral dependency and convergence speed of the electronic structure of
the torus networks.

In contrast to 2-dimensional planar polycyclic carbon networks of ben-
zenoids the number of Kekulé valence structures in torus networks dra-
matically increases. For example, in the case of coronene torus (to be
examined later as an illustrative case) there are 120 Kekulé valence struc-
tures compared to 20 of coronene, while there are six for benzene torus
compared to two for benzene.

As the first step of this new approach to the electronic structure of
graphite, an elementary but novel technique for enumerating the number
of Kekulé valence structures of torus benzenoids will be introduced and
discussed in this paper.

Algorithm for Kekulé Count in Torus Benzenoids

We will assume that a parent benzenoid has been selected and the

corresponding torus structure to be examined is constructed. Consider the

binomial coefficients (Z), where 7 is the number of “long” bonds and k

takes values k=0,1,2,---,n. The running index k indicates the number

of paired vertices to be erased at each successive step.

(1) Assign labels (such as letters of the alphabets) to periphery of the
parent graph in such a manner that vertices which are connected by
a “long” bond have the same label.

(2) Start with k=0 (one structure) which is the parent structure, i.e.,
the structure in which none of the vertices at the periphery was
erased. Find the number of Kekulé structures (K) for the parent
structure.
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(38) Increase the value of k to k+1.

(4) Erase k pairs of the vertices at the periphery. Construct all <Z>
such subgraphs consecutively in dictionary order.

(4) Assign CC double and CC single bonds to all pending bonds and adjac-
ent bonds as much as possible.

(5) Find the number of Kekulé structures for the residual benzenoid
fragment.

(6) If k=mn add all the partial results to obtain K, if not repeat step (3).

In step (3) grouping of symmetrically equivalent choices reduces consider-

able amount of enumeration.

Benzene torus

At the top of Figure 1 we have illustrated benzene torus which is
equivalent to the Ladenburg’s formula of benzene, or in graph theoretic
terminology to Kuratowski graph K;,*. Our procedure for enumeration
of the Kekulé valence structures of such systems is to convert a torus
system to a set of planar benzenoids, or fragments thereof. This is ob-
tained by successive assignment of CC single(s) and CC double(d) bonds to
the set of the “long” bonds, which converted the parent benzenoid into
a torus structure. A stepwise process is illustrated in Figure 1 on ben-
zene torus with the family of its subgraphs. The thick ”long“ bond in
each of the parent graph and subgraphs can be assigned as s or d to give
two graphs in the next row. When bond e is assumed to be a CC single
bond it is simply erased to give a subgraph G-e (shown as the left choice)
and when assumed as a CC double bond it is erased together with the
adjacent bonds to give GOe (shown as the right choice).

This procedure is implied already in Wheland’s recursive expression
for enumeration of Kekulé structures of various degrees of excitation®
and has been implemented for a systematic construction of Kekulé valence
structures in arbitrary polycyclic systems!. What is novel and different
in this algorithm is that we focus attention only to "long“ or torus-closure
bonds.

The final result of succesive considerations of all three (thick) long
bonds is shown by the eight (=2°) structures in the last row of Figure 1,
below each of which the number of d steps for generating it and the
number of Kekulé structure (degeneracy) are given.

Among the eight structures we have a benzene ring (with 2 Kekulé
structures), three "Dewar-type® valence structures (with central bond erased)
and one final structure ¢ in which all bonds have been erased. Since a
benzene ring generates two Kekulé structures, the number of Kekulé struc-
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7N
()7 X 1x x¢

degeneracy 2 1 1 0 1 0 0 1 =6
number of 0 1 1 2 1 2 2 3
d steps

2 X X X x3

Tx)=x3+3x+2
Figure 1. Successive elimination of long torus bonds in benzene.
s: single and d: double
X : no Kekulé structure
¢ . vacant graph (K=1)

tures for benzene torus is six.

td tK degeneracy Kekulé count T(x)
0 2 1 2x1 2
1 1 3 1%3 3w
2 0 3 0x3 022
3 1 1 1x1 x?

6 T(x)

The total count of the Kekulé structures for benzene torus, hence, gives
as the answer K=6. The coefficients 1,3, 3,1 in the above table are noth-
ing else but the binomial coefficients of the Pascal triangle.

Let us define the torus polynomial of benzenoids, or more correctly
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the polynomial of torus benzenoids, T(x)= X ¢,x*, with the coefficient ¢,
k=0

for the term x* being the number of Kekulé structures with %k long bonds.
Here k runs from zero to », the number of torus “long” bonds. Then for
the benzene torus we have T(x)=x’+3x+2 (See above). In this poly-
nomial the Kekulé number can be expressed as K=T(1).

Benzene torus is too small to show all facets of the algorithm. So we
will illustrate the approach once again on somewhat larger coronene torus.

Coronene Torus

In Figure 2 we illustrate coronene torus, a structure obtained by link-
ing six pairs of carbon atoms at the opposite mirror sides of the molecular
periphery. This graph has a high symmetry which is not apparent from
its pictorial representation as D,,. It consists only of hexagons, as was
the case also with benzene torus. One can show that such systems have
high symmetry using canonical labeling!'®*. It is precisely this “all-hexagon”
character of the structure which is the reason for embedding benzenoid
networks on torus, rather than on a sphere. In the case of embedding of
graphs on a sphere twelve pentagons (just as in buckminsterfullerene)
would necessarily have to be introduced. This makes the system less
graphite-like. The carbon skeleton of the coronene torus represents an
edge and vertex transitive graph, and also has been obtained using an
approach based on graph generators, simple symmetric 3Xx3 permutation
matrices”. Hence, not only all carbon atoms, and all carbon bonds but
also all six membered rings in this torus structure are strictly equivalent.
It is this high symmetry which we believe is behind fast convergence of
such a model toward infinitely large graphite network which is also
characterized by strictly equivalent carbon atoms, carbon CC bonds and all
hexagonal rings. In any other finite model, except the torus, perturbation
caused by boundaries will adversely affect the model, unless one extends
computations to the limit of the infinitely large network.

Figure 2. Coronene torus.
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In Figure 3 we illustrate our approach on coronene torus. At the
first of the figure we show labels used to distinguish different “long” bonds.
We have abbreviated labels aa to A, bb to B, etec.

At the first step, case k=0 we have coronene, known to have K=20.
Our next fragment, labeled as A (or aa) is illustrated in Figure 3 just
beside the coronene structure. It is obtained by erasure of the vertices
a, a together with incident (peripheral) edges from the coronene diagram
to yield graph GESA. Structure A has two pending bonds which are as-
signed as CC double bonds and which induce assignment of another CC
double bond (at the left part of the diagram). By ignoring all the CC
ponds with so assigned CC single and CC double bond types we obtain as
a fragment pyrene with K=6. From symmetry consideration we got
6x 6=236 structures for coronene torus from this kind of steps.

Next we consider pair of letters of the AB type, as shown in the
second row of Figure 3. The first fragment comes with weight 6, there

(5]

a
K(G)=20 K(G©oA)=6

aB I O AC U ‘ ADIL I |
?(Eg o « e B
ol

K(Ge(A,B))=0 K(Ge(AO)=1 K(Ge(AD))=1

ABC ¢ ABD | | ACE
Y x6 ’m x12 X2,
| R

AC S AD
N
x6 \\ X6 %ﬁ x3 |18x*
= N
N

K(Go(A,B))=1 KGoA,Q)=2 K(Go(A,D)=0

A S 0 |
~ Z NN 6
P q X6 _ ~ x1 X
/ _ ] _
K(GoeA)=0 K(G©e0)=1

Figure 3. Successive elimination of long torus bonds in coronene.
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being six symmetry equivalent such diagrams (combinations AB, BC, CD,
DE, EF, FA obtained by cyclic substitutions). However, they can be
ignored because of no Kekulé structure. The diagram AC, derived by
erasure of vertices with labels a and ¢ has a single Kekulé structure, and
the same is true for the fragment AD. Thus AD has the symmetry equi-
valent counterparts: BD, CE, DF, EA, FB, in total of 6. The last struc-
ture has higher symmetry, in all there being three such structures: AD,
BE and CF in which carbon atoms at the opposite sites define each struc-
ture.

The process continues as illustrated at the central part of Figure 3.
Again there are only three symmetry nonequivalent combinatorial possi-
bilities: ABC, ABD, and ACE. They come with symmetry numbers 6, 12
and 2 respectively. The first fragment, after the four pending bonds have
been assigned as CC double bonds, results in a naphthalene fragment with
K=3, and the last gives triphenylene with K=9. The middle fragment
corresponds to a radical and has no Kekulé valence structure. Hence at
this “level” of enumeration we have 6 xX3+2x9=386 Kekulé valence struc-
tures, contributing the term 36x°® to T(x).

By now we have reached half of the algorithm, there is no need to
continue to keep the record of individual residual fragments any more,
since the remaining fragments can be viewed as complements of those
already listed. Thus ABCD correspond to EF, which has been already
listed, ABCE corresponds to DF and so on. The derived structures are
shown in the lower part of Figure 3. Again we have to complete the
individual fragments and count the Kekulé structures. Notice that there
is no symmetry in the count of structures such as AB and the complement
AB, that is CDEF (or symmetry equivalent ABCD). The former has no
Kekulé structure, the latter has one Kekulé structure. The remaining

Table II. Contributions from Kekulé valence structure having
different number of torus long bonds.

Binomial
coefficients 1 6 15 20 15 6 1
(Number of graphs to be examined)
Partial 1x20 6X6 6x0 6Xx3 6x1 6x0 1
contributions 6x1 12x0 6x2
3x1 2%9 3x0
Total
contributions 20 36 9 36 18 0 1
T(x)= 20 +362x +9x2  +86x® +18x¢ + 28

Number of Kekulé structures: K=T(1)=120
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part of Figure 3 shows fragments obtained by erasure of five and six,
i.e., all peripheral pairs of vertices. After completion of this procedure,
one can check these numbers by taking into consideration of the symmetry
of each Kekulé structure.

Table II summarizes the results. The torus polynomial for corenene
torus is obtained as

T(x) =2+ 182"+ 362° 4 x>+ 362420 .

Ring Characterization

All hexagonal rings in many torus systems of interest are found to
be equivalent. Hence, in such a case we need only count the number of
Kekulé valence structures (K*) for the subgraph GOR of the tosus in
which any ring R is selected to be delected (Fig. 4). By applying the
same algorithm we get eight different Kekulé structures with three long
bonds, six Kekulé structures with a single long bond, and two Kekulé
structures tfor 18-membered annulene (i.e., the valence structure without
long bonds). The result of the count can be expressed by the following
polynomial :

T*(x)=8x*+ 622,

where the coefficient to the term z* gives the number of Kekulé structures
with %k long bonds.

Figure 4. Coronene torus subgraph GOR
(R represents a benzene ring).

Circumcoronene Torus

Next we will consider circumcoronene torus depicted in Figure 5, i.e.,
a torus derived from a coronene circumscribed with a layer of hexagons.
We get the polynomialls T(x) and T*(x) as

() =+ 17107 + 978 - 63927 + 3600* + 5373x° 4 1278 + 2142z + 980
T(1)=15,162
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Figure 5. Circumcoronene torus and the subgraph obtained by
deleting a benzene ring together with all the incident edges.

T*(w) = 216a° + 504" + 7362x° + 24022+ 2402 + 200

By summing all the contributions we obtain for the number of Kekulé
structures of circumcoronene torus an impressive number K=15,162. This
numbper is even larger than the number of Kekulé structures ot buck-
minsterfullerene though our structure has “only” 54 carbon atoms compared
with 60 carbon atoms of buckminsterfullerene.

There seems to be some regularity for the derived polynomials in that
the leading coeflicient is 1 and the next power has coefficient zero just as
is the case with the characteristic polynomial. The constant term is the
number of Kekulé structures of the parent benzenoid. Whether these
polynomials have some useful properties remains yet to be seen. How-
ever, as will be discussed in the later part of this paper, they have
potentially interesting features related to the aromatic property of ben-
zenoids and graphite.

On the Count of Kekulé Structures in Benzenoids

For all benzenoids having nine and less fused benzene rings Knop and
coworkers have enumerated K structures®. On the other hand Cyvin and
- Gutman have considered many types of large fused benzenoids and gave
either the number of Kekulé structures or formulas which can be used to
derive the count®. We found that to derive the Kekulé count for dozen
or two dozen larger benzenoids can be time consuming unless one uses
very efficient algorithms whenever possible. The following are the most
efficient and most elegant algorithms that we have found very valuable :
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Benzenoid type Algorithm
Catacondensed - Gordon and Davison®*®: Insert
no branching numbers in hexagons following the

addition rules for “kinks”

Catacondensed Randice?®: follow Gordon and

single branching Davison for individual branches,
combine results tor rings adjacent to
center and rings of nearest kink

Lattices Randi¢*®: Apply Gordon and
Davison to peripheral rings, fill inside
rings using Pascal triangle rule

Multilattices John and Sachs? Construct
determinant using lattice rule to get
elements of the determinant

These approaches allow one to find the number of Kekulé structures
for most cases of fragments derived by erase or vertices and already
assigned bonds. Here we termed “multilattice” case which can be viewed
as derived by fusion or overlap of lattices. Hence such benzenoids should
have the same number of “master” and the same number of “slave” vertices.
The approach of John and Sachs will cover most fragments not already
covered by the algorithm of Gordon and Davison or not being a lattice.
If one encounters a fragment which does not belong to any of the simply
treated cases one can apply the standard recursion on selected edges and
eventually reduce such cases to those already mentioned.

Results for Some Smaller Torus Benzenoids

In this section we will report on enumeration of Kekulé valence struc-
tures in smaller torus benzenoids in order to illustrate variations in the
number of Kekulé valence structures and in the structure of the torus
polynomials. In Figure 6 we illustrate smaller benzenoids considered
which can be classified by the number of torus “long” connections. There
are some restrictions on the form of benzenoids which can lead to a torus
benzenoid. Tsukano reported the necessary conditions for a benzenoid to
qualify as a “torus benzenoid”?”. The necessary condition is that the ben-
zenoid fully “covers” the graphite grid. The “cover” is understood in the
graph theoretical sense in that individual units have no common carbon
atoms, analogous to the cover of a benzenoid with CC double bonds which
produce Kekulé valence structures.
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See Figures 9 and 10

Figure 6. Smaller benzenoid tori whose torus polynomials
are listed in Table III.

In Figure 7 we illustrate such a cover for bisanthene, an eight ring
pericondensed benzenoid. This is, however, not a sufficient condition.
There is an additional restriction on the “mode” of covering. The pattern
for covering must have transitional symmetry to ensure that, after carbon
atoms have been labeled, always the same labeled carbon atoms are adjacent
to each other in all covering units. This is the case for carbon atoms on
the periphery of bisanthene in Figure 7 but is not the case with the
covering of the graphite plane by bisanthene as shown in Figure 8. In
this case there is no translational symmetry. For example, the carbon
atom 3 is at the right unit adjacent to the carbon atom 12, while at the
carbon atom 3 from the left unit is connected to carbon atom 10. All the
torus networks in Figure 6 are thus obtained.

A question arises: Does the translational benzenoid cover that produces
the torus unique? In case of bisanthene it is unique (except for symmetry
equivalent cases) and the same is true for many smaller benzenoids. How-



December 1994 On Enumeration of Kekulé Structures 118
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Figure 7. Bisanthene cover of graphite network, A
cover is “legal” since adjacency relationship for carbon
atoms is preserved (which implies translational symmetry).

pqeon
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Figure 8. Bisanthene cover of graphite network. Illu-
stration of “illegal” cover, since adjacency relationship for
symmetry equivalent carbon atoms is not preserved.

(98]

N A

ever, for some benzenoid molecules it is possible to have alternative covers
of graphite network as will be later illustrated on terrylene.

In Table IIT we give the torus polynomials T(x) for the torus ben-
zenoids of Figure 6. The values of the polynomials T(1) and T(0) give
the count of the Kekulé valence structures in the torus and in the parent
benzenoid unit respectively. The highest possible power of the polynomial
is determined by the number of “long” connections. We see that in some
instances the polynomial has lower degree than maximally possible (such
is the case for dibenzoperopyrene). Also the leading coefficients of the
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Table III. Torus polynomials for smaller benzenoids depicted
in Figure 6. Kekulé count is given by evaluating
T(), i.e., by adding all the coefficients.

Cover unit Torus Polynomial Kekulé count

1. Naphthalene

2420826243 13
2. Anthracene

544t +4x? -+ 622+ 120 -4 31
3. Pyrene

4ot 4434622 +13%-+6 ; 33
4. Triphenylene

208 +344+-1023+122% 62 -+ 9 42
5. Chrysene

25+225+ 204+ 132% -+ T2+ 120 -8 45
6. Perylene

20 +425+ 624+ 1003+ 1522202 -+9 65
7. Tetracene

2062541121+ 1223 42122222 +5 78
8. Anthanthrene

3x5+15x*-+1322 +200°+30x +10 91
9. Coronene

254+18x* 43622 +922-+ 362 -+20 120
10. Pentacene

2" +8x°+225-+30x4 +412° + 562424372 +6 201
11. Bisanthene

27 +1028 4125+ 8204+ 352 +5322 470 -+ 16 229
12. Terrylene

28-+102"+ 82+ 30x5 -+ 462 -+ 382° +90x2-+bda +27 304
284827+ 18x¢ - 8555+ 58x4 - 72x° + 8122+ 79227 379
13. Dibenzoperopyrene

2555484+ 38x° + 100224732 20 304
14. Ovalene

274 62°4-10254-962 + 121 20° + 5022+ 1152 -+50 449

polynomial need not be equal to 1, as was the case with the family of
benzene and coronene tori. The full significance of these differences has
yet to be better understood, however, already we may say that torus
polynomials offer a farther classification of the parent benzenoids, beside
the already mentioned classification into those that permit a torus con-
struction and those that do not.

Finally as we see from Table III in the case of terrylene, that more than
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one benzenoid tori with translational symmetry are possible, and there are
two different torus polynomials. In Figures 9 and 10 we illustrate the
two different covers of the graphite by terrylene. The torus polynomial
is, nevertheless an invariant of a given torus benzenoid network, but is
not unigue to the parent benzenoid structure. Since the ultimate use of

IS SRS SOt

Figure 9. Terrylene cover of graphite network. A cover
is “legal” since it possesses translational symmetry.

OO O-OK
e 0a 0 0atat

Figure 10. An alternative “legal” terrylene cover of graphite
network with another translational symmetry.
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torus benzenoids is to model infinitely large graphite-like structures, dif-
ferentiation between alternative torus structures may be of lesser import-
ance in the limiting cases. However when estimates of the properties of
graphite are based on finite size models a benzenoid torus with fewer 4n
rings is likely to give a better representation of graphite.

The Family of Benzenoid Tori

Among the small benzenoids considered in Table III there are several
which could be viewed as a family of benzenoid linear polyacene tori,
which are nothing else but the cyclic fence graphs defined by Hosoya and
Harary”. These graphs have such a novel character that all the component
hexagonal rings are equivalent, which of course is also the case with in-
finitely large graphite lattice. Then the resonance stability of these net-
works, or the total index of aromaticity®, can be expressed by the ratio
of 2K and K*, the numbers of the Kekulé valence structures in a ben-
zenoid torus and those in the same torus when one benzene ring is excised.
In Table IV we show these numbers. The K*'s are immediately recognized

Table IV. K and K* for linearly fused acenes.

) 0 1 2 3 4 5 6 7
K 3 6 13 31 78 201 523 1366

Alternating
Lucas
Dift 3 7 18 47 123 322 843

Alternating
Lucas 1 4 11 29 76 199 521 1364

Alternating
Fibonacei
K* 1 1 2 5 13 34 89 233

as the I'ibonaceci numbers, while the K numbers are closely related to
alternating Lucas numbers. Lucas numbers are defined by the recursion
Ly=Ly ;+Ly_,, with Li=1 and L,=3%. By recognizing the sequences we
can write the respective general terms:

K= Lonaa+2={(1+ V5)[2P" +{(1— V5)/2)" "+ 2
K = Foo=[{(14+V5)/2)" " —{(1— V5)/2)" 1)/ V5

where L, and F, are Lucas and Fibonacci numbers respectively. Now
we can evaluate the limit for the ratio 2K*/K as n tends to infinity,
which represents the resonance stability for graphite in the model of
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acene tori:

lim 20,1/ Fon_s=2{2/(1+ V5)}2/ V5 =(3V5 —5)/5=0.3416408 - --.

Note that for the seventh member of this family this ratio almost
converges to this Imit, agreeing with the above by three digits.

We suspect that the limit represents the upper bound to the true
value for the resonance stability of graphite and as the width of the ben-
zenoid tori is increased the limit (if it could be calculated analytically as
was the case illustrated on linearly fused benzene) will make even tighter
upper bound.

By focusing attention of such family of structurally related systems
one may hope to be able to find a regularity also in the coefficients of the
torus polynomials for such tori. In Table V we collected the coeflicients
of the torus polynomial for benzene—naphtalene family. Regularity for
some of the coefficients is apparent, others are somewhat more involved.
In the lower part of the Table we show the differences between succes-
sive terms in various diagonals (from top left to bottom right). The bot-
tom part of Table V gives the second differences. The regularities can
be observed for the first and the second differences, which allow us to
predict all but one of the coefficients for the next row (for N=7). As

Table V. The torus coefficients for benzenoid linearly fused
acene family and the first and second differences
for coefficients for the same power.

N Coefficients

1 1 0 3 2

2 1 2 1 6 3

3 1 4 4 6 12 4

4 1 6 11 12 21 22 5

5 1 8 22 30 41 56 37 6

6 1 10 37 58 90 126 126 58 7

Diagonal Differences

1 1 3 1

3 2 5 6 1

5 7 8 15 10 1

7 12 19 29 35 15 1

9 29 36 60 85 70 21 1

Second Differences

1 4 3

4 6 10 4

7 12 21 20 b

22 24 51 56 35 6
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one sees from Table V the differences are either the binomial coefficients
or they occur in the top part of the table among the diagonals for
smaller N.
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