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§0. Introduction

Let C be a non-singular complete curve defined over an algebraically
closed field of positive characteristic p, and let f: S—C be a relatively
minimal elliptic surface defined over k.

DEFINITION 0.1. f:S—C is called a unirational elliptic surface of base
change type if there exist a curve C’ and a morphism ¢: C’'—C such that
the fiber product SX . C’ is rational.

Let f: S—C be a unirational elliptic surface of base change type.
Naturally, S gives an example of unirational algebraic surfaces (i.e. there
exists a generically surjective rational map from the projective surface P?
to S), which are the focus of many mathematicians’ attention. T. Katsura
((3]) has completely determined irrational unirational elliptic surfaces of
base change type in characteristic more than two, and the author make it
up in characteristic 2 ([8]). Incidentally, such surfaces are all K3 surfaces
in characteristic 2, so, we get certain numbers of unirational K3 surfaces.

It is known a unirational algebraic surface is supersingular, i.e. its
second Betti mumber is equal to its Picard number ([12]). In conclusion,
it seems that our previous paper gives many examples of supersingular
elliptic K3 surfaces in characteristic 2, in appearance.

Now, in this paper, we show that our set of K3 surfaces is indeed,
rather varied, i.e. the members of the set give various values of Artin’s
o-invariant, which is the most important characteristic value of a super-
singular K3 surface.

DEFINITION 0.2. ([1]) Let X be a supersingular K3 surface defined over
an algebraically closed field & of positive characteristic p. then the deter-
minant of its Néron-Severi group disc NS(X) is given as follows:

dise NS(X)=—p*, 15610

¢ is called Artin’s g-invariant of X,
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THEOREM 0.3. Let f: X—P" be an irrational unirational elliptic sur-
Jace of base change type over am algebraically closed Jfield k of character-
wstic 2. Let K=k(t) be the function fleld of P', and let a,b, -, f<k.
then the minimal Weierstrass normal form o f i X—>P' is given by ome
of the following, and its g-invariant ¢ is determined as Jollows :

(1) Y4ty ="+ tat’ +bt* et +d)a® +et'x + [t (d,e+0).
o=4 f f=0,
a=5 1f f#0.
(2) Yty =2+ tat +btt et +d)a®,  (d+0)
o=3.
(3) Yty ="+ tlat +b)x+t(ct' +dt’+e) (c,e+0).
o=5.
(4) Y+t y ="+ t(at? + bt +e)a? +dt's +(et>+ f) (a,d, f+0).

Let F(T)=T4+c¢T*+g, G(T)=aT*+dT+e be polynomials of one vari-
able T.

*If F and G have two common roots, then o=4.

* If F and G have only one common root, and if another root of F
18 (ac+d)/a, and if the other root of G is ¢, then o=4.

* Excepting above cases, if F and G have only one common root, or
of (ac+d)ja s a root of F, or if ¢ is a root of G, then o=5.

* If f conforms to mo above cases, then =6,

(5) Y +ty =o' +t(at’ +bt+c)x? +dt’x +et®, (@, cd+e+0).
g=4 1if ec=0,
{ c=5 1f ec+0.
(6) Yty =a’+at?e? - (bt*+¢) , (b#0).
g=3.
(7) Y +ty =o' +t*(at +b)a’ +ot's+de’,  (a,c#0).
=3 if d=0,
{ =4 +f d+0.
(8) Y +tty=a'+t (et +b)x*,  (a+#0).
g=2.

(9) YA y=2 +t(at+0)at+tct+d),  (b,c+0).
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og=4.
(10) Yy +y=a'+tat’ +bt+o)o’ +dt'ct+et’,  (a,e,d+#0).

* If e=0 and d=ac, then o=3.

* RKxcepting the above case, 1f e=0, or if d=ac, or if ac’+dc+e=0,
then o=4.

* If f conforms to no above cases, thenm o=>5.

(11) Yty =o' +tlat® +bt+e)x?, (@,¢#0).
c=3.
(12) Y+t + 1)y =2+ t2(t+ 1) (et +b)a + P (t+1)(ct +d) , (@, c#0) .

Let F(T)=T+bT+¢, G(T)=T°+(a+b)T+c+d be polynomials of one
variable T.

* If F and G have three common roots, then o=3.

* If F and G have only one common root, then c=4.

* If F and G have no common roots, then o=>5.

(13) Y+ D) y=2"+at’t+1) e+t +1),  (b+0).
g=3.

(14) Y+ D)y = +at* (t+1)x, (@#0).
g=2.

(15) Y+t + D) y=o"+at(t+1)x*, (@+0).
g=2.

(16) YAt D)y = +at?(t+ 1)+ 2t + 1)t +e)x +t* (t+1)*(dt +e) ,

(a,e,alb+c)+d+e+0).

Let F(T)=1°4+¢T+e, G(T)=T+aT*+(b+c)T+d+e be polynomials of
one vaxiable T.

* If F and G have two common roots, then o=4.

* If either F(T) and G(T) or F(T+a) and G(T) have only one com-
mon root, then ¢=>.

* If f conforms to no above cases, then g=6.

17 Y2ty =2 +tt+ 1) (at+b) 2 +et* (t+ 1)’ +dt°(t+ 1)1,
(ac+d,b,a+a+0).
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c=3 1f d=0 and ¢=(a+b)b,
=3 if a=0 and d=b'+bc,
o=4 1f d=0 and c=(a+b)b,
c=4 1f d=0 and c#(a+b)b,
c=4 1f d=0 and c=(a+b)b,

c=5 if ec+0.
(18) Y+t + 1) y=a*+ 2+ 1) (at®* + bt +c)x+ E(t+ 13 dt +et + f),
d, f,d+e+f+0).

Let F\(T)=T+cT+f=(T+2)(TH+2)(T+2s), Fo(T)=T+(a+b+c)T
F(d+e+f)=(T+ 20T+ 20 (T+ Ap), and Fo(T)=T"+aT+d=(T+ As)(T+
As) (T A35) be polynomials of one variable 1. then

3zo=T—log,(I+J+1)=T.

Here,
I=Card.{(i, 7, k)| A1i+ Ao5+ 5. =0} ,
J=(number of common roots of I’y and F')
+ (number of common roots of Iy and Fy)
+(number of common roots of F, and Fj).
(19) Y+t +1) iy =a,
og=1.
(20) Y+t + 1) y=2"+t(t+1)(at+b)x?, (@,b,a+b+0).
c=3.
(21) Y H+t2t+ 1) y=0"+at?(t+ 1)+ b’ (t+ 1) +ct'(t+1)°,
(@, ab+c+0) .
c=3 if ¢=0,
o=4 if ¢#0.

The proof of the above theorem is an application of the Mordell-Weil
lattice theory constructed by T. Shioda. We summarize some part of this
theory for our preliminaries in Section 1, then we study the structure of
some fundamental Mordell-Weil lattices in detail (Section 2). The proof of
Theorem 0.3 is completed in Section 3.

The author thanks Professor T. Shioda who introduced her to the
meaningful Mordell-Weil lattice theory, Professor K. Oguiso who taught
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her many aspects of the Mordell-Weil lattice of rational surfaces, and Pro-
fessor T. Urabe who gave her a lot of information on root lattices. The
author also thanks Professor T. Katsura who gave her many useful sugges-
tions.

§1. Preliminaries on Mordell-Weil lattices

In this section, we summarize some part of the theory of Mordell-Weil
lattices, which is the most important tool for our study. The fundamental
papers of T. Shioda ([13,14]) describe the theory entirely, so, the author
requests anyone who wants to know more, to refer to these papers.

We use the following notations in this section.

k: an algebraically closed field of non-negative characteristic p.

K=k(C): the function field of a smooth projective curve C/k,

E/K: an elliptic curve,

O E(K): the origin of K,

f: X—C: the associated relatively minimal elliptic surface, (we as-
sume f is not smooth),

(P): the section of f who corresponds to P< E(K),

E(K)" :={P= E(K)|(P) and (O) passes the same part of any fibers of f},

R :={veC| the fiber f'(v) is reducible}.

For v= R, we decompose the singular fiber to irreducible components
as follows:

my-1

f_l(v):@v,o_l_ i§‘1 /«lu.i@z;,i b)

here, 6, , is the irreducible component which passes the zero-section (O).
The intersection matrix of the above components is denoted as follows :

Av:(@v,i'@v,]’)lgi,]‘gmv—l .

At first, Mordell-Weil lattice theory gives a bilinear form on the
finitely-generated Abelian group K(K) (the Mordell-Weil group).

DEFINITION 1.1. We set the following bilinear form <P,P’) (P, P'=
E(K)) on E(K), and call <(,)> the height pairing on E(K).
(P, P> i=—((0)=(P)-((0) = (P)— X, Contr,(P, P'),
here,
0, if P or P’ passes 6, ,,

(_Agl)i,j if @, (P)=6, ;- (P)=1.

Contr,(P, P')=

The height pairing relates E(K) to the Néron-Severi group of X NS(X)
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as follows.

LEMMA 1.1. Let r be the rank of the free part of Mordell-Weil
group S :=FE(K)/E(K): and let Py, -+, P.=S. Then, the followings are
equivalent.

(#) (P, P.>CS is the subgroup of index v,

— »l(_ie,t (<Pi; Pj>)i,j|IIvERm1(JD
(##) IdetNS(X)I'— (#E(K)tor)z'pz *

Since our goal is to calculate det NS(X), Lemma 1.1 is very useful
for us.

§2. Lemmas on fundamental root lattices

Here, we recall from our previous paper ([8]) on unirational elliptic
surfaces of base change type in characteristic 2, and prepare the lemmas
on lattices concerning our elliptic surfaces.

From now on, k is fixed in characteristic 2.

Let f: X—P' be an irrational unirational elliptic K8 surfaces of base
change type in characteristic 2, let K'=k(s)=k(t"?) be the purely insepar-
able extension of degree 2 of the funtion field K=k(P)=k(t), and let
g:P'—P'" be the morphism corresponding to the extension K'/K. Then,
we know that X' XXp P! is a rational elliptic surface (cf. the proof of
Proposition 3.3 of [8]). So, we can relate the s-invariant of X, say, ¢, to the
Mordell-Weil lattice S’ of the rational elliptic surface f': X' —P!, whose
structure is already clarified by K. Oguiso and T. Shioda ([7]).

LEMMA 2.1. Under the above notations,

22(I+T

det S’ H’UERms}D

~ 1/2
18" S1=( ) # S

PROOF. Apply the fundamental theorem Lemma 1.2 and the functor-
ialty of height pairing (ef. [14]) to X and X'. O

By the above lemma, the calculus of ¢ is reduced to the one of the
order of the finite group S/2S’. So, in the rest of this section, we study
the quotient group of modulo 2 of some fundamental root lattices.

LEMMA 2.2. Let S be the root lattice B (resp. E*) (resp. Ey) (cf. [2]).
Then, the representative elements of the quotient group S/2S can be

selected out of the elements of S whose length is smaller than or equal to
2 (resp. 7/2) (resp. 4).
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PROOF. Here we use the data on root lattices from [2].

Let S=E%*. Since the length of the minimal vectors of E’} is 4/3, the
length of the minimal vectors of 2E7% is 16/3. Let x,2'<=S be two minimal
vectors such that z'# +2x. Then, it follows that |x+2a'|? or |x—=x|® is
smaller than 16/3, so, x—=«’ cannot be an element of 2S. Since the number
of the minimal vectors of S (denoted by N(4/3)) is 54, we can select 27
representative elements from minimal vectors.

Let y, y'<S be elements of length 2, and assume that y'+# +y. Then,
we see that x, v,y  represent different elements of S/2S each other.

Now, the number of non-zero elements of S/2S is 2°—1=63, while we
see that N(4/3)/2+ N(2)/2=27+36=63, so we can select all the representative
elements such that their length is 4/3 or 2.

The case where S=E* or S=E; can be proved similarly. O

§3. The proof of the theorem

Here, we prove our theorem Theorem 0.3. Since the method is es-
sentially same for 21 cases ((1), -+, (21) in statement of the theorem), here,
we treat only the most complicated case (18).

So we fix the notations as the following.

f: X—-P': the irrational unirational elliptic surface of base change
type in characteristic 2.

W+t +1)2y =2+ 2t +1)2(at’ + ot o) e+t + 1) (dE +et+ ), (d,f,d+e
+f#0): the mimimal Weierstrass normal form of f.

g: P'—>P': the purely inseparable morphism of degree 2.

fi X' ~—XXpP': the rational elliptic surface obtained from f by the
base change g.

(S, <,>s): the Mordell Weil lattice of f.

(S”,<,>s): the Mordell Weil lattice of f’. (S’ is isomorphic to E.)
¢: S—S8’: the natural injection.

S :=im(:).

o: the ¢-invariant of X.

Let F(T)=T+cT+f=(T+2)(T+2:)(T+ 1), Fo(T)=T+(a+b+c)T
+(d+e+f)=(T+2,)(T+ 250)(T+ 255) and F(T)=T*+aT+d=(T+ As)(T+ 232)
(T+ 2As5) be polynomials of one variable 7.

At first, recall the representative elements of the quotient group S’/2S’
can be selected out of the elements of S whose length is smaller than or
equal to 4.

So from Lemma 1.1, we see that

(18.1)  27=#8/28' = (#{P=S|{P, P)>s=1}/2+ #{P=S|<P, P> s=2}/16+1)
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Recall also that the singular fibers of f are over t=0,1, - and all of
type C, (cf. Néron ([6]).

Now, let us calculate the number of the minimal vectors of S.

At first, let P=S be a section such that (P)-(0)=0. This is equivalent
to (P, P>s<4. Then, we can write the coordinates of P as the following :

r=a,+ - tagtt,
P
Yy=pFo+ - + Bt .

If P is a minimal vector, P and O must pass different components of
all the singular fibers each other. For example, if P and O pass different
components of the singular fiber over t=0, we see, applying Néron’s quad-
ratic transformation ([6]) to f, it holds that ay=8,=8,=0 and a,;=¢, where

{ is a root of F\(T). After analyzing similaly over t=1, oo, we see that
if <P,P>s=1, it must hold that

w=Ct+ct 4ot
y=pt*(t+1)%,

where z(resp. p) is a root of F,(7)(resp. Fi(T)) and it also holds that £+~
+0=0.

In conclusion, there is 2: 1-correspondence between the set of minimal
vectors of S and the set {(¢,7, k)| 4.+ A;+ 25,=0}. Similarly, we see that
there is 16: 1-correspondence between the set of vectors of S with length
2 and the union of the set of common roots of F, and [, the set of com-
mon roots of /', and Fj, and the set of common roots of F, and Fi.

So, from the equation (18.1), we can calculate ¢ as in the statement
of Theorem 0.3.
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