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Let k& be an algebraically closed field of positive characteristic p. A
non-singular complete surface defined over k is called supersingular if its
second Betti number equals its Picard number. An Abelian variety over
I is called supersingular if it is isogenous to a products of supersingular
elliptic curves. A non-singular complete curve over k is called supersingular
if its Jacobian variety is supersingular. A non-singular complete variety
is called unirational if there exists dominant rational map from a projective
space to it.

Now, consider the hyperelliptic curves over k&

CN . Y2:XN_1 »
where N is a positive integer such that

N#0(mod p) and N=3,
and
Cr:y’=a"—zx,

where n is a positive odd integer such that
n—1%F0(mod p) and n=3.
We always denote the involution map of any hyperelliptic curves by ¢:
i, y) —> (z, —y).

Consider also surfaces which are products of above curves and quotient
surfaces by the involution :

Ty:=CyxCy,  Sy=Tylcxc,
T, =CLxC, and S,=Thlxc.
There are some facts on the unirationality or supersingularity of Cy, C;,

Sy, or of S, already clarified :

PROPOSITION 0.1. ([1,5]) (1) If there exists a natural number such
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that p*=—1 (mod N), then Sy is unirational.
(2) C, 1s supersingular if and only if p#*1 (mod 5).
(3) Cs 1s supersingular if and only if p=5 (mod 6).
(4) C; is supersingular if and only if p=>5,7 (mod 8).

It seems that Cy or Sy are easier to handle than C; or S, because the
zeta funtion of Cy has a simple formula introduced by Weil ([9,10]). But
since C,,-, is a double covering of C,, we can calculate the zeta function
of C;, too. This calculation is the first part of this note, and we deduce
some facts on unirationality and supersingularity of S, in the following
parts. The results are summarized in Theorem 2.7 in §2.

§1. Calculation of zeta functions

Let k=F, be a finite field with ¢ elements in characteristic p. We
denote the congruence zeta function of a proper smooth variety V over k
by Z(T, V/k), or simply by Z(T, V) or by Z(T) if there are no ambiguities.

In this section we recall the calculation of Z(7T, Cy/k) by Weil ([10])
and calculate Z(T, C,/k). At first, fix the notations as follows:

n=3: a positive odd integer,

N:=2n—2,

g : the smallest integer such that ¢=p’=1 (mod N),

w: a generator of the multiplicative group F7,

Cull: Yi=0" 1 X¥—p': a hyperelliptic curve over I,

N, :=Card. Cy(Fyp),

N, :=Card. C.(F,.),

N, :=Card. C(F,.),

The formula of zeta function by Weil is described by Jacobi sums.

DEFITITION 1.1. Let a#n—1 be a positive integer such that 1<a=
2n—2, and let N’ be the greatest common devisor of ¢ and N. Let a’
(resp. N”) be the devisor of a (resp. N) such that a=a’N’ (resp. N=N'N".)
When N” is even, we set a,=a’, bp=N"/2, and let y be a character of k*
such that

x:k* — C*; o —> exp (2ni/N”).

When N” is odd, we set a,=2a’, b,=N", and let y be a character of k*
such that

x: k* — C*; o —> exp 2ni/2N”).

We define the Jacobi sum j, as follows:
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Ja= by x () oy (y) o .

. ycks . z+y+1==0

LEMMA 1.2. ([10]) The zeta functions of Cy and Cy are given by the
following formulae :

Z(T,Cyllby=Q1—T)"'1—qT) ! IT (I+2((—=1)*)3,T),

1<a<N,a#N-1

Z(T,Cyll)=(1=T)"'"A—qT)" T = (+g((—e ") e %);,T).

1<a<N.,a#N-1

Since Cy is a double covering of C,, we can calculate Z(T, C,/k) from
the above formulae.

LEMMA 1.3. The numbers of rational points of C., Cy and Cy over k
are related as the following formula :

(1.1) N{=(N,+N)/2.

PROOF. Any rational point (x,, y,) over k=F, of C, corresponds to a
pair of rational points (= vz, +yo/ vV, over F,, of Cy. Conversely, if a
rational point (X, Y;)&Cy(F,:) corresponds to a rational point (X3, X,Y,)
eC,(F,), one of the following two conditions must hold :

(1.2) X,, Yok,
or
(1.3) Vo X, Vo Yo<k.

The condition (1.2) is equivalent to (X,, Y,)=Cy(k), and the condition (1.3)
is equivalent to (X, Yy)eCuy(k). So, we have the formula (1.1). O

PROPOSITION 1.4. The zeta functions of C, is given by the following
JSormula :

(1.4) Z(T, Colk)=(1-=T)""1—qT)" II (1—(+7)T).

15a<N,a#N-1,a:0dd

PROOF. From the definition of zeta functions it suffices to show the
following formula : '

(1.5) N;:1+q+a~%§1dx(_1)a°j“‘
From Lemma 1.2, we can calculate N, and N, as the following :
(1.8) Ni=1+q+ 2 y(—1)%Ja,

and

(1.7) 1\71:1+q+ ZX(_1)“0x(a))”<Nr’2)ao‘°oja,
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so, the proof is completed. O

§ 2. Unirationality and supersingularity

In this section, we use the same notations as in §1 unless otherwise
mentioned. '

PROPOSITION 2.1. Assume that there exists a positive integer v such
that
(2.1) p’'=—1, n(mod N) .
Then, the surface S, 1s unirational.

PrROOF. If p*=—1(mod N), then Sy is unirational ([5]). So, S, is

unirational, too. Assume that p*=n(mod N). S, is birationally equivalent
to a hypersurface H, in A® whose defining equation is as follows:

Hy: *=@w"—u)(x"—x) .

H, is birationally equivalent to a hypersurface H, in A®* whose defining
equation is as follows:

(2.2) H, 2" =" —uz""H(1—2"").
From (2.2), we have

— tZzn—l n n-1
(2.3) u—_z;”_"l‘:-f+u [z .
Since p*=n(mod N), there exists an integer such that p*=2(n—1)+n=

(n—1)(21+1)+1. Putting s***'=u, we have

tZZn—l

zr -1

(2.4) s= R S L L

Putting f=(z"""s7!/z" ' —1)t, we have

(2.5) s—BP=(s""—p%)/[z""".
Putting g=r?", we have
(2.6) s—7=(s—7)" [z L.

Putting 6=(s—7")*""/z finally, we have
&0 s = (573"

Since the equation (2.7) shows that the function field k(S,)=Fk(H,) is con-
tained in the function field k(7, 6)=k(P?), the proof is completed. O
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REMARK 2.2. Since it is known that any unirational surface is super-
singular ([3]), we know from Proposition 2.1 that if we assume that there
exists a positive integer v such that p”=—1, n(mod N), then, the surface
S, is supersingular.

It is known that supersingularity of T, is equivalent to that all the
eigenvalues of the second ¢-adic étale cohomology group are equal to ¢~*
([8]). Since these eigenvalues can be calculated from Z(7,C,), we have
the following lemma.

LEMMA 2.3. The following two conditions are equivalent.

(1) S, 1s supersingular.

(2) For suitable even power q of p and all the odd integer a such
that 1<a <N, it holds that j,=q". |

PROOF. Consider another condition

(3) T, is supersingular. :

Since the equivalence of (2) and (3) is shown from the formula of
Z(T,C;) proved in Propoition 1.4, it suffices to show the equivalence of (1)

and (3). Since ¢ acts as —1 in H'(Q,, C,), by Kunneth formula, ¢ acts as
identity in H*Q,, T,). This shows the equivalence of (1) and (3). [

Now, we have the following problem.

PROBLEM 2.4. Assume that S, is supersingular. Then, does the con-
ditional equation (2.1) hold?

We prepare more notations to handle this problem.

K=Q(y): the N-th cyclotomic field,

G=Gal (K/Q), :

HcG: the decomposition group of p over K. (Card. H=f.)

We identify the elements of H and integers ¢; such that 1=¢t,=N—3:

H:{t[):l) *ce, tfﬁl} .

For a integer a such that 1<a<N—-1 and a#+n—1, we set
f-1
Apla)= 220[1/2‘{' {tia/N>J,

where < > denotes the fractional part.
s H: the unique elements in H such that s°=1 and s#1. (s exists
only when f is even.)
With an odd integer N’ and an integer ¢=2, we decompose N as follows :
N=2°N’
¢ : (Z|N)—(Z[2°) : the canonical projection.
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H':=¢(H), f':=Card. H', s’ :=¢(s).
By Stickelberger’s relation, we can calculate j, with Au(a).

LEMMA 2.5. The following two conditions on a are equivalent:
(1) (J(a)")# (p*''®) for all positive integers v.
(2) Agla)#f]2.

~ PROOF. This can be proved similarly to the Lemma 3.1 in [6]. [

PROPOSITION 2.6, Assume the following conditions A, and B,.
Ao: There exists no integers v which suffices the condition (2.1).
By: The characteristic p suffices one of the following conditions

B,, -, or B,
B, f=2,
Bz: N:26.

Bs: for f’ is odd.
B,: f'=2 and H'%2°—1,2¢' +1,
Then, there exists an odd integer a such that 1<a<N—1 and Agxa)

£ f]2.

PROOF. Case (1) the case where the condition B, is satisfied.
In this case, it suffices that N=8 and H={1, s}.

At first, we devide reductively the interval L.=[0, N), where sisin:
I, :=Ly=[0, N/2],

I, :=(4NJ6, 5NJ6), L,:=Ly+1I,=[0, N/2]\J (4N/6, 5N/6),

I, :=(6NJ10, 7TN/10)\U (8N/10, 9N/10),

L,:=L,VI,:=[0, N/2]\V (6 N/10, 9N/10),

I _:< 2k+2)N (2k+3)N>U< 4k N (4k+1)N>

ke 4k+2 °  4k+2 Ak+2° 4k+2 )

2k+2)N (4Ic+1)N>

4k+2 °* 4k+2 )

Ly =L UL=[0, N/2]U< (
If s=L,, then,
Ag(1)=[1/24+<A/N>]+[1/2+ (s/N>]=0.
If s=1,, then,
An(3)=[1/2+<3[N>]+[1/24 (3s/N>]=0.

For k=1, assume that s&[L,. Since s is a square-root of 1, it must
hold that +/N =N/4k+2. Especially, it holds that N>4k+6.
If se1l,,,, then, it holds that

Ap(2k+3)=[1/24+<(2k+3)/N>]+[1/24 {(2k+3)s/N>]=0.

Since the inductive limit of Lk’s is L., the proof in this case is completed.
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Case (2) the case where the condition B, is satisfied.
It may assume that f=4, i.e., H has an element ¢ of order 4. Then,

a simple calculation shows that ¢*=n<=H. It conflicts to the assumption

A,.

Case (3) the case where the condition B; or B, is satisfied.
If f is odd, this proposition is trivial.
It may assume that N'=3. Then, for an odd integer a, it holds that

Au(N'a)= %}q [1/24 <(N'at/2°N'>]=Card. (H/H")Ay(a) .

So, this case is reduced to the case (2). O

Finally, we summarize our results as in the following.

THEOREM 2.7. For the characteristic p, assume that the condition B,

wm Proposition 2.6 is satisfied. Then, the following three conditions are
equivalent.

L1l
L2]
L3]
[4]
\[5]
L6]
L7]
[8]
L9]

[10]

(1) S, s unirational.
(2) S, 1s supersingular.
(3) There exists a positive integer v such that

p*=—1, n(mod N).
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