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0. Introduction

Since V. Jones in [7] introduced the index theory for subfactors of
finite factors, the theory of subfactors has been related to many fields of
mathematics and physics. One of the most interesting cases of subfactors
is the case of irreducible subfactors, those for which the relative com-
mutant is reduced to the scalars. Here V. Jones proved that any sub-
factor with an index smaller than 4 is automatically irreducible. It re-
mains open to characterize the possible values >4 of the index of irre-
ducible subfactors of the hyperfinite II,-factor.

A. Ocneanu introduced paragroups, which is a certain quantization of
finite groups, for the classification of subfactors, [10], [11]. He defined
some structures on finite graphs, called connections, regarding paragroups
as discrete manifolds. The flatness of a connection, which is the directe
analogue from differential geometry, plays an important role in the classi-
fication theory of subfactors [6], [8], [9], [11].

The commuting square is the key idea in subfactor theory as seen
from [12], [13] etc. By using suitable commuting squares of finite dimen-
sional von Neumann algebras, several authors have constructed irreducible
subfactors of the hyperfinite II,-factor [5], [8], [16], [17], [18]. Especially,
U. Haagerup and J. Schou established a criterion for the existence of
symmetric commuting squares of finite dimensional von Neumann algebras,
which is deeply concerned with the axioms of Ocneanu’s paragroups on
finite graphs. They derived the following useful result: If a connected
bipartite graph with a vertex which is connected to only one other vertex
of the graph has a connection, then there exists an irreducible subfactor
of the hyperfinite II,-factor whose index is the square of the norm of this
graph. Applying this result to the 4-star graphs and to some kite graphs,
they produced infinitely many irreducible subfactors with indices in the
interval (4,5) [5], [16]. And V. Sunder in [17] obtained a new series of
irreducible subfactors by using their criterion. The reader can find more
interesting results on the symmetric commuting squares in J. Schou’s
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thesis [16].

Ocneanu’s theory of paragroups is closely related to solvable lattice
models in statistical mechanics where the connection corresponds to Boltz-
mann weight in lattice models [9], [15]. Recently the idea of an orbifold
of a solvable lattice models has been used in several papers. Especially,
Y. Kawahigashi in [8] gave a poof for the flatness of Ocneanu’s connection
on the Dynkin diagram of type D, by using this idea, and he and D.
Evans in [2] obtained a new series of subfactors by applying the notion of
orbifold models of SU(N) to the Hecke algebra subfactors of Wenzl. More-
over, in [6] M. Izumi and Y. Kawahigashi filled Popa’s table of classifica-
tion for subfactor with index 4 in [14] by considering the orbifold of the
extended Dynkin diagram A ;. And Ph. Roche investigated the sym-
metry between two graphs and gave a procedure for constructing a new
lattice model from a given lattice model associated with the graph, where
the new lattice model is associated with the new graph obtained from the
symmetry of the original graph. The symmetry between two bipartite
graphs in the sense of Roche [15] is closely related to the duality described
by M. Choda in [1].

In this paper, we apply Roche’s procedure to some extended kite graphs
B(n, m, n, m) where n=m=0, used in the previous paper [19], and we con-
structed connections on the 5-star graphs S(n, m+1, m+1, m+1, m+1),
obtained by a Z,-symmetry of the original graphs. In general, we con-
sider the symmetric graph and obtain the new graph by its symmetry.
We find the cell system, which gives us an embedding of the string alge-
bra of the original graph into that of the new graph. To find the cell
system is generally difficult, but since in our case the symmetry is coming
from the graphical symmetry it is not so difficult. The connection on the
original graph is affiliated to the string algebras of the original graph.
We define the connection on the new graph so that it is compatible with
the embedding is given by the cell system. In this construction, the star
triangle relations (Yang-Baxter equations) give us the link between these
two connections. In the last section of this paper, we list some remarks
on the symmetries of Sunders’s graphs in [17].

Acknowledgements. The author is thankful to Professor M. Choda for
sending her preprint to him, to Professor Y. Kawahigashi for giving him
some helpful comments on the previous paper.

1. The symmetry between graphs and the cell system

We shall begin with recalling the definition of the symmetry between
graphs and the cell system in [15]. For a given connected bipartite graph
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@, we denote its vertices and edges by & and G, respectively.

DEFINITION 1.1. Let G, and G, be two bipartite graphs with dis-
tinguished vertices *, and *,. Let G, and G, be their adjacency matrices,
respectively. We say that there exist a symmetry from G, to &, if there
exists a non-negative integer entried *(&{”)x*(&:”) matrix C satisfying
the following conditions.

(1) G.C=CGy,

(2) cx =1 if and only if v=x,,

(3) For any 4, there exists j such that ¢;;#0.

REMARK 1.2. If there exists a symmetry from &, to &, then two
matrices G, and G, have the same Perron-Frobenius eigenvalue.

We define the graph 4 as H O =g® UG and Path; ,(H)=¢ if =
and y are both in @ or &{”, and Path; ,(H)=c,,,, where Path} ,(4) is
the set of paths of length 1 from = to y.

Next we recall the cell system between &G, and &,, which gives us the
embedding of the string algebra of &, into that of &, [10, 15].

DEFINITION 1.3. The cell system is a family of compleX numbers as-
sociated with the following cells,

7

Py D2

&) By

q: 4*’—’ qz
N
where £,=G®, £, G and 5, ' € H P, and p,=s(9)=s(£)), p.=r(n)=s(§.),
G=rE)=s(p), @:=r&)=r(y’). Here s(y) and r(y) denote the source and
the range of the edge y, respectively. '

And this family of complex numbers satisfies the following conditions.
(1) Unitarity

&1 b 1 N1 b I3
ng‘:.ez q: P2 P2 gi
nz\Aq /z e:\q ‘/713
2 2

(2) Trace preserving

=0q,0;9¢,6,0m.7
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& % N
S | / \ ds / \ £(p1) p(qs)
22:72:€2 ( ) ( 2)
;71\4 /2 5\ / g ) p
D2

where u(x) is the Perron-Frobenius weight at the vertex z. In the above
relations, we use the conventions

—Ypp, 51?157/11 T4 2

7
Py ——> D2 ¢ D1

/N
q:

&1 &2 = yp
SN %
a: _7‘—) q: q2
and
P2 €& D, Py ——— P,
52 51 = 51 52
Q@ <—— q, 9G4 ——> ¢,

As we mentioned, we can embed the string algebra of &, into that of
&,. And we would like to have the identification of strings, which is
compatible with the embedding, by connection.

For this purpose, it is enough to require so called the star triangle
relations are satisfied [8, Lemma 5.1], [15, Proposition 5]. That is, for
any hexagon of the form,

Pr———> P

e N
q1 q:
N Ve
71 To

where the left side is in the graph &,, the right side is in the graph &,,
and the horizontal edges are in 4, we require the equation,
(x) The star triangle relation
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Py ———> D2 P ———> P2

3
/ \1 1]1 \ / ﬂ2 éy \
) 2, q1 @G —>q = 2 gy ———> qé qs .
9 €106 M1 \ A, / a5.62.63:m1 \ 5\ /
7y __1'_> Ty 7y — T2

Each hexagon in the above equation is consisted from three cells. This
means we multiply the weights of these three cells.

What we would like to do, is to get a connection on the graph &,
starting from that on the graph &, by applying Roche’s procedure [15,
p. 405]. Here we rewrite his procedure in our terms.

1. Begin with a suitable connection on the graph &,.

2. Look at the symmetries of &, and find the graph &, and .

3. Look for a suitable cell system.

4. Define a connection on &, so that the star triangle relations are
satisfied.

For a while from now on, we use the graph B(n, m,n, m) in [19, §4]
as the graph &,. This graph has the central square and legs of the same
length diagonally across.

‘QIZ

Figure 1.1.

We label the vertices of the graph B(n, m,n, m) as above. Then there
exists the symmetry from the graph B(n,m,n,m) to the 5-star graph
S(n, m+1,m+1, m+1,m+1),
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~

gz:

Figure 1.2.

Indeed, the matrix C is represented in the graph

N Ve YA
A a; (i=0,1,:+,m), b, , c,—\ (7=0,1, -+, m)

s b ¢
Of course, the above symmetry is coming from the reflection for the 2nd-
4th line, which is Z,-automorphism ¢ on the graph B(n, m,n, m). And the
Perron-Frobenius weights on the vertices of the graphs &, and &, are as
follows.
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gll

Figure 1.3.

pla) =p@)=a; (i=0,1,---,n) and pub,)=pb,)=p; (j=0,1,-,m),

Qn

G,

Figure 1.4.

plai)=a; (1=0,1,+-+,n) and p(bj)=pu(b))=p(ci)=p(c))=B;/2 (j=0,1, -+, m).
That is, the weghts on the fixed points under the Z,-automorphism ¢
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split equally. Here a; (:=0,1,2,--+,n) and B, (j=0,1,2, .- m) satisfy the
following relations.

LEMMA 1.4. ([19, Lemma 4.1])

(1) ai:a?_aﬂdai—l fOl}ﬂ ?::1’2: ...,/n__]_’

(2) ar=a; —2a:p0,

(3) ﬁ%:ﬁj‘_ﬁj+1ﬁj“l fO’}" -7:1} 2: E) m—ly

4) Bhn=pB5—2a,b,

(5) 2(a§-—,3§)=a1,30—ao,81>0-

Next we give a cell system between the graphs B(n, m, n, m) and the

5-star graph S(n, m—+1, m+1, m+1, m-+1). In this case, we can find the
following unitary cell system.

| | = | =1 =01, ,n-1)

(1798 Qis1 T 1 VY

a; — a; a; — a;

| L= | =1L G=1,2,,m)
iy~ A7y e Y

by — b

bo ——>by bo—— b,
l b l
Qg = @y Qg 1 1
bo ——>b; by > b; —\/§<_1 1>
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Qo = Uy W @

l -

) ;
A R I T e S
bjsr —>bjp1 by b},

by —— bj b, ——— b;

I T A
by ———bj.y b, —— b},

¢; — ¢ ¢ —— ¢}

| | = L=1 =01, me)
Cien Civ1 Cjr1— Cju

c; — ¢ ¢ — ¢}

l L — l l =1, (j=1,2,--,m)

It is easy to check that the above cell system satisfies the conditions (1)
and (2) of Definition 1.2.

Using this cell system we can construct a connection on the 5-star
graph S(n, m+1, m+1, m+1, m+1) according to Roche’s procedure. In
order to perform his procedure, we have to begin with the symmetry in-
variant connection of the graph B(n, m,n, m) [15, p. 405]. Thus we shall
construct the symmetry invariant connection on the graph B(n, m, n, m) in
the next section.



132 H. YOSHIDA NSR. 0.U., Vol. 44

2. Z, symmetric connection and the star triangle relations

In this section, first we reconstruct the symmety invariant connection
on B(n,m,n,m). This is, we construct the connection W such that the
conditions,

a ala)
7N VAN
2.1) Wl b c |=Wi o) a(c)
NS NS
d a(d)

for all admissible cells, are satisfied.

We shall concentrate our interest upon the cell weights around the
central square of B(n, m,n,m). Because the determinations of the cell
weight at the points left on the legs, are the routine argument.

We put cell weights on the central square as follows.

Ay Qo o
SN SN N
(2,2) ’bl)]ZW bo bo y we=W b() Co |5 ’M)3:W Co Co |,
NS NS NS
Ay Qo Qo
o g o
SN SN SN
Wy = bo bg , Ws= W bo Co |, Wsg— w Co Co |,
N B N
Ay (02} Qo
Qo Qo 2
SN | N N
u’4: VI/ bo b() » 7,05 — W b() c0 ) /’/UG: W CO c0 y
IV N N
(o 28 Qo Qo

Then we get the following matrices of the weights around the central
square by applying renormalization rules.

Qo
The 3X 3-matrix of the weight W]« * | becomes
v
2
gﬁ/eiol .:\,/ilﬁo.eiﬂz ﬁl—ﬁ—({ela3
[29) 29 Ay
v/
(2.3) @Poji gy, W ,
Qy
v
1o 104 W, Ws
24}
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o
and the 3X3-matrix of the weights W/| * | becomes
N
Qo
&61‘04 Me7‘05 __/\/a_.lﬁoelos
Ay (24 (48
A/
(2.4) VB o W, W
(297
v/
a1fo i0g W Wwe
[24)

*

N
The 3Xx3-matrix of the weights W/ b, by | is

NS
E3
ﬁﬂem \/“0‘3161-08 ‘/4051 0t
Bo Bo Bo
\/ao/gl 0 ay Ay
2.5) ——p'8 —W —wW s
( ﬁo ﬁo 1 ﬁo 7
'\/CZO‘BI i6 a() a()
—=g' —W —W
Bo Bo Bo
*

and the 3x3-matrix of the weight Wle¢, co | is

~N S
*
_@ﬂeiﬁm —wv’aoﬁlei011 %\/ao‘glewlz
0 0 0
'\/aoﬁl i Qy Qy
2.6 et g —w
( ) ‘80 ﬁo 3 ‘80 9
\/aoﬁl i0 Ay Qo
——e'"12  —y —W
Bo Bo Bo
o o
, JN
The 2Xx2-matrices of the weights W/ x| and W« * | has the
N N
Qo (27}
form

Wy Wy
(2.7) ,
Wy W
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® *

/ SN
and the 2Xx2-matrices of the weights W|b, ¢o | and Wie, b, | has the

NS NS
form
(2.8) Bo By
@, A,
Bo Bo

The 6,’s in the above matrices can be taken any values in [0, 27). In order
to determine the weights w,, we need the next proposition.

PROPOSITION 2.1. Let a; and B; be as in the previous section, where
n>m. Then there exist real numbers s and t, a complex number u and
0<10, 2r) such that the following two matrices are both unitary.

a_n \/61'1;80 \/ah@o
(24 Qg Qg
A: ’\/011‘30 S t )
Qo
va, B, ; .
(47
B i NaBs Vap,
Bo Bo Bo
Voo Bo a a
B= 0o do 0
Bo B" B
Ve @ an
[80 ,80 ,Bn
PROOF. First we note that it follows that
2
(2.9) (‘L) 4 o%1Po _y
ao a()

by the relation (2) in LLemma 1.4. The unitarity of the matrix A requires
the equalities
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(a) “—;’f" +ei =1,

By 95—,
45

Using the relation (2.9), three equalities in (a) can be reduced to two
equalites,

T s4+t=0,
20}

(a)’ j
[ %oy oy
al )

Now by direct calculations and using the relation (2.9), we solve the
equalities (a)’,

1 1
(2.10) (s, t):<—<—9‘—1‘ +1), ——(—?—"—1>> or
2 @, 2 a
1 @ 1 a
11 Bl (I S e ,
Next we note that it follows that
2
2.12 (ﬁ) po%Br_q
2.12) 5 T2 g

by the relation (4) in Lemma 1.4. And the unitarity of the matrix B re-
quires the equalities

‘ﬁB—"‘ew+%(s+u)=O ,

(b) “;§1+<%)2(32+|u|2):1,

(44 ,31 (afo)Z =\
+( %) stu+ua)=0.
g "\B, :
Similary, using the relation (2.12), three equalities in (b) can be reduced
to two equalities,

[ “°ﬁ‘+(9‘—°)2(sz+|u|2)=1,

oy | P ’9"2
“;?‘Jr(%z) s(u-+a)=0.

From these equalities, we have
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up=(B) B

29
18,
2sa,’

1 Rlu) =—

where R(u) is the real part of wu.
In order to show the existence of a complex number u, it is enough
to see the inequality
|R(w) |*<|u|?
that is

L &>2 <&>t&_ 2
(2.13) 482<a0 o)~
The inequality (2.13) can be reformed to
(2sﬁ+§1>2<4sﬁ<@>2
(44 (24
Hence the inequality that we have to show, is
(2.14) 232+B—1<2[s|&.
48 (29

From (a)’, we obtain

a a
25t = 150423—7”
Qy

so the inequality (2.14) can be changed to

a
LI‘ZBO—ZSJ—F i <2Is|§9,
oo Qy Qg Qo

(2.15) ot 2B g2 4151 E0).
(l'q 43} [20)

Now we shall show the inequality (2.15) for each case of (2.10) and (2.11).

Case I) (s, t):<%<_g-:+1>’ %<—%—_1>>'

1
Substitute s in (2.15) by —2—<—a—n+1>>0, we have
241
b (Y ()l
Ay (29} (24 24} ay
(2.16) a1ﬁ0+aoﬁ1<(ao_an)(ﬁo+an) .

The inequality (2.16) is our desired one in this case. We consider the
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difference,
D,=(The right hand of (2.16))—(The left hand of (2.16)).
Using the relations (2) and (5) in Lemma 1.4, we obtain the following
equalities,
D= (ay—a,)(Botaz) —(a:fot+aofi)
=(ao— Bo)@n+acfBo—an—aifo— b
=(ao— Bo)a,+aoBo—ai+ aifo—aop
=(ay—Bo)ar+aofo+as—28;
=(ap—Bo)as+2B0t+an) .

Since we know that a,>f,, it is clear the last expression is in positive.
Thus we get the desired inequality for this case.

Case II) (s, t):<l<—& ~1>, —1-<—&”+1>>.

2 (24} 2 (24

1 2
Similary, subsitute s in (2.15) by —2—<—(-1—f1><0, we have

20
(217) a1ﬁ0+a0‘81<((10+0{n)(‘80—an).

The inequality (2.17) is our desired one in this case. We also consider the
difference,

D,=(The right hand of (2.17))—(The left hand of (2.17)).
Using the relations (2) and (5) in Lemma 1.4, we obtain the following

equalities,
Dy=(ay+an)(fo—am) 4(041,80“"“0,81)

= —(a— Bo)an+ aofo—ar—aifo—
:(ao_ﬁo)(ao+2,30_an) .

And as we know that a,>pf, and @,>a,, the last expression is in positive.
Hence we get the desired inequality (2.17).

Now there exist real numbers s and ¢, and a complex number » satis-
fying the demanded conditions. Of course, we have the relation

_ Fn

%(84-%)1—*—“

Bo Bo’
and @ can be determined by the first equality in (b). O

(2.18)

REMARK 2.2. From the equalities (a) and (b) in the proof of Proposi-
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tion 2.1, it can be proved that
2
(2.19) <&> =1t 0,
ay
by using the relations in Lemma 1.4.

From these observations, let us define w, and 6, as follows.

[ W =W3=Ws—Weg=$§, /I/Ug:?/U5:t,

(2.20) o
Iw7=u, ws=1vV1—|ul’, w,=a,
and
0,=0,=0,=0,=0;,=0,=0,
(2.21) 03209:011:012:0,

07:010:0 .

Then it is easy to see that all the matrices from (2.3) to (2.8) are unitary,
and that w,’s satisfy the invariant condition. Hence we conclude that the
graph B(n, m, n, m) has the Z,-symmetric connection, of which symmetry
is arised from the reflection of the 2nd-4th line.

We construct the connection on the 5-star graph S(n, m+1, m+1, m+1,
m+1) from the above symmetry. Fortunately, we can use the results in
[2] that if the connection on the graph is invariant under the Z,-symmetry,
like the above, we can move this connection to one on the new graph
which is obtained from orbifold of this symmetry.

For convenience, we list the calculation for the parametrizations of the
weights at the central point in the matrix form below.
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N

Qg

Qo 7 Uy Ay Qo
AN LA g LAY A
Wl a, TEW a; by -\7§W a; by ;/TZW a; Co “{/‘Z:W ay  Co
\/ N N N N
o o o Ay o
Qo
_1_ /\ ’LUl+W7 Wi— Wy WQ_l—Wg Weo—Wg
V3| be “1) 2 2 T2 2

Qo
1 N Wi — Wy wi+wy Wa—Wg Wy + Ws
’\/2W bo ay - a s o
Ny 2 2 2 2
ay
o
i: C/E Wa+ Wy Wo—Ws W3+ Wy W3 — Wy
V2 0\‘/1 2 2 2 2
(e
Qo
1 /\4 MA% w2+w§ Wiz — Wy @’§7+wg
vz "0\/‘“ 2 2 2 2
o

The rows and the columns in the above matrix, are indexfied in the order,
ai, by, by, ¢y and ¢;.

Substitute each weight in the above matrix by (2.20), we have the
5% 5 matrix of the weights at the central point of the 5-star graph
Sn, m+1, m+1, m+1, m+1),

a, 1 Va8 1 Veyfo 1 NVaify 1 Yo
Ay \/2 (24 '\/2 (24} '\/‘2 27} '\/_2— 24}
_1:\/;1’540 s+u S—u t+ivVI—lul® t—ivi—|ul*
V2 a, 2 2 2 2
U= 1_«/EE S—u s+u t—ivVI=Tul* t+ivi—|ul®
V2 a 2 2 2 2
1 va; B t+ivVI—=lul® t—ivI—|ul® s+ s—1u
V2 a, 2 2 2 2
1 Va By t—ivVI—[u]' t+ivVI—|ul® s—1 s+1
V2 a, 2 2 2 2

and, of course, the above matrix U=(u;;) is a unitay matrix and the
entries u,; satisfy the following norm condition,
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A L Ve 1 Va1 Va1 Vahs
24 \/ 2 &y '\/ 2 ay '\/ 2 (44} '\/? 20

1 a, Bn Bo. Bo Bo
V2 oa, 2a, 2a, 2a, 2a,
(o) = | —— Vai B Bo Bm Bo Bo
“ V2 a, 2a, 2a, 2a, 2a,
_1 Va8, Bo Bo B Bo
V2 a, 200 2w, 2a, 2a,
L _VaB, B B B B
\/ 2 44 2&0 2(10 2“0 2&'0

which corresponds the key Lemma in [5]. Here we reach the theorem,

THEOREM 2.4. The 5-star graph S(n, m+1, m+ 1, m+1, m+1) (n>m)
has a connection.

In the case when m=0, the graph &, is the graph B(n, 0, n,0),

bo
gl: e . .o o Pr—yg
an a;, @ @ G a1 @ Gn
Co
Figure 2.1.

it is a little easier to find the Z,-symmetric connection. Because the matrix
B in the Proposition 2.1 should be changed to the 2x2 matrix of the form

«, Qg
—s U
Bo Bo
Ay Qo
- U 8
Bo Bo
S
Hence we are able to put the purely imaginal number i\/ <%> —s? as the
0
complex number wu.

3. Remark on the symmetries of Sunder’s graph

In this section, we give some remarks on the symmetries of the graphs
in [17]. First, we consider the graph B(n, n,n, n) as the graph &,, that is
the graph has the central square and four legs of the same length.
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gl:

Figure 3.1.

This graph has the following two different symmetries.
1. Symmetry to 5-star S(n,n+1,n+1, n+1,n+1).
2. Symmetry to the Sunder’s graph of N=2.

hl.i*ﬁg’ o ¢ ¢ ¢ =@

’ .. ’ ' / ’ ' ]
b, b, b b ) @, a; - a;,

Figure 3.2.

The first symmetry is arised from the reflection for the 2nd-4th line of
the graph &,, as we have seen the previous section. And the second sym-
metry is coming from the z-rotation at the center of the graph &,, which
is also Z,-symmetry but there is no fixed point in this case.

Here we write the matrix C which gives us the second symmetry, in
the graph 4.

a; b,
N N
H ai, bi
P 7
o b; (@:0, 1’...,%)

We constructed the connection on the graph B(n,n,n,n) in [19, §2].
And this connection is invariant under both the first and the second sym-
metries in above. For convenient, we rewrite the weights around the
central square

W= Ws=W,=We=1,



142 H. YosHIDA NSR. 0.U., Vol. 44

We=Ws=Wr=w,=%  and

ws=1V1—|u|%! " ®

where u=—(a,/2a)+14(1/2) or u=—(a./2a,)—1(1/2) and H=arg(u). Of
course, the w,’s mean the cell weights as in the previous section and we
set 6,=0 for all 4,.

Using this connection, we obtain the connections both on the 5-star
graph S(n,n+1,n+1,n+1,n+1) and on the Sunder’s graph of N=2 by
Roche’s procedure. As for on the 5-star graph S(n,n+1, n+1, n+1, n+1),
we have the same parametrization and it is not so difficult to find a cell
system for the second symmetry, so we omite the details. And Sunder’s
construction of the connection on the graph of N=2 can be regarded as a
sort of the above procedure [17, Lemma 7 and Lemma 9].

On the other hand, there exiets a symmetry from the 5-star graph
S(n, n+1, n+1, n+1, n+1) to the Sunder’s graph of N=2 directly. And this
symmetry can be extended to the general case. That is, there exists the sym-
metry from the graph &, the (N?+1)-star graph S(n, n+ 1, n+1, -, n+l),

N2

to the graph &,, Sunder’s graph of V.
We lable the vertices of each graphs as follows.

an
G,
L]
I b,(-LAVT)
Figure 3.3.
_N_
gz: ;—...-"—.——m——'—.—b, ’ ' , ’ I lo.—'
n e 2 bl bo a, a; ay e a;‘

Figure 3.4.



December 1993 Connections on the Special 5-star Graphs 143

Then the matrix C which gives us the symmetry, is represented in the
graph

b

(i=10,1,2,---,n).

Figure 3.5.

The Perron-Frobenius weights on each graph are as follows.
pla)=ay, (1=0,1,---,m),
g

p)=5r  =0,1,-+,m) forall I,

Gy pla)=pb)=a; (1=0,1,--+,n).
where a,’s satisfies the relations:
1) al=ai—aiai., for ¢=1,2,---,n—1,
(2) ai=a;— Naya,,

Furthermore, we shall give the remark on the symmetry for Sunder’s
graph. The symmetry from the graph B(n,n,n,n) to Sunder’s graph of
N=2, can be extended to the following symmetry.

We consider the graph P,y(n). The graph P.y(n) has the central 2N-
polygon with N(N —2) many inner edges and leges of length » at each
corner vertex of the polygon. Here the inner edges of the polygon are
connected as following manner. We label the vertices of the 2N-polygon
D1, P2, ***, Pav-1, Poy- And for each odd number labeled vertex, we connect
this point to the all even number labeled vertices. Conversely, for each
even number labeled vertex, we connect this point to the all odd number
labeled vertices. In the above connecting, we should not make the edges
multi-count. That is all the edges should be single.

Now we have the symmetry from the graph P,y(n) to Sunder’s graph
of N, which is arised from the (2x/N)-rotation at the center of the 2N-
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polygon in graphical. Of course, this symmetry is Z,-symmetry and the
matrix C, which gives us this symmetry, is represented in the graph

. d ) N
I plY ——>ai, pier—>bi,  (i=0,1,---,n)

where p{" is the i-th vertex on the I-th leg of the graph P.y(n), and a;
and b; as in Figure 3.4.

At the finally, we would like to say as a remark that, for the case
when N=3, we can get a Z,-symmetry invariant connection on the follow-
ing graph Pyn). And U. Haagerup has also obtained a connection on this
graph [4].

o s o @ —) o o o

Figure 3.6.
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