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§1. Introduction

Light rays issuing from a source are observed to form an image of the
source after reflections and refractions at spherical surfaces. Geometrical
optics traces light rays and explains the formation of image, further allows
to construct many precise optical instruments. Light is a wave, however,
so it is diffracted. Image formation is analyzed by Abbe?, taking into
consideration the wave property of light. But he has grafted wave optics
upon geometrical optics, borrowing notions of the latter such as focus.
The position of the image there has not been derived by wave optics. We
intend to derive the formation of image from the propagation of waves.
§2-§5 are intended to prepare basic relations for wave propagation when
a wave is reflected at a curved surface or refracted at a curved surface
separating two different media. §6,7, 8 are intended to analyze the forma-
tion of image through an optical system composed of different media
separated by curved surfaces, each surface being generally perpendicular
to an axis.

§2. Gauss’s integral theorem and Green’s formula

Gauss’s integral theorem states that an integral of the divergence
V-A=div A of a 3-dimensional vector A=(F, G, H) over a finite domain D
is equal to the integral of the outward normal component of the vector 4
over the whole surface S of the domain D, or explicitly

. oF oG 0H B
v Adx—SD< et e >docdydz—SSA nds (1)
where dS stands for the surface element. We assume here the existence
of a function ¢(x), which is positive inside the domain D, negative outside
the domain and vanishes at the surface S. For example, if the domain D
is a sphere of radius r, centered at the origin, we may put ¢=»"—a*—y*—2°
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Then we may write (1) in the following form

oF G | oH _((0F | 3G | oH
SD< o oy | oz >d”dydzﬁg< 5z oy T oz )5(¢)dxdydz

where the function #(x) is the Heaviside function, 6(x) being equal to 1
for x>0,0 for <0, and 1/2 for x=0. The integration on the right side
extends to the whole space. By partial integration we change the term
related to F' as follows,
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since 6(¢) vanishes outside the domain D. Accordingly we may write
Gauss’s integral theorem as follows

SDV-Adx:—KF gﬁ +a ‘;Z vH %SZ >5(¢)dx

:_SA.v¢5(¢)dx, dx=dxdydz . (2)

So we have an easier representation of Gauss’s theorem in place of (1),
where the surface element dS is not so easy to treat. The representation
(2) holds irrespective of the dimensionality of the space.

Referring to a Cartesian coordinate system x,, x,, :*+, 2., & function u(x)
is assumed to satisfy the following differential equation

o*u ou B
Zlem—FEbka—karcu—#f (3)
within a domain and a given boundary condition at the surface of the
domain. Summation > means to make the sum with respect to suffices
appearing twice. Introducing an operator L defined by
0’ 0

L=Eakzm+2bka—x;+c (4)

ar =au, by c, being all constants, we may replace (3) by
Lu=—f. (5)
For any two functions u, v an operator M defined by

o™ ov
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Mw)=2 a2,
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satisfies an equality

_ s 0F,
vLu—M@w)u=3 7 (6)
the right member representing the divergence of a vector F=(F,, Fy, -+, F',)

defined by

0
szz<vakl’5%“——%aklu>+vbku. (7)

Using the function ¢(x) introduced earlier, we get Green’s formula

or,
0%y

S(vLu—M(v)u)ﬁ(q&(x))dx:SE 0(¢(x))dx:—SF-V¢5(¢(x))dx (8)

by virtue of (2). If we take a solution v(x,y) to the equation

M)=—0d(x—y) (9)

we have then, from (8), (9),

S(v(x, y)Lu— M(v(x, y)u)ﬁ(qb(x))d‘x:S( —v(x, ) f(x)+d(x—y)u)i(d(x))dx

= —{o(x, ) F(O0G ) dx-+u@)0 (1)

consequently we get
w(Y)0(p(y)) :Sv(x, Y)f(x)0(¢(x))dx— SF Vod(d(x)dx . (10)

Therefore, if the value of F' is given at the boundary, we can determine
the value of u(y) inside the domain. If L is equal to A+¢, A being the
Laplacian operator, M is equal to L, and vector F is equal to vVu—(Vv)u.
So we have ‘

w0 ) = o, B 0( () dx

+{(To (e, 1) Tgulx) —o(x, y)Tu- V)o@ ()dx . (11)

Most boundary conditions encountered in physics specify u at the
boundary or the normal derivative of u, that is, ou/on, or a linear com-
bination of w and ou/dn, that is, au+ Bou/on. The vector V¢ is normal to
the boundary surface ¢=0, so du/on is equal to V¢-Vu/|V¢|. We denote
Yu-V¢ by dsu and replace the normal derivative of u by dsu under the
assumption |V¢|=1 on the boundary. The assumption is readily realized
by taking ¢/|V¢| as a new ¢, because we see that V(¢/|Vg|))=V¢/IVg|+
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#V(1/|V¢]) and ¢ vanishes en the boundary.
Further we set the condition a®*4 f?=1. Then we have the following
relation ,

(Vo -Vo)u—v(Vd-Vu)=(d4v)u—vd,4u
a —8
B a lav+pogv  —pBv+tadsv
=(au+Bosu)(— pv+adsv) —(av+Bo,v)(— pu+adyu) . (12)

u a¢u au+ﬁa¢u —ﬁu—!—a%u

v 6¢v

Accordingly we get a relation equivalent to (11)

w(w) = (e, B0 dx+ [ {lau-+ 3,1 (— o+ adyv)

—(av+Bo4v)(— Bu+adsu)id(d(x))dx .

If ‘v is chosen so as to satisfy the condition av+Bd;v=0, (11) may be
written as

w(@) =0, 106 () dx+ |(@u+ o u) (— o+ ad,0)0(p(x)dx . (19)

This gives the required solution that takes the specified value of
au+pBosu at the boundary surface. So the boundary value problem reduces
to the determination of a solution v to the differential equation (9), that
satisfies the boundary condition av+ Bd;v=0.

§3. Green’s function for a Helmholtz equation

The wave equation

<A——aa—:2>u=—5(x—x’)5(t—t’) (1)

may be changed into a Helmholtz equation
A—g)v=—d(x—x') (2)

by means of a Laplace transform

vzgme“q““"udt, Reqg>0 (3)

0

with an initial condition u=o0u/0t=0 at ¢=0.
The Green’s function for the Helmholtz equation (2) is given by

, 1 ipe(x—x')
G(x, x')= [ dp (4)

- @Con ) ¢+p
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the integration extending to the whole space. A remark that Re(q+p%/q)
is positive since Req >0 together with Re(1/q)>0, leads to the representa-
tion

_ 2
e $(qg+p /q)ds .

1 1 wl__lgw
¢’+p* q+vle ¢ q

0

Hence we have

— 1 Sw —s(q+p2/q)+ip-(x—x')_d_s_

= 2n)” Sdp 0 q

:~————1 Sme'sq-q(x-x'ﬂ/“(”_q.)n/zﬁ
2m)™ Jo s q

An integral representation of modified Bessl function

1 o0
Ky(Z)Z—S e—z(s+1/s)/28-p—1ds
0

2
gives
G, x) =g () Kolalx—x1),  v=F—1.  (5)
Green’s function has the following properties
1) G(x, x')=G(x', x)
as is easily seen from (5).
2) For | x—Xx'| —> oo,
G(x, x')~ A g a1x-¥1 (6)

2(2ﬂlx___xf|)(n—1)/2

from an asymptotic expansion of modified Bessel function.

3) For lx—x'| — 0
: n L) 1
Gla, &)~ o Ty (7)
s a ’ 1 ’ ’ .
4) lim Fye G(x, x')= —ga(mz—wz) v 0, —ay) - limsgn (x,—a7) . (8)
x> L x>z}

In the integral representation of Green’s function (4), an integration with
respect to p; gives

A=+ Fpi+q), Rei>0.(9)

1 Sw etpl(zl—x’l) e—llxl—x’ll
— 00
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A diffrentiation with respect to x; leads to
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_]|x1__

1
e T sgn (e - a)

which tends to

1 ..
— — lim sgn (x; —x1)
.2’:1—>.2"1

as z;—x,. Remaining integrations in (4) give d(w,— ) -+* d(x, —x7)

2!
S—

few, x)aile(x, Dile)dx= 3 G, ) senz, (10)

Y=Uyil, ¥s, -+, ¥a), 2¥=(—|21l, 2, >+, 2a) .

The suffix T here means an operation where the first component of vector
is changed into its absolute value. The suffix * means another operation
where the first component of a vector changes its sign.z'* means (2")*, so
2'* differs from z*' in general. The integration in (10) extends to the
whole space. To prove the relation (10), we use two integral representa-
tions (4) for two Green’s functions and have the left member of (10)

L. of (10)= 2o ({0 gp 0 € hra(ea
m. of (10)= g SSS g Py e rd)dx.
Factors involving p, and », are integrated to yield
1 Sw eipl(yl—xl)d B e—xlyl—xll 1 (= ezrl(xl—zl)d B e~ #1%1-71
27 Vo Pl DT T o %S-w i T T

A=V(@P+pit+ - +p2), Rea>0, u=+v (@ +ri+ - +7ri), Rep>0.

Subsequent integrations with respect to u,, -+, x, yield the product of delta
functions d(p,—7;) -+-d(p,—7,). The product makes p equal to 4. Then
we get

a e—llxl—zll 1 T
9, 27 =§e 1%l gon (2, — 1) .

After integrating with respect to »,, -+, r,, we have

—AQygl+1z9D)

22

1
l.m. of (10):-2~ ——————— dps - dpn.sgnz,,

Seipz(yz—zz)+-~~+1:pn(yn—zn) 2

and utilizing (9)

_1 1
2 (27"

Seipl(!y1|+\211)+i;02(y2-zz)+~-+ipn(yn~zn) _dpsgnz,

p*+q°

therefore we get (10).
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§4. Setting up of a unifying integral equation in one domain

From the preceding section §2, we see that determination of a solution
to the wave equation (1) satisfying the given boundary condition au+ Bosu
—} reduces to determination of a solution v(x) to the Helmholtz equation
(2) satisfying the boundary condition av+ posv=0. Remembering the rela-
tion (13) in §2, we see that the solution v(x) should satisfy the following
integral equation

o(B) =G, )+ [{(@v(0)+ B, 0(0)(— BG L, %)+ adgG Y, X))
— o)+ ad () (@G (Y, X)+ I, G Y, XN3((dx . (1)

We remark here that ¢ depends on X, not on y.
If we impose the boundary condition awv+8d4v=0, this equation be-

comes
o) =G (w, ) — | (— Bo(x) +0,0(0) (G (y, )+ B3, Gy, M)o(p(x)dx . (2)

We want to state that a solution v» to this integral equation satisfies
both the equation (2) in §3 in the domain D and the boundary condition
av-+Bdzv=0 on the boundary. In short, the equation (2) in §3 and the
boundary condition are unified into the single integral equation (2).

Operating A, —¢*=3 (8%/0y;) —¢* on both sides of (2), we have .

(&, — o) = —3(y—x) — | (= po(x) +ad v(x)
(—ad(y—x)+ B04:0(y—x))d(g(x))dx.

Since y is inside the domain and the integration variable x is on the
boundary, d(y—x) vanishes. Therefore we see that

(A, —@v(y)=—0(y—x') (3)

whence the equation (1) may be derived. Then the difference of (1) and
(2) should vanish, so we have

[ (@v()+ B0 ,0(0)(— BGy, )+ ad, Gy, )o(@(RNdx=0.  (4)

We set here ‘ _
X) -+ B0 4v(x) = w(x) (5)

then (4) becomes
(086 @, %) — ad, Gy, )3(g(x)dx=0. (6)

Here we employ an identity



38 G. IwaTa NSR. 0.U., Vol. 44

[v- @, vu@sgE)Igdx=0 (7)

where V¢ is a vector. An integral of the divergence of a vector may be
turned into an integral at the boundary of domain. In this case, the in-
tegral extends to the whole ’space. The Green’s function G(y, x) decreases
exponentially at a great distance, as shown in (6) in §3. Under the as-
sumption that w(x) remains finite at infinity we attain to (7). The in-
tegrand of (7) turns out to be

VG (Y, x)-Vow(x)3(p(x)) + Gy, X)V- (w(x)d($(x)) V)
=04,G(Y, X)w(x)0(p(x)) +G (Y, X)V - (w(x)d($(x))Ve) . (8)

Consequently we may write (6) as.
|6, 0 Px)dx=0 (9)

P(x)= Bw(x)d(¢(x)) +aV- (w(x)d(4(x))Ve) . (10)
Operating A,—¢* on (9), we conclude that
P(x) = pw(x)d((x)) +aw(x)3(4(x)) Ag + aw(x)d" (#(x)) (V$)*+ ad swd ($(x))
= (Bw(x) +aw(x)Ag +ad ;w)d(¢(x)) + aw(x)d'(¢(x)) =0 . (11)
We multiply P(x) by ¢(x) and get
aw(x)é(g(x))=0

because of the properties of the delta function zdé(x) =0 and x0’(x) = —d(x).
So, if a+0, we conclude that the boundary condition w(x)d(¢(x))=0 is
satisfied by the solution to (4). If a=0, then =1 and the same conclusion
holds more readily from (11). '

EXAMPLE 1. Reflection at the plane x,=0. A boundary condition v=0
is set. The domain is defined by ¢=ux,>0. Equation (2) becomes

=G, x) - [ 3> Gly, Ho@w)dx . (12

A solution to the equation (2) in §3 and the boundary condition v=0 at
the plane x,=0 is, as is well known,

2(0)=G(x, X')—G(x, x*) (13)

the point x’* being a point of reflection of x with respect to the plane
x,=0, If we use (13), we see that
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S a‘i (G(x, X')—G(x, x'*)CY, X)8(w)dx

1 1
= EG(y*, x'*) sgn x; — EG(y", X' *¥%) sgn (— ;)

1 1
= gG(y, x'*) + gG(y, x'*) =Gy, x'*)
hence the solution (13) satisfies the equation (2) in §3 and the boundary
condition. When the boundary condition is set ov/dx;=0, we have the
equation

v =G, )+ | LD 05 dx (14
instead of (12), and the solution
v(xX)=G(x, X')+G(x, x'*) . (15)

It is readily shown, by virtue of (10) in §3, and #,>0, x,>0, that

Sv(x) 99%’1—@5(%1)“: S(G(x, x')+G(x, x'%)) %‘é—’lﬂa(m)dx

1 1
= EGWT’ y'*)sgny, + gG(x’**, y'*)sgny,

1 1
=5 G, ¥+ 5 G, Y =G, ") =Gy, 7).

The solution to the equation (2) may be constructed as a series
U:?JQ+Ul+vg+ ot +/Uk+ o (16)
where the successive terms are formed as

n=—{ 26y, D3@)dx,  k=0,1,2, -

and the first term is set
vo=GY, x’).

If the series (16) converges, it certainly represents a solution to (12). We
see that

0w == {6, 0 2HET o) dx
1 o
=——G¥', x"™)sgna;=— -Gy, x'*)

2 2
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0G(x, x'*)

8901 ﬁ(wl)dx

1
v(Y) = ESG(y, X)

1 1
= G, X sgn (—w)) =~ ZG(y, x'¥)
and so forth, consequently the series (16) converges to the solution (13)
1 1
VoY) +vi(Y) +v(Y) + - =G (Y, X')— EG(y, x’*) — ZG(y, x’*) —

=Gy, x') -Gy, x'*).

If the boundary condition is set dv/on=0 instead of v=0, the successive
approximation series gives the solution (15).

§5. Setting up of unifying integral equations in two domains
separated by a boundary surface

When two domains D and D’ are separated by a boundary ¢=0, a
solution v is required to satisfy an equation

(A—g)v=—0(x—x’) (1)
in the domain D (¢>0), and a solution w is required to satisfy an equation
(A—r)w=0 (2)

in the domain D’ (¢<0). Two solutions » and w are further required to
satisfy on the boundary ¢=0 two conditions

av=w (3)
Bosv=0w . (4)

The equation (2) lacks the term representing the source since a wave is
considered to expand from the source at x’ and cross the boundary into
the doman ¢ <0, to be refracted. We put the Green’s function in the
domain ¢>0 as G(x, y) satisfying

(A—g)G(x, y)=—d(x—y) (5)
and the Green’s function in the domain ¢ <0 as H(x,y) satisfying

(A—r)H(x,2)=—6(x—2). (6)
Since v satisfies (1), it satisfies the following relation

() =Gy, x') +§{v(x)6¢G(y, x)—04v(X)G(y, x)}d(p(x))dx (7)

which becomes, by virtue of the boundary conditions (3) and (4),
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o= G, %)+ [0 (00,60, 0~ 0,0 (06w, ) |oglNdx. (5)

Similarly w(z) satisfies
w(z)= —g{w(x)a¢H(z, x) — 5w (x) H(z, X)}5(¢(x))dx . (9)

It is to be noted here that, because of the relation ¢ <0 in the domain D’
the sign of 0, is changed. The boundary conditions (3) and (4) change (9)
into

w(2) = — {{av(0)2, H(z, ) — B0 /0 ()H(z, ©}0($(0)d (10)

The relation (8) and (10) are satisfied rightly when » and w satisfy the
equations (1) and (2) and the boundary conditions (3) and (4).

We state, similarly to §4, that if v and w satisfy (8) and (10) simul-
taneously, then v and w satisfy the equations (1) and (2) and the boundary
conditions (3) and (4).

It is readily shown as in §4 that » and w satisfy (1) and (2) repec-
tively by operating A,—q¢* and A,—+* on (8) and (10) respectively. If v
satisfies (8), then v satisfies (1) so that (7) follows. Consequently from (7)
and (8) follows the relation

S{(v(x) . —i—w(x)>8¢G(y, x) —<8¢v(x) . %%w(x))G(y, x)}5(¢(x))dx:0 . (1)

Similarly, from (9) and (10) follows the relation
S{(av( X) —10(x))3,H(z, x) — (83 4v(x 9, w(x) Hiz, () dx=0. (12)

Here we put
o)~ () =A®), 9,08 —5,w(x)] = B) (13)

and use the identity

0G(y,x) d¢
a Xp awk

A(x)04;G(Y, x)0(p(x))=A(x) 2 0(p(x))

9 9 9
=3 (AP0 (NG W, 0) -G, 0D 50— (A0 5T 06

to get

400,60, Do) dx=— |Gy, OV (A®)3(6(0)T9)d

assuming the finiteness of A(x). Referring to (11), we get
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[6w, 0T (A®)0(6(0199) + Bx)3((x))dx=0.

Operating A,—¢q* on this relation we have

B(x)d(p(x)) +V- (A(x)d(gd(x))Vgp) =0
or
(B(x)+04A(x)+ AAG)d(d(x)) + A(x)8’ (¢(x)) (V9)*=0 (14)

Multiplying by ¢(x) we have
A(x)8((x)) (T9)*=0
Since (V¢)’=1, we get
A(x)d(¢(x))=0
or A(x)=0 on the boundary, so that we have the relation
B(w)o(g(x))=0. (16)

Hence two boundary conditions are satisfied. Therefore two equations (1)
and (2), and two boundary conditions (3), (4) are unified into two integral
equations (8) and (10).

EXAMPLE. The plane x,=0 is taken to be a boundary separating two
media. In the domain ¢ >0 we take the equation for v

(A—agh)vr=—0d(x—x’')

and, in the domain ¢ <0, the equation for w

(A—bg ) w=0.
Boundary conditions are
av=w
ov _ ow
B ox, 0x,

If we write equations and boundary conditions for Fourier transforms of
v and w

,T):Se—ipz(zz—z’z) —~--—i7)n($n—x’n)vdw2 e dxn

w:Se~ip2(x2~m’2) —---—ipn(xn—x’n)wdx2 ces dwn
we get

0 - /
af 0= 0o
1
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i=Via?Fpi+ - +p2), Rea>0, p=vV(bF+pi+ -+ +pi), Rep>0

together with

o v 0w B
av=w, B T ey at z,=0.
In this case we have
e—l\ylf.rll e'ﬂ‘zl"“l‘
Gy, 901):—22 , Hizy, 901):T
and solutions
e tmm Al BA—ap .
="er T waBikam ¢ (D
~:*aﬁ__ -Azy+px -
i, Batan et R T (18)

Equations (8) and (10) become

~ - e—l!xl—x’ll e—]xl 1 _, e—lxl 1 N

v(@)="pr gy s () + —5——w(0) (19)
_ ehE1 -, et®1 y

D) = 5= B0/ (0)+ 50 0). (20)

Solutions (17) and (18) satisfy certainly (19) and (20). Inversely we can get
solutions (17) and (18) from (19) and (20) by the method of successive ap-
proximation, relying on the condition

_ap B
2 82 <4
§6. Reflection at a curved surface (Paraxial approximation)

Referring to a Cartesian coordinate system (z, y, 2), a wave propagates
generally in the direction of z-axis from a source x’'=(z’, y¥’,2’) and is re-
flected at a curved surface

o=z2—(*+9y")/2a=0 (1)

with the boundary condition v=0 there. Then the equation (2) in §4 be-
comes

v(X")=G(x", x') ——SG(x”, X)04v(x)d(p(x))dx (2)
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X’

lxll

Fig. 1

the Green’s function here being given by
e—Ql-V—x’l

Gl X) == (3)

We assume the solution v may be expanded as

1):?)0+1)1+?)2+"' (4)
while
o(X")=G(x", x’)

Ve @)=~ |G, D DIGNdx,  k=0,1,2, .

The paraxial approximation assumes that coordinates x and y are small
compared with the axial distance z. Then we see that

lx—x'|=]z—2'| +((x—a)+(y—y"))/2]z—2'|

1

WG(-’Q x’)

0,G(x, X')=qG(x, x')+

If we assume that |¢(x—x’)[>1, we may put

(x—a')+y—y’')’ H

1
d;G(x, x’)z-q————~exp[—q{1z—2’l+ Sle—z'|

dr |z— 2’|
consequently we have

nyY — q . " _ (90“90”)27%?/—?/”)2 ’r__
v(x")= (dn)® Sexp[ q(z 2+ 5" —2) +2'—2

" (x—x’)z-l-(y—y')z)]. oo —(y' +a?)/2z) daxdydz.

2(z'—2) (" —2)(z"—2)

An integration with respect to z replaces z by («*+%?%/2a in the integrand
except 2’s in the denominators. These z’s are replaced by 0 according to
the paraxial approximation, in other words, 2’—z and z” —z are replaced
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by 2’ and 2” respectively. Then we have

—qzt —qz”
vl(x”):—(4(17)2%756:@[*%{A(oc2+y2)*2Xx—ZYy
7”9 "2 79 7%
LT YT ey (6)
2 z

___4q 1 [_ " n_ 9 2 2 ]
n) 22 Sexp glx’|—q|x”| 5 A@+y)+qXe+qYy |dedy

where the following notations are used

2 L// ’ 4 ’
A=l 2 @t ey Y
? z a z ? 2 z

(7)

When A is positive, integrating with respect to » and y, we get

V4 1 9 ’ "
ni)= = g exp [ L (X V) gl —alx] | (8)
and
7y 1 (t-t"gq 7
()= 5| e O, (x")dg
—_ . 1 R YA "o ” 9 79

The solution u,(x”) determines the wave front
1
(t—t' —|x'|—|x"|)A+ E(X2+ Y?)=0.

Since the quantity A decreases as z” increases, A may vanish at a cer-
tain 2”. At the plane perpendicular to the z-axis at z”, the wave front
is to satisfy X?+ Y?*=0 since A=0. The condition X+ Y?=0 entails two
conditions X=0, Y=0, which determine a unique point "= —x'2"/2’, y" =
—y’2"|z’. So the wave front is to converge at the point (—x'2"/z’, —y'z" [z,
2”), 2” being determined by A=0.

The condition A=0 gives the well-known relation of the z-coordinate of
the source and that of its image in geometrical optics. If we consider a
purely monochromatic wave and replace ¢ by iw (w: frequency), then the
integral (6) with A=0 reduces to

—a potolx'|—ielx”] ” ’ ” 4
4 Lo 1 7 5(@7_!_ x/ >5<y—”+ y/ > (10)
@ 22 2 2 2 z )

v, (x") =

showing that a wave starts from the source (x’,9’,2") and converges to
the image of the source (x”,y”, 2”) very sharply.
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When A <0, the integral in (6) diverges, since the range of integration
extends to infinity. In this section, we used the paraxial approximation
assuming that |x|, |y| are small compared with the axial distance, so that
the range of integration with respect to x and % should be confined to a
finite region, for example, a circle of radius R, centered at the z-axis
a*+y*<<R? and the integral (6) should be evaluated more carefully. There-
fore we should replace (6) by

” - 1 / ” 1
v1(X") = (4732 z,z,,gexp[—qlx |—qlx I—qu(x2+y2)+qu+quJ

O(R*—x*—yd)dady (11)

multiplying the integrand by (R*—x’—y%. 6(x) has an integral representa-
tion

_ 1 25 dS |
0(x)= zm'SLe 2, Res>0 (12)

where the path of integration L is a straight line parallel to the imaginary
axis. Replacing s by s/2, we have

S exp [— %A(xﬂ— y* +qu+qu]0(R2—x2—y2)docdy

1 1
= ; SSL exp [? Ris— 0 (s+qA)(x*+y)+qXx+q Yy}%dmdy

_ 2= 1., X+ Y2)] ds
—E—ESL exp[—R s+ s

R
2 2(s+q4) s+qA)’ els+qA4)>0

_ 2me AR ] 1., ,
= p 2m.gcexpl:2Rqs+

q(X*+7Y?) J ds’
s’(

57 s —A)° s+qA=s'q.

(13)

We change here the path of integration into a circle C encircling the origin
and A. The path of integration is now changed into a circle of radius
R~ (X?+7Y? centered at the origin. If the path of integration crosses the
point A during its deformation, the integral should be added with the

residue at A. So we have

— _2£ -qAR2%/2 L _1_ T O dc
19)= e g fosn | GaRVITE VIO | L= ARV (X T)

(14)
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where the variable s’ is changed into £ by s’={R~(X?*+Y?. We change
again the path of integration into the unit circle and put {=e*. Then
£+1/¢ is real. The inverse Laplace transform of v(x) is found to be

w (x,,)__ 1 R __LSE
BT 8z V(X YY) 21 ) s
) 1 1 N
-5[t—t’—lx’l—|x |~ S AR+ S RV TTF Y2)cos0:I
dé 1 , - X+ Y?
e’ — ARV (X*+ YY) 8rz'z” 5[t A Y }
1 AR
V) (15
The integral in (15) may be evaluated by a formula
Sﬁ d{a+bcosf)g(cos b, sin f)do
_ 1 a \/(bz—az)> ( a V(bg—a2)>} . g
= \/m{g< b’ b )ty b b 0b*—a®. (16)

§7. Refraction at a curved boundary (Paraxial approximation)

A curved surface ¢=z—(x’+y")/2a separates two different media. We
assume that the medium in the domain ¢ <0 has the refractive index =
and the medium in the domain ¢>0 has the refractive index m.

A wave starting from a source x’=(x’, ', 2’) situated in the left medium
propagates generally from left to right. The Laplace transform of w is
denoted by v in the left medium and by w in the right medium. Equa-
tions are put

X"

.t 6>0

$<0 $=0

Fig. 2
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Av—nP*v=—d6(x—x') (1)
Aw —m*Qw=0 (2)
respectively. Boundary conditions are set
av=w (3)
Bosv=04w . (4)
Respective Green’s functions are

—-nglx-x'| —-mg|x—x’|

H(x, x")= ¢

Q N — — .
(x, x7) dr|x—x"| °

dr|x—x'|’

In this case, integral equations (8), (10) in § 5 governing v and w become

o) =G, %)~ [ w(99,60, 3~ 0,096, 0 |spIax (5)
and
w(2) =S{av(x)a¢H(z, x)— 83, 0(x)H (2, X)}5(5(x))dx . (6)

We take G(y, x) for the first approximation to v, and we have, as the
first approximation to w,

w(x”) =§{aG(x, x)o,H(x", x)—[o,G(x, x')-H(x", x)}d(d(x))dx (7)

replacing z by x”. According to the paraxial approximation and the as-
sumption |gr|>1, we use the following approximation

0,G(x, x’) :7%— G(x, x')= —nqG(x, x’) (8)
0,H(x,x")= %H(x, x")=mqH (x, x") (9)

and get

w(x”)=(am-+ ﬁn)qSG(x, X )VH (x, x")o(z— (x*+y?)/2a)dxdydz

-+ ’ ” 2+ y—y)
:%Sexp[q{nz —mz" —(n—m)z+n (@ x)2z/(y v

When z is replaced by («’+¥%/2a, the expression inside the braces may
be rewritten
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’2 2 ”3a ”2 1
{ }:"<z/jL =7 )“”’”(z“r ot >""§A(”c2+y2)

ma” na' ” ny’
+< 2 7 >ﬂ'3+< m% _—z{ﬁ)y
4 z 4 z

1 .
=—n|xX'|—m|x"|— EA(ocz—l—yz}-i-Xoc—l— Yy

where
m n n—m
A= 7 /+
V4 z a
” ’ ” ’
_mx nx - my ny
X= 2" - P Y= 2" - P (11)

At the plane where A is positive, integration with respect to x and y gives

n_ _am+fpn [ q . 2; " ,,:I
w(x")= SrAlz2"] “P| 24 (X*+ Y —qn|x’'| —qm|x"] |. (12)

The inverse Laplace transform of w(x”) becomes

5]:t—t’—n]x’l —omlx’ |+ —2};1—(X2+ Yz)] (13)

am+ fn

uwlx") = 8nAlz'z"|

As in the reflection in §6, we see the wave front converging to the point
(nx'z" Imz’, ny'z”|mz’, z”), 2z’ being determined by A=0. The condition
A=0 is the well known relation of the z coordinate of the source and that
of its image in geometrical optics.

As in the reflection in §6, for a monochromatic wave, ¢g=1iw, we get

’Z/U(x”): (am+ﬁn')?’ e*iwn|x'|—iwm|x”|5< mx . nx >5< /'ny _ /nfy > (14)

dwlz’z2"| 2" 2’ 2" 2’

after refraction when A is equal to 0.

§8. A system of lenses

It is assumed that m boundary surfaces ¢,=z—d,—(x’+%?)/2a,=0,
k=1,2,---, m separate m+1 media, among whom medium 1 is defined by
¢, <0 and has the refraction index nm,=n’, medium k is defined by ¢,>0
and ¢,,;<0, and has the refractive index n,, k=1,2, ---, m —1, medium m
is defined by ¢, >0 and has the refractive index =, =n, as shown in Fig, 3.
A point in the neighbourhood of surface ¢,=0 is denoted by Xx.= (2, ¥4, 7).
A wave function in medium k with the refractive index =, is denoted by
", its Laplace transform by wv,, the Green’s function there by
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n’'=n, n N N1 Na=n
X
z
dl\ d, dn
X
Vo U Ve Um-1 Um
¢l=0 ¢2=0 ¢m=0
Fig. 8
G e"nk‘ﬂx-lll 1
#(X, Yy)= T (1)

Boundary conditions at the boundary ¢,=0 are set as
OV -1 — Vg, Tka/Uk_I/a’ﬂ—_—a'Uk/a%. (2)

The symbol d/dn means the normal derivative generally directed to the
right direction, approximating dsv. A wave starts from the source x'=ux,
situated in the medium 0 with the refractive index n,=n’, propagates
generally to the right, is refracted and reflected at each boundary, finally
attains to medium m.

Referring to (7), (8), (9) in §7, the first approximation v,(x) may be
given by

oa(®)=0" L@t T (G, ) - Gil, X)Golx,, %)

0(@n(Xn)) =+ 0($1(X))dXy = dXm . (3)

If we replace the denominator of Green’s function by its value at the
z-axis and put

[ X=Xyl =|2r—2e-1| =dp—di-s

then the integral in (3) reduces to the integral
w={exp| —q Ll —x| [T 6000, (4)
except for the denominators. We put
TL X — x| = L. (5)

Because of the factor d(¢.(x,)) in (4), the point x, lies on the boundary
¢.=0, Therefore L means the optical distance of a path connecting x'=
Xo, X1, ***, X, X1 =X with straight lines. Geometrical optics is deducible
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from Fermat’s principle stating that the optical distance L of the path of
light connecting x, to X,., is stationary for the infinitesimal variations of

X, on the boundary ¢,=0.
Employing the paraxial approximation and replacmg 2 by dp+(xi+y3)/

2a, we rewrite L as

Na{(Zer1—20)" (i1 — 22)* + (Y41 — )

Mz

L=

x>
1l
=)

8

= g M1 — 2o (B Yo+ Thor + Yhe1 — 2%k 1 — 2YsYr+1) [ 2(R s — 2)}

3

I

Tie1 T Yirs —d.— i+ Yi
k

{dk+l+ 2ak+1 Zak

k=0

+ Tyt Yot Tiot + Yio _ X1 YrYrr }

Q(dk+1_dk) dk+1_dk

m-1
= no\/(dl—‘do)2+x/2+ Yy + kgl N (A1 —de) + Moy \/((dmﬂ‘—dm)z"" m2+y2)

1

? ak(wk‘*‘yk)— 2 ﬁk(xkxk+l+ykyk+l)_‘8 (W,%"‘y’yl)_‘ﬁ(xxm‘i‘y?/m)

(6)

-+

nMg

where the following notations are used

— M1 — T Ny Np-1
W= Ay +dk+1_dk+dk_dk—l
nk - . Ll ———
IBk dk+1 dk k 1) 2: , M 1: (7)

r—. — Nm

F=d—dy P dp—dn
It is to be noted that ay=a,.:=, do=2" the z coordinate of the source,
dn.1=2 the z coordinate of the observation plane. We use further a
matrix notation

a, —PB
— B as, —f
A= —B, _ =(a;e) - (8)
N — p
—Bm-1 am

Assuming the symmetric matrix to be positive definite, we get
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m-1

exp [—qnov(dl—do>2+x'2+y'2>—q S (s — i)

k=1

_ 2™
T g™det A

—qMm+1 \/((dnwl—dm)z-*_mz_{—yz)

+ % {Aup™ (@ +y) + 24188 (v +yy") + Ann (2’ +y7)}/det A] (9)

A;, denoting the cofactor of a;,. The inverse Laplace transform of v,(x)
becomes

m-—1
Un(X)=Const. 5[t—t’ —neV ((di—do)+ 2 +y"?) — kg} (A1 — i)

—Nm+1 '\/((derl —dm)2+ 952_"' ZI/2)

(AW ) 24,0 B8 0+ )+ A0+ det A ]
[det A (10)

the factor Const. denoting a constant quantity. Since the matrix A is as-
sumed to be positive definite, so the inverse matrix A~' is also positive
definite, so that the expression inside the braces in (10) is not negative for
any values of z/, ¥/, z, v.

As z=d,,, increases, a, decreases, and det A may vanish at a certain
value of 2. The wave front depicted by (10) is to satisfy

A B+ Yy + 24,88 (@2’ + YY) + Apn 5+ =0 (11)

at the value of z, so that there ensue two conditions
AL(Be'+2A,,8x B+ Ayn(Br) =0 (12)
Au(By ) +241mB"Y Y+ Ann(fy)'=0. (13)

For given x’ there might result two values of x. But, when det A vanishes,

All Alm .
1 =det A-(determinant of A devoid of 1, m rows and 1, m columns)
=0

Ani Ann
by virtue of Jacobi’s theorem. So the condition (12) may be reduced to
A B2+ Ay fr=0.

Similarly the condition (13) may be reduced to
ApB'Y + Apnfy=0.

In short, the wave front may converge to a point (—A.82/AnnB,
—A1nB Y [AnnB,2) on a plane perpendicular to the z-axis at z,z being
determined by det A=0. At the point z where det A=0, the integral
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1 m
g exp [—q<5 ZIJ a2+ YY) — B (@ @ty Y1) — Baxn, +yym)>]ﬂdxjdyj

divereges. For a monochromatic wave (¢g=1w), if Apn>0, integration with
respect to variables except for x,, ¥., succeded by integration with respect
t0 %m, ¥n leads to the factor

5(Almﬂ/x/ +Amm,8w)5(141m,8,y’ + Amm,@y)

as in (14) of §7. The expression (10) represents that the wave starting
from (z',y’,2’) converges at (x,y,2) with the magnification ratio — A B/
A B.

Let us consider the preceding calculation from the standpoint of
geometrical optics. The optical distance L (5), (6) may be expressed as

m 1 m+t
L= EO Nip(dpy1—de) + Ej,kzioajk(xjwk+yjyk)

in 2m~+2 variables, additional variables being ®,=2", Ye=¥', Tmi1=%, Yms1
=y. The Fermat’s principle requires that

oL . AL _
awk 70’ ayk =0
k=1,2,-,m.

These conditions are two groups of m simultaneous equations in x, -+, &n
and ¥, -, Yn respectively. The coefficients of variables constitute the
matrix A. If det A+0, there is a unique path for any two end points.
But, for imaging to be possible, there must be two paths at least for two
end points, consequently det A must vanish. The condition det A=0 gives
the relation between z and z’.

§9. Maxwell’s equations

In the preceding analysis we treated light as a scalar wave. If we
analyze more exactly, we should treat light as an electromagnetic wave
governed by Maxwell’s equations

;L%?—-FVXE:O (1)
saalj —IX H=0. (2)

Using the following notations

\/(5#)7:% s X=%1, Y=%2, =g, \/#H: (W1, Us, Us) , \/EE:(@M, Us, )
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and a column vector » having components wuy, u,, «--, us, We write

0 0 0 P _
<n75—+r1 o +7 P +7; a7, )u—O (3)

where three matrices 7, 7,, 75 are defined for any a,, a,, as by
0 — a3 (42
)X as 0 —a,

. — Qs A 0

0 1
710+ 7ols+ 730 =
—1 0

in the Kronecker product form. We denote the Laplace transform of u by v
v=gme“”udt
]
which satisfies
B 0 0o 0 _
Lv—<nq+7’15‘%-l—+rz—ag+ra 37, )v—nu0 (4)

u, denoting the initial value of u. The operator M conjugate to L turns
out to be defined by

ow ow ow

M(w)=nqw — A T A L

for any row vector w. We introduce a solution I'(y, x) to the matrix
equation
o ol’ ol’ or . B

which solution goes to zero as |x—y|— co.
Analogous to (6) in §2, we have

3
ILo=MIv= % -2~ (I'70) (7)
k=1 OXp
so that we have, integrating in the domain D, defined by 0 >0,

S{I’(y, x) Lv(x) — M(I"(y, x))v(x)}0(H(x))dx= Sz—a%;(l”(y, X)7:0(x))0(d(x))dx ,
the left member:SF(y, X)nu(x)0(4(x))dx—v(y)b(¢(y)) ,

the right member=— SF Y, x)27: g—iv(x)(?@(x))dx ,
k

consequently we have
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v(y)o((y) =Sl’(y, x)%uo(x)0(¢(x))dx+gl’(y, x)D(x)v(x)d(p(x))dx (8)

0 "‘¢3 ¢2
0 1 o6
D(x)=27ipe= Lo X| ¢ 0 —¢u), =, k=1,23. (9)
—¢ ¢ 0

We denote quantities in the domain ¢ <0 by symbols used in the domain
¢>0 added with a prime. The boundary conditions to be imposed upon
u,u’ at the boundary ¢=0 are the continuity of tangential components of
field strengths,

Vox E=VNgx E, NpxH=N¢xH (10)
or, in matrix form
0 —¢s & E, 0 —¢s s E
¢ 0 —¢i||Ey|=| ¢ 0 —o¢i|| E, (11)
—¢, ¢ 0’ 'E, —¢, ¢ 0/ \E,
etc. These conditions may be written in terms of u
/ve 0 1/ve 0
APu= A'0u’, /1=< _)Xlg, _/1’:< _>><13 (12)
0 1vp 0 /vy

1, denoting the unit matrix of dimension 3. As to vectors v,v’, the same
condition (12) holds.
In the domain ¢ <0, we introduce /"'(z, x) that satisfies

MM (z,x)=1:-6(z—x).
Maxwell’s equations

3+~—@—>v’20

! ye! — / a a
|L —(n q+ri=s—"r: s

0%, 0% 4
have a solution
v'(20(—§(2) = — \I"(z, O (X0 (x)3($(x))dx
where @(x)v(x) is to be replaced by A’ 'AQuv(x) according to (12),
="z, ) 4 DXL (R)3(p ) dx

As the first approximation to (8), we take

o) =, o)y
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and get

0'(@0(—g() = —[I"(z, x) A"~ 4D ()" (x, 4)3( (X)) nat, ()0 W) dxdy
- S K(z, y)nu,(y)0(¢(y))dy

K(z, y)= —Sr'(z, x) A" AD(xX)T(x, Y)3((x))dx .

The solution I'(y, x) to the equation (6) is computed to be

SRR T S T
" ng 0x0x nqg 0x0y ng 0x0z |
1 0 2 2 2
_ IR S L e 1 9
'y, x)= <0 1)X ng dyox 4 ng 0yoy ng 0yoz
ot e 1 e 1§
ng 020% ng 020y " ng 020z )
) 0 ]
" T Gy
01 5 5 [
+(__1 O>>< e 0 “om Gy, x)
0 0
oy o
. e*n‘ﬂllﬂxl
G(y,x)—m

and /(y, x) is of the same form as /I'(y, x), except that » is replaced by »’.
In the paraxial approximation we see that

1 0 0 0 1

1 0 0 1
I'(y, x)= x(0 1 0+ X|—1 0 0]tngGy, x)
0 1 -1 0
0 0 o0 0 0 0

=JnqGY, x)
01 0

0 1
o= X[—1 0 0],

-1 0
0 0 0

J being defined by the above expression, so that we have
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K(z, y)= —nqn’qJ/l"l/lJSG’(z, X)G (X, 1)6(6(x))dx

so the essential feature of propagation of wave is the same as in the scalar
theory (Refer to (10) in §7, (3) in §8).
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