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§1. Introduction.

The Sazonov topology is a vector topology ¢ defined on a Hilbert space
H. It was constructed by V.V. Sazonov for the purpose of generalizing
the Bochner’s Theorem. This topology r is defined as follows; a function
f from H into C is a characteristic function of a Radon probability measure
on H iff it possesses the following three properties: 1.) f(0)=1, 2.) f is
positive definite and 3.) f is r-continuous at the origin.

Later this word is used in more general senses (e.g. [7]). There are
many investigations related to the Sazonov topology. In this paper we
deal with several topologies which have relation to the Sazonov topology.

§2. Notations and terminologies.

Let E be a real separable Banach space with norm |||z, £’ its topo-
logical dual, (-, -) the natural inner product on E’'XE and $(E) the Borel
g-algebra on E. Let F' be a finite-dimensional linear subspace of FE'. A
subset C of E is a cylindrical set based on F' if it is of the form

C={x=E; (¢, x) - (&,, x)) =D}

where nEN, &, -+, &, €F and De B(R"). Let Cp denote the set of all
cylindrical sets based on F, and C=\(C, where F runs over all finite
dimensional subspaces of E’. It is clear that each Cy is a g-algebra and
C is an algebra. It is the important result that the o-algebra generated
by C is B(E).

A non-negative set function p: C—[0,1] is called a cylindrical mea-
sure if for each finite dimensional subspace F' of E’, plc, is a probability
measure.

Suppose p is a cylindrical measure on E. The characteristic function
of p is the function p: E'—C defined by

#&)=\ _exp (iE, w)}dp(a) .
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DEFINITION. (i) A Borel probability measure A on R is Gaussian if
either

(1) 2=4é, (=unit mass at 0= R).

(2) There exists >0 such that for Be B(R)

A(B) :(27ra,)'”2SB exp {—t*/2a}dt .

(ii) A cylindrical measure p is Gaussian if every one-dimensional
distribution &u of p is Gaussian on R.

(iii) A Gaussian measure on K is a Borel probability measure on FE
which restricts to a Gaussian cylindrical measure.

Let E and F be Banach spaces. We denote L(E, F') the collection of
continuous linear operators of E into F.

DEFINITION. Let g be a Gaussian cylindrical measure on K. We say
¢ has variance A if there is a self-adjoint A= L(E’, E) such that a(&)=
exp—(&, Ag)/2 for all é=E’. The word ‘“‘self-adjoint’’ means that (&, A7)
=(n, A¢) for all £ and 7 in E’. Such an operator A is positive, i.e. (§, AE)
=0 for all é=F,

Let H be a real separable Hilbert space with norm |-|,=+{-, )y,
where <-, ->y means the inner product. We identify H' and H and denote
by I, the identity operator of /. Let 7, be the Gaussian cylindrical
measure which has variance I;. We call it the canonical Gauss cylindrical
measure.

Let P(E)={A=L(E', E); A is self-adjoint and positive}. P. Baxendale
showed that every A< P(FE) is the variance of a Gaussian cylindrical
measure on K and also every Gaussian measure does have a variance. The
next propositions are important ([1]).

PROPOSITION 1 ([1]). Suppose A= P(E). Then there is a separable
real Hilbert space H and an injection j< L(H, E) such that A=37*, where
7% 48 a dual operator of j.

REMARK. Let j*=17T, then we get j**=57=7T* and A=T*T7T. We call
T satisfying the above conditions the square root of A.

PROPOSITION 2 ([1]). Ewvery Gaussian measure on E is of the form
Jre for an injection j=L(H, F).

DEFINITION. Let G(E)={Ac%(E); A is a variance of a Gaussian
measure}.
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DEFINITION. A norm |- | on H is a measurable norm if for all ¢>>0
there exists a finite-dimensional orthogonal projection P, such that for any
other such projection P perpendicular to P,, we have

reire H; |Pxll>e}<e.

DEFINITION. Let |-l be a measurable norm on H, B the completion of
H with respect to ||| and ¢ the inclusion map of H into B. The triple
(1, H, B) is called an abstract Wiener space.

We continue to explain some definitions of operators defined on H and
E. L.,(H) denotes the collection of trace class operators of H, i.e., if
we L, (H), then w is a compact operator of H satisfying X7, 4, <+ oo,
where A,’s are the eigenvalues of (uw*u)'>. An operator is called an S-
operator of H if it is in L, (H), positive definite and self-adjoint.

Let H and K be separable Hilbert spaces and u be a continuous linear
operator of H into K satisfying X%_,|ue,|x <+ for some orthonormal
basis {e,},cy 0f H. Then we call u to be of Hilbert-Schmidt type.

Let E and F be Banach spaces. For any p<(0, «©) an operator T'e
L(E, F) is called p-absolutely summing if there is a constant ¢=0 such that

n n
S Tx5=c? sup X [(a, z)|?
i=1 lalprs1i=1

for any finite family of elements xz,, -, 2, < K.
Now we close this section by the following definition and Proposition

3 ([4D.

DEFINITION. A Banach space E is said to be of type 2 if for every
sequence {x;}i-,C E satisfying X7, llz;ll<+ oo, we have that > . con-
verges a.e. where ¢; are independent identically distributed symmetric
Bernoulli random variables, 7.e. P(e;=+1)=P(e;=—1)=1/2.

PROPOSITION 3 ([4]). The following are equivalent.

(1) The space E is of type 2.

(2) For every positive operator A: E'—F, exp[—1/2(y, Ay)] (y<E’) 1s
the characteristic function of a Gaussian wmeasure on E iff the square
root of A is 2-absolutely summing on E’'—H (see Proposition 1).

REMARK. The “‘only if”’ part of (2) is true in any Banach space.

§3. Several topologies.

1. First we introduce the topology & which was defined by V.V,
Sazonov.
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Let & denote the family of all S-operators on H. The class of sets
{lz; <Sx, x> <1], S=S} defines a system of neighborhoods at the origin. <
is the topology defined as above.

Next we show the topology &, which was defined by H. H. Kuo.

The topology <, denotes the weakest topology on H satisfying that
all measurable seminorms are continuous.

The topology <, is really stronger than <.

2. Here we explain a topology defined on a general linear space X.

If p is a seminorm on X, then we denote by X, the factor space
X/p~*(0), equipped with the norm p defined by the equation p(&)=p(Qz'T),
where z< X/p~'(0) and @, is the canonical mapping of X onto X/p *(0).
We denote by X, the Banach space obtained by completing X,. The map
Q,=1,Q, where i, is the natural embedding of X, in X,, is easily to be
continuous.

If p and q are two seminorms on X and if for each z= X

(*) p(x)=Cq(x),

then we can define a canonical continuous linear transformation ¢,, : X,—X,,
as follows. If Z<iy(X,), then ¢,,()=Q,(Q,'%) (=X,) (that this is well-
defined follows from (*)). If &e&4,(X,) and =X, then there exists a
sequence {%,} of elements in ¢,(X,) which converges to & The sequence
{¢ep(%,)} converges in X, (this, too, follows from the inequality connecting
the seminorms p and ¢q). In this case we set ¢,,(%)=1lim ¢,,(%,). In what
follows we usually do not distinguish between X, and 1,(X,).

A seminorm p on X is a Hilbert seminorm if there exists on XX X a
positive definite bilinear form b such that p°(x)=b(x, x) for all x< X, and
if p is a Hilbert seminorm, then X, is a Hilbert space.

Let (X, z) be a locally convex space, where r is a topology on X. O.G.
Smolyanov and S. V. Fomin defined a topology & associated with = as
follows. Let P be the family of seminorms on X that are determined in
the following way: p< P if and only if p is a continuous Hilbert seminorm
on X for which there is a continuous Hilbert seminorm ¢ on X such that
p(x)=q(x) for all x and the mapping ¢,,: X,—»X, is a Hilbert-Schmidt
transformation. < is the topology on X given by the family P,

All topologies described as above are Sazonov topologies. Moreover, in
1975 D. Mouchtari introduced a Sazonov topology M on dual Banach spaces
satisfying some conditions ([5]).

3. Now we shall construct three topologies defined on dual Banach
spaces analogous to the above topologies.

First we define the topology <, which is a generalization of &F. Let
E be a real Banach space and P, be the family of continuous Hilbert
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seminorms on E’. P, is determined in the following way: pe P, if and
only if p is a continuous Hilbert seminorm on £’ for which there is a
continuous seminorm q on E’ such that p(x)=<q(x) for all x, and E| is the
dual space of some Banach space B and triple pair (¢}, E,, B) is an abstract
Wiener space. &, is the topology on E' given by the family P,.

Next we introduce the topologies r, and z,. Let G and 7T be the
families of subsets of E’ defined as follows:

G={x'=E; |j*x'|g<1]; where H is a real separable Hilbert
space embedded in £ and j is the inclusion map
of H into E satisfying jj*= & (FE)},

T={x'€E; |j*x’|z<1]; where H is a real separable Hilbert
space embedded in E and j is the inclusion map of H
into E satisfying that j* is a 2-absolutely summing
operator of E’ into Hj}.

Let 7, be the topology that has the family G as the fundamental
system of neighborhood at the origin in E’. Also let r; be the topology
that has T as the fundamental system of neighborhood at the origin in £,

Clearly we have

THEOREM 1. &F,, t, and 7, are vector topologies defined on L.

We have many interesting results between these topologies and the
Sazonov topology (see [3]).

§4. Relations among these topologies.

Let &, and Y, be two topologies defined on a space X. We denote by
g9, if 9,9, and say that &, is stronger than &;. We know that
I .

THEOREM 2. Let E be a real separable reflexive Banach space and
E’ be the dual of E. If &F,<F,, 7, and t, are defined on E’, then F<F,
<1,<Lry,. Moreover, there exist examples of E’ such that F=F,, F.=t,
and t,57, respectively.

PROOF. It is clear that if p<= P, then there exists ¢ such that
(pF, Ey, E;) is an abstract Wiener space. Therefore we have F<,.

Next we show that F,<rz,. If p=P,, then we have a seminorm gq
and an abstract Wiener space (¢i, B3, B). Put j==n¢},, where n is the
canonical map of B into E. Since j is an inclusion map of E’ into E and
(¢k,, E5, B) is an abstract Wiener space, we have jj*= G(E) and so ¥ ,<z,.
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The relation r,<z, is induced by Proposition 1.

Now we shall show the latter part. If E is a real separable Hilbert
space, then we have the following results: F =9 and ¥,=<,, and also
I+Y .

The example of E’ which satisfys the relation &,+r,, is shown in the
main theorem of [3].

Let E be a real separable Banach space which is not of type 2. It
follows from Proposition 3 that r,#7,. O

REMARK. The assumption of reflexivity is not necessary for the proof
of F<F, and 7,<r,.

COROLLARY. If E is a real separable Banach space and of type 2,
the/}’b Tg=—Ts.

The relation between these topologies and M will be treated in else-
where.
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