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§1. Introduction.

The central limit theorem (from now we use an abbreviation “CLT”)
is one of the oldest and the most important results in probability theory.
It is still the main part of classical probability theory and is basic to
asymptotic statistical theory.

Recently several mathematicians investigate this theorem in Banach
spaces. Many fruitful results are obtained. On the other hand, J. Kawabe
proved the CLT in nuclear Fréchet spaces and the strong duals of them.
In the Banach space case, the integrability of the square of the norm is
used as the hypothesis. Here we analogize Kawabe’s method for Hilbert
spaces and abstract Wiener spaces, i.e., we consider the CLT with the
hypothesis on the weak topology.

§2. Preliminaries.

First we introduce the results which were proved by Kawabe ([1]).

Let X be a real locally convex space, B(X) be the Borel s-algebra on
X and P(X) be the set of all Borel probability measures on X. Also X'
means the topological dual space of X and X} is the strong dual of X,
i.e., the dual of X endowed with the uniform convergence topology
B(X’, X) on bounded subsets of X. We denote by <-,-> the bilinear form
on XXX’ ‘

Let 4 be a subset of P(X). Given any >0, there exists a compact
subset K. of X such that p(K.)=1—¢ for every p=A. Then we say that
A is uniformly tight.

PROPOSITION 1 ([1]). Let @ be a nuclear Fréchet space or the strong
dual of a nuclear Fréchet space. For ACP(D) to be uniformly tight it
is sufficient that for each fE®’ the set {pof'; pe AL (R) is uniformly
tight.
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A mapping & from a probability measure space (2, A4, P) into X is
called a random variable if it is measurable, i.e., & Y(B)=A for every
Be B(X). Every random variable & with values in X induces a proba-
bility measure L(¢); L(§)(B)=P({lwc?; é&(w)=B}) for Be B(X), which is
called its distribution.

Let {£,} be a sequence of random variables taking values in X. If
LE)=L(&)==L(¢,)= -+, then {¢,} is called to be identically dis-
tributed.

PROPOSITION 2 ([1]). Let @ be a nuclear Fréchet space or the strong
dual of a muclear Fréchet space. Let {€,},cn be a sequence of independent
identically distributed (we wse an abbreviation “i.i.d.”) random variables
taking values in @ and satisfying E (&, )<+ o for every f=®' and
E<&, f>=0 for every fe®@'. (E$¢ means the expectation of ¢.) Then
{LAVn Ziey E)nen converges weakly to o Gaussian probability measure
on 9.

And we add the next proposition proved by I. Mitoma ([3]).

PROPOSITION 3 ([3]). Let X be a Fréchet space and A be a subset of
P(Xz). Suppose that for each x<X the set {pox™': pe A)C P(R) is uni-
formly tight. Then the function

<z, >l

M@=sup|,

du(f)

for x= X, is continuous on X.

Now we introduce some notations. ILet E be a Banach space and E’
be the topological dual of E. If pe=P(F), then the characteristic function
of p is a function 2 with domain E’ and range C. It is defined by

aly)= SE exp (i<x, y>)dp(x) .

Let H be a Hilbert space. L,(H) denotes the collection of trace class
operators of H, i.e., if u=L,(H), then u is a compact operator of H
satisfying 5., 4,<4 o, where 2,’s are the eigenvalues of (uxu)'?, where
u* is the adjoint operator of w. An operator is called an S-operator of H
if it is in L,(H), positive definite and self-adjoint. Let S denote the
family of all S-operators. The class of sets {{x; (Sx, x> <1]; S} defines
a system of neighborhoods at the origin for a certain topology, which is
called the S-topology (or Sazonov topology) ([6]).

Let H; (¢=1 or 2) be a real separable Hilbert space with norm |-|,=

V{+,+>;, where <{-,->, means the inner product on H;. Let u be a con-
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tinuous linear operator of H, into H, satisfying 37, |ue,|i <+ oo for some
orthonormal basis {e,}nex 0f H,. Then we call it to be of Hilbert-Schmidt

type.
We close this section by the next theorem.

PROHOROV’S THEOREM ([5]). Let H be a real separable Hilbert space,
and A be a subset of P(H). Suppose that the family {a; p= A} is equi-
continuous at the origin under the S-topology, them A is uniformly
tight. ‘

§3. The CLT in Hilbert spaces.

In this section we present the following two theorems.

THEOREM 1. Let H; (i=1,2) be a real separable Hilbert space with
norm |-, =~'{, v: and u be a Hilbert-Schmidt type operator of H, into
H,. Let A be a subset of P(H,) satisfying that for each feH,, the sub-
set {pof™'; pe A} of P(R) is uniformly tight. Then the subset {pou™';
pe A} of P(H,) is uniformly tight.

REMARK. We denote the image measure pou™' under the operator u
by u(z). In this paper we use both expressions pou™' and ulp).

PROOF. In this case, Mitoma’s function M(x) is as follows :

M(z)= ig.g SH1|<oc, Yo {1+ 1<z, y> 1} p(y)

for x=H,. Proposition 3 says that M(z) is continuous on H;. It is obvious
that for any y=H, and any p< A

11 —ZL/(;)(y)I = ll—gyze“y’”zd(u(p))(t)

=| n—eordmm .
Hy
Using the inequality |1—e**|<4|2|/(1+|z|) for any xR, we have

[ 11—esrordt)n)
Hy

4] K<y, £al/1+ <y, Dadul)()



4 M. MAEDA and M. KANO NSR. 0.U., Vol. 45

=4§H1 <, syl [(1+ | <y, uss))dp(s)

I

A 1wty 10+ 1wty i)dps)
Hy

Then we conclude that |1—u/(;7)(y)|§4M(u*y). Recall that Mi(x) is con-
tinuous on H, and nonnegative and M(0)=0. It follows that for arbitrary
¢ >0, there exists a d>0 such that |u*y|, < implies M(u*y)<e. Let S=
uu*/d®, then S is an S-operator defined on H, and satisfying that ye<
{x; x=H,, {Sx, x>, <1} implies M(u*y)<e. Thereﬂ)ie, we have the result
that y={x; xE/H\z and <{Sz,x>,<1} implies [1—u(x)(y)|<4e for all p= A.
Then the set {u(y); p= A} is equicontinuous at the origin for the Sazonov
topology induced by [-].. It follows from Prohorov’s Theorem that {u(g);
p<s A} is uniformly tight. O

THEOREM 2. Let H,, H, and w be the same as them in Theorem 1.
Let {&€,}n-1,5.. be a sequence of i.1.d. random variables taking values in
H, and satisfying the following conditions (1) and (2).

(1) E|&, olP<+ for any feH,,
(2) E<&,f>.,=0 for any fEH,.

Then the sequence of distributions {.L(1/~vn 3o, uc&,)} converges weakly
to a Gaussian probability measure on H,.

PROOF. Let p,=.L(1/vVn i &) for all n and A={u,; neN}. It
is obvious that L(1/vn i, uc&)=u(y,). By the CLT in R, it follows
that the sequence {y,of '; p,= A} converges weakly to a Gauss probability
measure on R for each feH,. Hence {u,of '; g = A} is uniformly tight
for each feH,. Theorem 1 says that {u(p,); p,= A} is uniformly tight.
This means that every subsequence of {u(u,); u,= A} has a weakly con-
vergent subsequence. Therefore we only have to show that {u(y.,); g, A}
has only one limit point.

Let {piti-1.2...,{0s}j=1.2... e two subsequences of {u(n)}n=1.2..., i.€., Pi=
wlpn,) (1=1,2, ), g;=ulptn;) (=1,2,+2). {pi}i-1..... has a convergent sub-
sequence {p;,}i-1.2... and also {g,};-;... has a convergent subsequence
{0 }i=1.2... Put py=lim, . p;, and ¢,=1im,...q;,.

Other hand, for each f<H,, fou is a continuous linear functional on
H,. Then the sequence {(fou)(¢)}n-1.,.. converges weakly to some limit,
we denote it by v,. For each f=H,, we have
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Po(£)= 1im Bs,(/)

= 1img e“"adp, (t)
Hy

koo

= lim Sne”d(pikOf‘l)(S) |

koo
= SRe”dvf(s).

Similarly we have g f):SRe“duf(s). Therefore it follows that Ho(f)=ao(/)

for every f<H,, and then p,=g,. This means that the sequence fulpen)}
has at most one limit point. We can conclude that the sequence fulpen)n=1.2...
converges weakly.

Moreover, for every f€ H,, {foucé,jn-1.. .. 18 a sequence of real valued
i.i.d. random variables. By hypothesis, we can say that E|fouc&,|’=
EKf, u51>2\2:El<u*f, £04]*<+ oo and E(fouof1):E<f, u$1>2=E<u*f, &1=0.
It follows from the CLT in R that .L(1/vVn i, foucé,) weakly converges
to a Gauss probability measure on R. Hence, the sequence {u(pn)lnzt.2. .
weakly converges to a Gaussian probability measure on H,. O

§4. The CLT in abstract Wiener spaces.

We explain the notion of measurable seminorms and abstract Wiener
spaces.

Let H be a real separable Hilbert space with norm |- |l=~<, >, F
will denote the partially ordered set of finite dimensional orthogonal pro-
jections P of H. P>Q means PHDQH for P,QeF. l

A subset A of H of the following form is called a cylindrical set;

A={xeH; PxDj,

where P=F and D is a Borel subset of PH. C will denote the collection
of all cyrindrical sets.

The Gauss cylindrical measure in H is the set function y from C into
[0,1] defined as follows: If A={zx=H; Px <= D}, then

T(A)———(l/\/ﬁ)”SDe"I‘z/zdw ,

where n=dim PH and dz is the Lebesgue measure of PH.

A seminorm |- | defined on H is called to be measurable if for every
e >0, there exists P, F such that 7{| Px|| > ¢}<e for any PLP, and PEF.
Let |-|| be a measurable norm in H, B the completion of H with respect
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to [-] and ¢ will denote the inclusion map of H into B. The triple (1, H, B)
is called an abstract Wiener space. If B is a Hilbert space, then i is of
Hilbert-Schmidt type.

Now we consider the generalization of Theorems 1 and 2. Recall that
every real separable Banach space B can arise in this fashion (1, H, B).
First we present the next proposition proved by Y. Okazaki ([4).

PROPOSITION 4 ([4]). Let (¢, H,B) be an abstract Wiener space and
A be a subset of P(H). Suppose that the family (9; ve A} is equicon-
tinuous at the origim with respect to the B-norm, then A is uniformly
tight.

REMARK. Since (i, H, B) is the abstract Wiener space, there exists a
measurable norm such that B is the completion of H with respect to this
norm. We call it to be the B-norm.

We are ready to show the following theorem.

THEOREM 3. Let (i,H,B) be an abstract Wiener space and B be a
real separable Banach space. Let A be a subset of P(B’) satisfying that
for each fEB, the subset {uof™'; p= A} is uniformly tight. Then the
subset {i*(p); pc A} of P(H) is uwmiformly tight, where i* is the tran-
spose of 1.

PROOF. It is sufficient to show that i/*@) is continuous with respect
to the B-norm. Let <-,->; be the inner product on H and (+, +) the bili-
near from defined on BXB’.

In this case, Mitoma’s function M(z) is as follows :

M@)= sup | |(z, ') [{1+ (2, 2") }dpu(a)
ped JB’

for x<=B. By Proposition 3, it follows that M(x) is continuous with re-
spect to the B-norm. Using the similar method to it in the proof of
Theorem 1, we have

1= (@)= 16w agi+(m))
g4§H| <Y, tul {1+ <y, £ 413G (w)(2)

=4{ 16y, )| 111+ |Gy, 9)}dpls)

<4M(iy).
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Then the proof is complete. O

Using Theorem 3, we get the next result. Tne technique of proof is
same as it in Theorem 2.

THEOREM 4. Let (i,H,B) be an abstract Wiener space and B be a
real separable Banach space. Let {§}n=1.2. be a sequence of t.i.d. random
variables taking values in B’ and satisfying the following conditions (1)
and (2).

1) E|(f, &)<+  for any fEB,
(2) E(f &)=0  for any fEB.

Then the sequence of distributions (L1 V) i1 1*(Ex)} converges weakly
to a Gaussian probability measure on H.
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