Unirationality of Surfaces Obtained from Products of Curves

Mari Ohhira

Department of Mathematics, Faculty of science, Ochanomizu University, Tokyo (Received April 8, 1993)

Let k be an algebraically closed field of positive characteristic p. A non-singular complete surface defined over k is called supersingular if its second Betti number equals its Picard number. An Abelian variety over k is called supersingular if it is isogenous to a products of supersingular elliptic curves. A non-singular complete curve over k is called supersingular if its Jacobian variety is supersingular. A non-singular complete variety is called unirational if there exists dominant rational map from a projective space to it.

Now, consider the hyperelliptic curves over k

$$C_N: Y^2 = X^N - 1$$
.

where N is a positive integer such that

 $N \not\equiv 0 \pmod{p}$ and $N \geq 3$,

and

$$C_n': y^2 = x^n - x$$
,

where n is a positive odd integer such that

$$n-1 \not\equiv 0 \pmod{p}$$
 and $n \geq 3$.

We always denote the involution map of any hyperelliptic curves by ι :

$$\iota:(x,y)\longrightarrow(x,-y)$$
.

Consider also surfaces which are products of above curves and quotient surfaces by the involution:

$$T_N := C_N \times C_N$$
, $S_N = \widetilde{T_N/\iota \times \iota}$, $T'_n := C'_n \times C'_n$ and $S'_n = \widetilde{T'_n/\iota \times \iota}$.

There are some facts on the unirationality or supersingularity of C_N , C'_n , S_N , or of S'_n already clarified:

PROPOSITION 0.1. ([1, 5]) (1) If there exists a natural number such

that $p^{\nu} \equiv -1 \pmod{N}$, then S_N is unirational.

- (2) C_5 is supersingular if and only if $p \not\equiv 1 \pmod{5}$.
- (3) C_6 is supersingular if and only if $p \equiv 5 \pmod{6}$.
- (4) C_5' is supersingular if and only if $p \equiv 5,7 \pmod{8}$.

It seems that C_N or S_N are easier to handle than C'_n or S'_n because the zeta function of C_N has a simple formula introduced by Weil ([9, 10]). But since C_{2n-2} is a double covering of C'_n , we can calculate the zeta function of C'_n , too. This calculation is the first part of this note, and we deduce some facts on unirationality and supersingularity of S'_n in the following parts. The results are summarized in Theorem 2.7 in § 2.

§ 1. Calculation of zeta functions

Let $k = \mathbf{F}_q$ be a finite field with q elements in characteristic p. We denote the congruence zeta function of a proper smooth variety V over k by Z(T, V/k), or simply by Z(T, V) or by Z(T) if there are no ambiguities.

In this section we recall the calculation of $Z(T, C_N/k)$ by Weil ([10]) and calculate $Z(T, C'_n/k)$. At first, fix the notations as follows:

 $n \ge 3$: a positive odd integer,

N := 2n - 2,

q: the smallest integer such that $q = p^f \equiv 1 \pmod{N}$,

 ω : a generator of the multiplicative group F_q^* ,

 $ilde{C}_{\scriptscriptstyle N}\!/k$: $ilde{Y}^{\scriptscriptstyle 2}\!=\!\omega^{\scriptscriptstyle n-1} ilde{X}^{\scriptscriptstyle N}\!-\!\omega^{\scriptscriptstyle -1}$: a hyperelliptic curve over k,

 $N_{\mu} := \operatorname{Card.} C_{N}(\boldsymbol{F}_{q\mu}),$

 $N'_{\mu} := \operatorname{Card.} C'_{n}(\boldsymbol{F}_{q\mu}),$

 $\tilde{N}_{\mu} := \operatorname{Card} . \tilde{C}_{N}(\boldsymbol{F}_{q\mu}),$

The formula of zeta function by Weil is described by Jacobi sums.

DEFITITION 1.1. Let $a \neq n-1$ be a positive integer such that $1 \leq a \leq 2n-2$, and let N' be the greatest common devisor of a and N. Let a' (resp. N'') be the devisor of a (resp. N) such that a=a'N' (resp. N=N'N''.) When N'' is even, we set $a_0=a'$, $b_0=N''/2$, and let χ be a character of k^* such that

$$\chi: k^* \longrightarrow \mathbb{C}^*; \ \omega \longmapsto \exp(2\pi i/N'').$$

When N'' is odd, we set $a_0=2a'$, $b_0=N''$, and let χ be a character of k^* such that

$$\gamma: k^* \longrightarrow C^*: \omega \longmapsto \exp(2\pi i/2N'')$$
.

We define the Jacobi sum j_a as follows:

$$j_a = \sum_{x, y \in k^*, x+y+1=0} \chi(x)^{a_0} \chi(y)^{b_0}$$
.

LEMMA 1.2. ([10]) The zeta functions of C_N and \tilde{C}_N are given by the following formulae:

$$\begin{split} Z(T,C_{\scriptscriptstyle N}/k) = & (1-T)^{-1}(1-q\,T)^{-1} \prod_{1 < a < N, \, a \neq N-1} (1+\chi((-1)^{a_0})j_a\,T) \;, \\ Z(T,\tilde{C}_{\scriptscriptstyle N}/k) = & (1-T)^{-1}(1-q\,T)^{-1} \prod_{1 < a < N, \, a \neq N-1} (1+\chi((-\omega^{-n+1})^{a_0}\omega^{-b_0})j_a\,T) \;. \end{split}$$

Since C_N is a double covering of C'_n , we can calculate $Z(T, C'_n/k)$ from the above formulae.

LEMMA 1.3. The numbers of rational points of C'_n , C_N and \tilde{C}_N over k are related as the following formula:

$$(1.1) N_1' = (N_1 + \tilde{N}_1)/2.$$

PROOF. Any rational point (x_0, y_0) over $k = \mathbf{F}_q$ of C'_n corresponds to a pair of rational points $(\pm \sqrt{x_0}, \pm y_0/\sqrt{x_0})$ over \mathbf{F}_{q^2} of C_N . Conversely, if a rational point $(X_0, Y_0) \in C_N(\mathbf{F}_{q^2})$ corresponds to a rational point $(X_0^2, X_0, Y_0) \in C'_n(\mathbf{F}_q)$, one of the following two conditions must hold:

$$(1.2)$$
 $X_0, Y_0 \in k$,

or

$$(1.3) \sqrt{\omega} X_0, \sqrt{\omega} Y_0 \in k.$$

The condition (1.2) is equivalent to $(X_0, Y_0) \in C_N(k)$, and the condition (1.3) is equivalent to $(X_0, Y_0) \in \tilde{C}_N(k)$. So, we have the formula (1.1). \square

PROPOSITION 1.4. The zeta functions of C'_n is given by the following formula:

$$(1.4) \hspace{1cm} Z(T,C_n'/k) = (1-T)^{-1}(1-q\,T)^{-1} \prod_{1 \leq a < N, a \neq N-1, a \, : \, \mathrm{odd}} (1-(\pm j_a)\,T) \; .$$

PROOF. From the definition of zeta functions it suffices to show the following formula:

(1.5)
$$N_1' = 1 + q + \sum_{a: \text{odd}} \chi(-1)^{a_0} j_a.$$

From Lemma 1.2, we can calculate N_1 and \tilde{N}_1 as the following:

(1.6)
$$N_{\rm l} = 1 + q + \sum_a \chi(-1)^a {\rm o} j_a ,$$

and

(1.7)
$$\tilde{N}_1 = 1 + q + \sum_a \chi(-1)^{a_0} \chi(\omega)^{-(N/2)a_0 - b_0} j_a,$$

so, the proof is completed. \square

§ 2. Unirationality and supersingularity

In this section, we use the same notations as in §1 unless otherwise mentioned.

Proposition 2.1. Assume that there exists a positive integer ν such that

$$(2.1) p^{\nu} \equiv -1, n \pmod{N}.$$

Then, the surface S'_n is unirational.

PROOF. If $p^{\nu} \equiv -1 \pmod{N}$, then S_N is unirational ([5]). So, S'_n is unirational, too. Assume that $p^{\nu} \equiv n \pmod{N}$. S'_n is birationally equivalent to a hypersurface H_0 in A^3 whose defining equation is as follows:

$$H_0: t^2 = (u^n - u)(x^n - x)$$
.

 H_0 is birationally equivalent to a hypersurface H_1 in A^3 whose defining equation is as follows:

$$(2.2) H_1: t^2 z^{2n-2} = (u^n - u z^{n-1})(1 - z^{n-1}).$$

From (2.2), we have

(2.3)
$$u = \frac{t^2 z^{n-1}}{z^{n-1} - 1} + u^n / z^{n-1}.$$

Since $p^{\nu} \equiv n \pmod{N}$, there exists an integer such that $p^{\nu} = 2(n-1)l + n = (n-1)(2l+1)+1$. Putting $s^{2l+1} = u$, we have

(2.4)
$$s = \frac{t^2 z^{n-1}}{z^{n-1} - 1} s^{-2l} + s^{p^{\nu}} / z^{n-1}.$$

Putting $\beta = (z^{n-1}s^{-l}/z^{n-1}-1)t$, we have

$$(2.5) s - \beta^2 = (s^{p\nu} - \beta^2)/z^{n-1}.$$

Putting $\beta = \gamma^{p\nu}$, we have

$$(2.6) s - \gamma^{2} p^{\nu} = (s - \gamma^{2})^{p^{\nu}} / z^{n-1}.$$

Putting $\delta = (s - \gamma^2)^{2l+1}/z$ finally, we have

$$(2.7) s - \gamma^{2p^{\nu}} = (s - \gamma^2) \delta^{n-1}.$$

Since the equation (2.7) shows that the function field $k(S'_n) = k(H_1)$ is contained in the function field $k(\gamma, \delta) = k(P^2)$, the proof is completed. \square

REMARK 2.2. Since it is known that any unirational surface is supersingular ([3]), we know from Proposition 2.1 that if we assume that there exists a positive integer ν such that $p^{\nu} \equiv -1$, $n \pmod{N}$, then, the surface S'_n is supersingular.

It is known that supersingularity of T'_n is equivalent to that all the eigenvalues of the second ℓ -adic étale cohomology group are equal to q^{-1} ([8]). Since these eigenvalues can be calculated from $Z(T, C'_n)$, we have the following lemma.

LEMMA 2.3. The following two conditions are equivalent.

- (1) S'_n is supersingular.
- (2) For suitable even power q of p and all the odd integer a such that $1 \le a < N$, it holds that $j_a = q^{1/2}$.

PROOF. Consider another condition

(3) T'_n is supersingular.

Since the equivalence of (2) and (3) is shown from the formula of $Z(T, C'_n)$ proved in Propoition 1.4, it suffices to show the equivalence of (1) and (3). Since ι acts as -1 in $H^1(\mathbf{Q}_{\iota}, C'_n)$, by Künneth formula, ι acts as identity in $H^2(\mathbf{Q}_{\iota}, T'_n)$. This shows the equivalence of (1) and (3). \square

Now, we have the following problem.

PROBLEM 2.4. Assume that S'_n is supersingular. Then, does the conditional equation (2.1) hold?

We prepare more notations to handle this problem.

 $K=Q(\zeta_N)$: the N-th cyclotomic field,

 $G = \operatorname{Gal}(K/\mathbf{Q}),$

 $H \subset G$: the decomposition group of p over K. (Card. H = f.)

We identify the elements of H and integers t_i such that $1 \le t_i \le N-3$:

$$H = \{t_0 = 1, \dots, t_{f-1}\}.$$

For a integer a such that $1 \le a \le N-1$ and $a \ne n-1$, we set

$$A_{H}(a) = \sum\limits_{i=0}^{f-1} \left[1/2 + \langle t_{i}a/N
angle
ight]$$
 ,

where < > denotes the fractional part.

 $s \in H$: the unique elements in H such that $s^2 = 1$ and $s \ne 1$. (s exists only when f is even.)

With an odd integer N' and an integer $e \ge 2$, we decompose N as follows:

$$N=2^eN'$$

 $\phi: (\mathbf{Z}/N) \rightarrow (\mathbf{Z}/2^e)$: the canonical projection.

 $H' := \phi(H), f' := \text{Card. } H', s' := \phi(s).$

By Stickelberger's relation, we can calculate j_a with $A_H(a)$.

LEMMA 2.5. The following two conditions on a are equivalent:

- (1) $(j(a)^{\nu}) \neq (p^{\nu f/2})$ for all positive integers ν .
- (2) $A_H(a) \neq f/2$.

PROOF. This can be proved similarly to the Lemma 3.1 in [6].

PROPOSITION 2.6. Assume the following conditions A_0 and B_0 .

 A_0 : There exists no integers ν which suffices the condition (2.1).

 B_0 : The characteristic p suffices one of the following conditions $B_1, \dots,$ or B_4 .

 $B_1: f=2.$

 $B_2: N=2^e.$

 B_3 : f or f' is odd.

 $B_4: f'=2 \text{ and } H' \not\ni 2^e-1, 2^{e-1}+1.$

Then, there exists an odd integer a such that $1 \le a \le N-1$ and $A_H(a) \ne f/2$.

PROOF. Case (1) the case where the condition B_1 is satisfied.

In this case, it suffices that $N \ge 8$ and $H = \{1, s\}$.

At first, we devide reductively the interval $L_{\infty}=[0, N)$, where s is in: $I_0:=L_0=[0, N/2]$,

 $I_1 := (4N/6, 5N/6), L_1 := L_0 + I_1 = [0, N/2] \cup (4N/6, 5N/6),$

 $I_2 := (6N/10, 7N/10) \cup (8N/10, 9N/10),$

 $L_2 := L_1 \cup I_2 := [0, N/2] \cup (6N/10, 9N/10),$

$$I_{k} := \left(\frac{(2k+2)N}{4k+2}, \frac{(2k+3)N}{4k+2}\right) \cup \left(\frac{4kN}{4k+2}, \frac{(4k+1)N}{4k+2}\right),$$

$$L_k := L_{k-1} \cup I_k = [0, N/2] \cup \left(\frac{(2k+2)N}{4k+2}, \frac{(4k+1)N}{4k+2}\right),$$

If $s \in L_0$, then,

$$A_H(1) = [1/2 + \langle 1/N \rangle] + [1/2 + \langle s/N \rangle] = 0$$
.

If $s \in I_1$, then,

$$A_H(3) = [1/2 + \langle 3/N \rangle] + [1/2 + \langle 3s/N \rangle] = 0$$
.

For $k \ge 1$, assume that $s \notin L_k$. Since s is a square-root of 1, it must hold that $\sqrt{N} \ge N/4k+2$. Especially, it holds that N > 4k+6.

If $s \in I_{k+1}$, then, it holds that

$$A_H(2k+3) = [1/2 + \langle (2k+3)/N \rangle] + [1/2 + \langle (2k+3)s/N \rangle] = 0$$
.

Since the inductive limit of L_K 's is L_{∞} , the proof in this case is completed.

Case (2) the case where the condition B_2 is satisfied.

It may assume that $f \ge 4$, i.e., H has an element c of order 4. Then, a simple calculation shows that $c^2 = n \in H$. It conflicts to the assumption A_0 .

Case (3) the case where the condition B_3 or B_4 is satisfied.

If f is odd, this proposition is trivial.

It may assume that $N' \ge 3$. Then, for an odd integer a, it holds that

$$A_H(N'a) = \sum_{r \in H} [1/2 + \langle N'at/2^e N' \rangle] = \text{Card.}(H/H') A'_H(a)$$
.

So, this case is reduced to the case (2). \square

Finally, we summarize our results as in the following.

THEOREM 2.7. For the characteristic p, assume that the condition B_0 in Proposition 2.6 is satisfied. Then, the following three conditions are equivalent.

- (1) S'_n is unirational.
- (2) S'_n is supersingular.
- (3) There exists a positive integer ν such that

$$p^{\nu} \equiv -1$$
, $n \pmod{N}$.

References

- [1] T. Ibukiyama, T. Katsura and F. Oort: Supersingular curves of genus two and class numbers, Compositio Math. 57 (1986), 127-152.
- [2] T. Katsura: Generalized Kummer Surfaces and their unirationality in charcteristic p, J. Fac. Sci. Univ. Tokyo, Sec. IA 34 (1987), 1-41.
- [3] T. Shioda: An example of unirational surfaces in characteristic p, Math. Ann. 211 (1974), 233-236.
- [4] T. Shioda: On unirationality of supersingular surfaces, Math. Ann. 225 (1977), 155-159.
- [5] T. Shioda: Some results on unirationality of algebraic surfaces, Math. Ann. 230 (1977), 153-168.
- [6] T. Shioda and T. Katsura: On Fermat varieties, Tôhoku Math. J. 31 (1979), 97-115.
- [7] J. Tate: Algebraic cycles and poles of zeta functions, in Arithmetic Algebraic Geometry (1965), Harper and Row, New York, 93-110.
- [8] J. Tate: Endmorphism of abelian varieties over fields, Inventiones Math. 2 (1966), 134-144.
- [9] A. Weil: Number of solutions of equations in finite fields, Bull. A. M. S. 55 (1949), 497-508.
- [10] A. Weil: Jacobi sums as "Grössencharactere", Trans. A. M. S. 73 (1952), 487-495.